• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      強(qiáng)載荷下結(jié)構(gòu)動(dòng)力響應(yīng)與損傷的跨尺度分析

      2012-09-15 10:24:24湯軼群李兆霞
      振動(dòng)與沖擊 2012年23期
      關(guān)鍵詞:桁架尺度載荷

      湯軼群,李兆霞

      (東南大學(xué) 土木工程學(xué)院工程力學(xué)系,南京 210096)

      整體結(jié)構(gòu)的失效總是起始于局部的損傷累積,然而局部損傷與整體結(jié)構(gòu)是分別處于局部微、細(xì)觀尺度與整體結(jié)構(gòu)尺度這樣兩個(gè)不同量級(jí)的空間尺度上,所以結(jié)構(gòu)損傷失效過(guò)程成為一個(gè)跨尺度演化的過(guò)程。現(xiàn)行結(jié)構(gòu)分析方法多在單一尺度上進(jìn)行,在結(jié)構(gòu)整體大尺度上,構(gòu)件局部損傷及其對(duì)結(jié)構(gòu)劣化的影響難以準(zhǔn)確模擬;為了關(guān)注結(jié)構(gòu)中的易損局部細(xì)節(jié),若整體精細(xì)模擬,則節(jié)點(diǎn)數(shù)及單元數(shù)會(huì)非常龐大,使得模擬無(wú)法實(shí)現(xiàn)或影響計(jì)算效率[1-2]。應(yīng)用跨尺度分析方法可以很好的解決這一問(wèn)題,同時(shí)分析結(jié)構(gòu)響應(yīng)及其局部易損部位的損傷演化過(guò)程。

      對(duì)大跨結(jié)構(gòu)的整體或局部不同部位的描述,其適用的理論和尺度范圍取決于描述目的和主要考察對(duì)象。從結(jié)構(gòu)全尺度、局部構(gòu)件尺度和損傷細(xì)節(jié)尺度三個(gè)方面建立多尺度模型時(shí),各個(gè)模型尺度所關(guān)注的分析對(duì)象、適用的理論以及有限元單元特征長(zhǎng)度都應(yīng)有所不同:① 大型工程結(jié)構(gòu)全尺度,其尺度范圍在100~103m,適用結(jié)構(gòu)力學(xué)理論,分析結(jié)構(gòu)內(nèi)力;② 梁、柱、板、殼等構(gòu)件尺度,其尺度范圍在10-3~100m,適用于材料力學(xué)、彈性理論,分析構(gòu)件名義應(yīng)力;③ 含缺陷的節(jié)點(diǎn)細(xì)部構(gòu)造,其尺度范圍在10-6~10-3m,適用于宏、細(xì)觀損傷理論,分析熱點(diǎn)應(yīng)力、損傷演化[2]。

      圖1以局部構(gòu)件模型為例,給出了典型的跨尺度(局部構(gòu)件尺度與細(xì)觀尺度)有限元模型各組成部分。該等截面梁分別由左邊的精細(xì)實(shí)體單元模型和右邊的宏觀梁?jiǎn)卧P徒M成,宏觀梁?jiǎn)卧P驮谡w結(jié)構(gòu)中屬于無(wú)缺陷且始終處于彈性階段的部分,而精細(xì)實(shí)體單元模型的引入是為了分析結(jié)構(gòu)中的缺陷部位。由于應(yīng)力集中區(qū)域的應(yīng)力梯度較大以及損傷理論的適用范圍要求,需要把局部缺陷部位的單元網(wǎng)格細(xì)化,于是從宏觀的構(gòu)件尺度到細(xì)觀的損傷尺度便需要通過(guò)跨尺度界面及過(guò)渡區(qū)域連接起來(lái)。在跨尺度界面上,根據(jù)研究對(duì)象的需要選取相應(yīng)的單元連接方法,是多尺度有限元建模中的重點(diǎn)內(nèi)容。

      圖1 跨尺度模型的基本組成部分Fig.1 The fundamental component of the trans-scale module

      目前在有限元軟件中實(shí)現(xiàn)不同單元間的連接主要有下面三種方法:① 直接寫(xiě)入節(jié)點(diǎn)位移約束方程;②建立耦合單元;③ 建立過(guò)渡單元[3-14]。這些方法的本質(zhì)是一樣的,都是為了建立不同類型單元間的節(jié)點(diǎn)位移關(guān)系。文中以以更加靈活、自由的寫(xiě)入節(jié)點(diǎn)位移約束方程為例,討論兩種基本的建立方法:① 通過(guò)滿足兩種不同尺度模型在跨尺度界面上的位移協(xié)調(diào)建立節(jié)點(diǎn)位移約束方程;② 通過(guò)滿足兩種不同尺度模型在跨尺度界面上的做功相等建立節(jié)點(diǎn)位移約束方程。通過(guò)對(duì)以上兩種單元連接方法的詳細(xì)對(duì)比分析,對(duì)于更加方便地建立能夠準(zhǔn)確反映局部損傷細(xì)節(jié)的多尺度有限元模型有著十分積極的意義。

      配合跨尺度界面上的單元連接方法,本文還在局部小尺度區(qū)域引入了塑性損傷耦合的本構(gòu)模型,真正實(shí)現(xiàn)了跨尺度分析。為了驗(yàn)證本文跨尺度分析方法的正確性,以一鋼桁架結(jié)構(gòu)為例分別建立多尺度有限元模型和單一尺度精細(xì)單元模型配合實(shí)驗(yàn)進(jìn)行驗(yàn)證,并對(duì)兩種模型進(jìn)行了抗震分析。計(jì)算結(jié)果表明,運(yùn)用本文跨尺度分析方法所建立的多尺度有限元模型能夠準(zhǔn)確地反映局部節(jié)點(diǎn)細(xì)節(jié),可以替代單一尺度模型進(jìn)行強(qiáng)載荷下的結(jié)構(gòu)動(dòng)力響應(yīng)與損傷分析,并且能夠大大地提高計(jì)算效率。

      1 跨尺度界面連接方法

      在多尺度有限元模型的跨尺度界面上,可以通過(guò)節(jié)點(diǎn)位移約束方程把不同類型單元上的節(jié)點(diǎn)連接起來(lái)[15],約束方程是一種聯(lián)系自由度值的線性方程,其形式如下:

      式中:U(i)為節(jié)點(diǎn)i的位移自由度項(xiàng),C(i)為節(jié)點(diǎn)i的位移自由度項(xiàng)的系數(shù),N為參與連接的點(diǎn)自由度總數(shù)。

      1.1 跨尺度界面位移協(xié)調(diào)方法

      如圖2所示,在跨尺度界面上小尺度精細(xì)單元模型上的某一節(jié)點(diǎn)與大尺度梁?jiǎn)卧?jié)點(diǎn)之間的位置關(guān)系,并在跨尺度連接界面處建立局部坐標(biāo)系xyz。不同尺度模型在界面上的自由度按照平截面原則進(jìn)行傳遞[16-17]。在界面上,以大尺度模型上的節(jié)點(diǎn)A為主節(jié)點(diǎn),小尺度模型上的各個(gè)節(jié)點(diǎn)Bi為從節(jié)點(diǎn),相當(dāng)于在A點(diǎn)與各個(gè)Bi點(diǎn)之間建立一個(gè)剛性梁,以保證它們之間的位移協(xié)調(diào)。針對(duì)圖2的三維局部坐標(biāo)系,假設(shè)界面的轉(zhuǎn)角很小,可以建立節(jié)點(diǎn)位移約束方程如下:

      其中:ux,uy,uz分別為 x,y,z方向的位移,rotx,roty,rotz分別為 x,y,z軸的轉(zhuǎn)角。

      圖2 雙尺度模型在跨尺度界面上節(jié)點(diǎn)之間關(guān)系示意圖Fig.2 The relationship between nodes on the trans-scale boundary

      為保證跨尺度界面上位移的協(xié)調(diào)性,恰當(dāng)?shù)奶岱☉?yīng)該是要求變形后兩種模型在跨尺度界面上各點(diǎn)位移沿垂直于該面方向(即平行于梁?jiǎn)卧S線方向)的分量相同,即兩類單元在跨尺度界面上仍然保持貼合,但不能要求兩種模型在界面上各點(diǎn)位移沿面內(nèi)方向(即垂直于梁?jiǎn)卧S線方向)的分量相同,因?yàn)榱簡(jiǎn)卧雎粤嗽摲较虻奈灰谱兓?。如果要求兩類單元在跨尺度界面?nèi)方向上的位移一致,就是強(qiáng)迫小尺度下的精細(xì)單元模型在跨尺度界面面內(nèi)方向的應(yīng)變?yōu)榱?。這個(gè)不恰當(dāng)?shù)膹?qiáng)制條件會(huì)使跨尺度界面處的應(yīng)力分布不同于實(shí)際情況,使計(jì)算結(jié)果失真。因此可以說(shuō)這是一種剛性的連接方法,該方法要求跨尺度界面要處于線彈性小變形范圍內(nèi),且要遠(yuǎn)離局部應(yīng)力集中區(qū)域,以保證所關(guān)注的局部缺陷部位的計(jì)算結(jié)果是比較準(zhǔn)確的。

      1.2 跨尺度界面應(yīng)力協(xié)調(diào)方法

      為了滿足大尺度下的梁?jiǎn)卧c小尺度下的精細(xì)單元模型在跨尺度界面處應(yīng)力的連續(xù)性,假設(shè)在界面上的做功相等,并按材料力學(xué)原理求解界面應(yīng)力,可推導(dǎo)得到在各種力作用下梁?jiǎn)卧c精細(xì)單元耦合的多點(diǎn)位移約束方程。其中,小尺度模型在跨尺度界面上的應(yīng)力分布都是按照材料力學(xué)理論在一定假設(shè)的基礎(chǔ)上推導(dǎo)得出的,所以整個(gè)跨尺度界面也是要偏向于桿件屬性的,必須符合平截面假定,且處于線彈性、小變形范圍內(nèi)。假如在跨尺度界面上滿足了彈性、小變形的假設(shè),便可以根據(jù)疊加原理將跨尺度界面連接分成軸向拉壓、純彎曲、剪切、純扭四種情況,其中純彎曲和剪切情況在跨尺度界面內(nèi)又可以分為兩個(gè)方向,于是便可以得到六個(gè)等式。這六個(gè)等式分別對(duì)應(yīng)于六種不同的梁?jiǎn)卧杂啥?。等式的具體建立過(guò)程如下:

      如圖3,在軸向拉伸Fz的作用下,小尺度模型在跨尺度界面上只有z向正應(yīng)力。所以在界面(z=0)處,可以根據(jù)做功相等得到下式:

      其中:Fz是梁?jiǎn)卧妮S力,w為跨尺度界面上梁?jiǎn)卧?jié)點(diǎn)的軸向位移,σz為跨尺度界面上小尺度模型的軸向應(yīng)力,W是小尺度模型在界面上某點(diǎn)的軸向位移(以坐標(biāo)為自變量的函數(shù)),A為跨尺度界面上小尺度模型總面積。

      圖3 軸向拉伸作用下雙尺度模型在界面上的應(yīng)力分布Fig.3 The stress distribution on the trans-scale boundary under the pull load

      如果研究對(duì)象細(xì)長(zhǎng),則跨尺度界面處小尺度模型上的軸向應(yīng)力值為常數(shù):

      又因?yàn)樾〕叨饶P兔嫔系哪滁c(diǎn)軸向位移可以由已知的各單元節(jié)點(diǎn)的軸向位移{W}插值表示出來(lái),單元確定了,形函數(shù)〔N〕就可以知道,于是有:

      假設(shè)小尺度模型在連接界面上涉及到的單元總數(shù)為 Nelememt,將式(5)、(6)代入式(4)得到:

      其中:Aj為小尺度模型單元j在連接面上的面積。

      得到在軸向拉壓情況下的多點(diǎn)位移約束方程為:

      其中:Wi為在跨尺度界面上小尺度模型單元節(jié)點(diǎn)i沿該面法線方向上的位移,Bi為約束方程(9)式中節(jié)點(diǎn)位移Wi的系數(shù)。

      同理,可以得出模型分別在彎矩、剪力、扭轉(zhuǎn)作用下的多點(diǎn)位移約束方程。這種方法是從滿足跨尺度界面應(yīng)力連續(xù)性的角度出發(fā),根據(jù)功相等導(dǎo)出位移約束方程,條件是要引入相應(yīng)的應(yīng)力公式,可以保證應(yīng)力在跨尺度界面處精確傳遞,同時(shí)也要保證跨尺度界面能符合一定假設(shè)條件。

      2 兩種連接方法的算例分析和比較

      以一箱形截面的懸臂梁的自由端在各種方向下受力后的位移分析為例,考察上述兩種連接方法的計(jì)算效果。該懸臂梁橫截面尺寸為15 mm×12 mm,梁長(zhǎng)為1 m。材料屬性取彈性模量為210 GPa,材料泊松比為0.3。

      基于ANSYS有限元軟件,分別建立單一大尺度梁?jiǎn)卧P?a),單一小尺度殼單元模型(b)和雙尺度有限元模型(c),如圖4所示。雙尺度有限元模型將懸臂梁平均分成兩段,左邊部份為小尺度精細(xì)殼單元模型,右邊部份為大尺度梁?jiǎn)卧P?。梁?jiǎn)卧捎玫氖莃eam188,殼單元采用的是shell63,其中雙尺度模型在跨尺度界面上分別用上一節(jié)描述的兩種建立約束方程的單元連接方法進(jìn)行跨尺度連接。

      其中雙尺度有限元模型圖4(c)分別采用上述兩種單元連接方式進(jìn)行跨尺度連接,即:① 根據(jù)位移協(xié)調(diào)建立位移約束方程的連接,在ANSYS中用CERIG命令,選好主從節(jié)點(diǎn),即可自動(dòng)建立好剛性連接的約束方程[18];② 根據(jù)應(yīng)力連續(xù)建立位移約束方程的連接,需要用CE命令,輸入?yún)⑴c方程的位移自由度及其系數(shù)、方程常數(shù),該系數(shù)需要自己推導(dǎo)并編寫(xiě)相應(yīng)程序。

      圖4 懸臂梁構(gòu)件的各類有限元模型Fig.4 The cantilever beams with different finite element models

      2.1 位移計(jì)算結(jié)果的比較

      分別在懸臂梁自由端六個(gè)自由度方向作用載荷,值為10 kN或10 kN·m。以全由beam單元建立的梁?jiǎn)卧P蜑榛鶞?zhǔn),考察采用兩種單元連接方法的雙尺度模型自由端在各種載荷作用下的位移及其與梁?jiǎn)卧P偷南鄬?duì)誤差,計(jì)算結(jié)果見(jiàn)表1。

      表1 多尺度模型與宏觀模型在各種載荷下位移結(jié)果的比較Tab.1 The comparisons of the displacement values got from different finite elements under different loadings

      從表1中可以看出:兩種雙尺度有限元模型的位移計(jì)算結(jié)果和單一大尺度梁?jiǎn)卧P秃芙?,兩種雙尺度有限元模型之間的差別不是很大。不同于梁?jiǎn)卧P?,由于小尺度精?xì)模型在其固定邊界上的面內(nèi)位移被限制及泊松比的存在,會(huì)對(duì)面外位移產(chǎn)生影響,所以含精細(xì)模型邊界的雙尺度有限元模型的位移計(jì)算結(jié)果基本要小于單一尺度梁?jiǎn)卧P?。由此可?jiàn)在進(jìn)行多尺度有限元建模時(shí),模型邊界條件的差異也是需要注意的地方。

      2.2 應(yīng)力計(jì)算結(jié)果的比較

      為了考察雙尺度有限元模型在小尺度精細(xì)單元節(jié)點(diǎn)上的應(yīng)力值,需要用單一小尺度殼單元模型來(lái)與這兩個(gè)采用不同跨尺度連接方法的雙尺度有限元模型做比較。在各個(gè)模型自由端處作用沿x軸正向拉力10 kN及沿y軸正向剪力10 kN,為了保持和梁?jiǎn)卧氖芰η闆r一致以利于比較,將作用力平均分布到自由端節(jié)點(diǎn)上,計(jì)算后得到的應(yīng)力分布云圖見(jiàn)圖5,并給出殼單元模型上不同橫截面上所有殼單元節(jié)點(diǎn)中面的Mises應(yīng)力值,見(jiàn)圖6。

      圖5 各個(gè)模型殼單元中面的Mises應(yīng)力分布圖Fig.5 The Mises stress distribution in different finite element models

      從圖5可以看出三種有限元模型在精細(xì)殼單元模型部分的應(yīng)力分布基本一致,下面給出精細(xì)殼單元模型部分不同橫截面上所有殼單元節(jié)點(diǎn)中面的Mises應(yīng)力值,見(jiàn)圖6。

      圖6 三種模型殼單元節(jié)點(diǎn)的Mises應(yīng)力值Fig.6 The Mises stress of different finite element models in different locations

      從圖5、6中可以看到,三種有限元模型在其精細(xì)部分的應(yīng)力分布基本一致,模型(a)與模型(c)的應(yīng)力值一直都很相近,模型(b)在跨尺度界面上的應(yīng)力值較其它兩個(gè)模型相差較遠(yuǎn),但隨著距離跨尺度界面越來(lái)越遠(yuǎn),其應(yīng)力值也和其它兩種模型越來(lái)越接近。這是因?yàn)槟P?b)采用的是滿足界面位移協(xié)調(diào)的約束方法,忽略了小尺度精細(xì)模型在跨尺度界面上的面內(nèi)位移,導(dǎo)致其應(yīng)力值產(chǎn)生誤差,但根據(jù)圣維南原理,在其遠(yuǎn)離跨尺度界面的地方,其應(yīng)力值應(yīng)該是比較準(zhǔn)確的,這也符合上面的計(jì)算數(shù)據(jù)。模型(c)采用的是滿足跨尺度界面應(yīng)力連續(xù)的連接方法,該方法的出發(fā)點(diǎn)就是要保證跨尺度界面處的應(yīng)力值準(zhǔn)確,這也符合了上面的計(jì)算結(jié)果。如圖6中所示,當(dāng)橫截面距離跨尺度界面15 cm時(shí),三種有限元模型在此處的應(yīng)力值已經(jīng)幾乎一致了,而此懸臂梁橫截面的最大尺寸也是15 cm,說(shuō)明了在引用滿足跨尺度界面位移協(xié)調(diào)的連接方法時(shí),跨尺度界面與所關(guān)注部位之間的過(guò)渡區(qū)尺寸最好能達(dá)到梁構(gòu)件橫截面的最大尺寸。

      通過(guò)前面對(duì)兩種跨尺度單元連接方法的詳細(xì)比較分析,使我們可以更好地把握對(duì)該方法的運(yùn)用。綜合考慮后,滿足跨尺度界面位移協(xié)調(diào)的約束方程地建立要方面許多,且當(dāng)留有適當(dāng)?shù)倪^(guò)度區(qū)后,我們所關(guān)心的應(yīng)力值也相當(dāng)精確。于是,本文的跨尺度分析方法在以后的各類計(jì)算分析中,都選用滿足跨尺度界面位移協(xié)調(diào)的節(jié)點(diǎn)位移約束方法進(jìn)行跨尺度單元連接。

      3 剛節(jié)點(diǎn)構(gòu)件損傷多尺度分析

      為了進(jìn)一步考察跨尺度分析方法,在大型有限元軟件ABAQUS進(jìn)行考慮材料損傷演化的結(jié)構(gòu)動(dòng)力響應(yīng)有限元分析,將以抗震結(jié)構(gòu)的典型構(gòu)件——狗骨式剛節(jié)點(diǎn)在強(qiáng)動(dòng)載荷下的損傷分析為例。在狗骨式剛節(jié)點(diǎn)的地震響應(yīng)分析過(guò)程中引入材料損傷,利用UMAT子程序[19],寫(xiě)入Lemaitre應(yīng)變-損傷耦合本構(gòu)模型和損傷演化方程[20-21],分析材料損傷對(duì)低周反復(fù)載荷下狗骨式剛節(jié)點(diǎn)抗震性能的影響及考慮材料損傷時(shí)剛節(jié)點(diǎn)構(gòu)件的失效過(guò)程與破壞模式。建立多尺度模型,比較全實(shí)體單元的精細(xì)模型與多尺度模型的損傷分布計(jì)算結(jié)果及其計(jì)算時(shí)間,來(lái)說(shuō)明多尺度模型在結(jié)構(gòu)損傷計(jì)算中的可行性及其在計(jì)算效率上的優(yōu)越性。

      3.1 算例結(jié)構(gòu)的幾何模型

      作為改善鋼框架結(jié)構(gòu)抗震性能的主要節(jié)點(diǎn)形式之一,狗骨式節(jié)點(diǎn)設(shè)計(jì)原理是采用削弱梁翼緣截面方式來(lái)降低梁的抗彎能力,削弱部分起到保險(xiǎn)絲的作用,使塑性屈服在梁削弱位置出現(xiàn)并擴(kuò)展,避免節(jié)點(diǎn)過(guò)早出現(xiàn)裂縫,相對(duì)而言等于提高了節(jié)點(diǎn)延性和抗彎能力。

      為確定圓弧狗骨式節(jié)點(diǎn)的截面削弱區(qū)位置及尺寸,美國(guó) FEMA(Federal Emergency Management Agency)推薦了該類節(jié)點(diǎn)的設(shè)計(jì)方法。圓弧型翼緣削弱節(jié)點(diǎn)的設(shè)計(jì)參數(shù)如圖7所示,b為起始削弱點(diǎn)距柱表面距離,c為削弱寬度,a為削弱深度。削弱部位寬度c主要由延性和剛度要求確定,削弱深度a的取值須保證最大削弱截面成為破壞控制截面,b的取值必須滿足節(jié)點(diǎn)的構(gòu)造要求。幾何模型尺寸見(jiàn)表2

      圖7 狗骨式節(jié)點(diǎn)幾何參數(shù)示意圖Fig.7 The physical dimensions of the dog-bone frame joint

      表2 鋼框架狗骨式節(jié)點(diǎn)梁柱截面尺寸/mmTab.2 The physical dimensions of the dog-bone frame joint/mm

      在有限元模型中,柱高和梁長(zhǎng)均取為3 600 mm。綜合圓弧形狗骨式剛節(jié)點(diǎn)的削弱截面尺寸要求,取a=50 mm、b=125 mm、c=450 mm、R=535 mm,節(jié)點(diǎn)區(qū)形狀可參照?qǐng)D7。

      3.2 材料損傷本構(gòu)及其參數(shù)

      Lemaitre彈塑性損傷耦合本構(gòu)理論適用于描述金屬延性損傷特性對(duì)其應(yīng)力應(yīng)變關(guān)系的影響,且只需改變損傷演化方程,即可引入不同金屬材料的損傷本構(gòu)方程完成計(jì)算。用彈性模量表示損傷變量時(shí),可以應(yīng)用完備形式的三維Lemaitre損傷演化動(dòng)力律(10)式描述鋼材的損傷特性。

      損傷演化動(dòng)力律:

      若有D=Dc,并且有,則裂紋萌生。式中的材料參數(shù)必須通過(guò)材性實(shí)驗(yàn)和損傷度量來(lái)確定:D:損傷變量;S:損傷的能量強(qiáng)度;Pd:與材料和載荷有關(guān)的損傷門(mén)檻函數(shù);σu:材料的極限強(qiáng)度;Dc:臨界損傷。

      在結(jié)構(gòu)分析中,假設(shè)當(dāng)局部應(yīng)變大于材料極限應(yīng)變時(shí)該處材料達(dá)到極限強(qiáng)度,隨后該處材料會(huì)發(fā)生塑性流動(dòng)變形和頸縮破壞;當(dāng)材料達(dá)到極限應(yīng)變時(shí),損傷也達(dá)到其極限值。本文選取了Von Mises屈服準(zhǔn)則和混合強(qiáng)化模式,考慮Q235鋼的材性實(shí)驗(yàn)以及其塑性硬化規(guī)律實(shí)驗(yàn)結(jié)果,可以得到彈塑性材料性能指標(biāo):彈性模量E=200 GPa,泊松比 v=0.3,屈服強(qiáng)度 σy=235 MPa,隨動(dòng)強(qiáng)化模量Hk=1 100 MPa,混合強(qiáng)化系數(shù)h=0.2。除了彈塑性材料性能指標(biāo)外,還需要通過(guò)材料的損傷度量實(shí)驗(yàn)確定Lemaitre損傷演化方程中的材料常數(shù)?,F(xiàn)有資料中可以將Q235鋼的損傷應(yīng)變門(mén)檻值取為εpd≈0.01,將結(jié)果推廣到三維條件下,可以認(rèn)為累積塑性應(yīng)變值達(dá)到0.01時(shí)損傷起始。綜合宋振森的損傷實(shí)驗(yàn)結(jié)果和Lemaitre理論中損傷能量強(qiáng)度S的計(jì)算方法,考慮Q235鋼達(dá)到強(qiáng)度極限時(shí)塑性應(yīng)變極值為εu=0.15可以確定Q235鋼臨界損傷值為D1C,其損傷能量強(qiáng)度 S=0.281 MPa[22-24]。

      3.3 UMAT子程序?qū)崿F(xiàn)流程

      ABAQUS中用戶材料子程序UMAT的開(kāi)發(fā)主要解決兩方面問(wèn)題:本構(gòu)模型建立和積分算法選擇。本文在UMAT中應(yīng)用完全隱式向后Euler法的徑向返回方法,考慮了平衡迭代的收斂和計(jì)算結(jié)果的正確性,用程序形式寫(xiě)出了Lemaitre損傷塑性理論(圖8)。結(jié)構(gòu)的彈塑性行為與加載以及變形的歷史有關(guān),一般使用增量載荷法計(jì)算,對(duì)每一載荷增量,將彈塑性方程分步線性化,從而使得彈塑性分析這一非線性問(wèn)題分解為一系列線性問(wèn)題。

      UMAT子程序的主要功能是根據(jù)程序定義的材料本構(gòu)方程,由主程序傳入的應(yīng)變?cè)隽壳蠼鈶?yīng)力增量,更新積分點(diǎn)處的應(yīng)力應(yīng)變狀態(tài),提供雅克比矩陣(Jacobian)給ABAQUS主程序以形成下次迭代時(shí)的單元切線剛度矩陣和結(jié)構(gòu)整體剛度矩陣。

      圖8 應(yīng)用UMAT子程序?qū)崿F(xiàn)損傷本構(gòu)描述的流程圖Fig.8 The flow chart of introducing meso-damage equation and coupled calculation of stresses with damage evolution in the subroutine UMAT

      3.4 有限元模型的建立及結(jié)果

      對(duì)于單一小尺度實(shí)體單元模型,考慮各類型單元的特性和本文進(jìn)行的彈塑性損傷分析要求,為最大程度地保證計(jì)算準(zhǔn)確性,選用實(shí)體單元C3D20R進(jìn)行計(jì)算。對(duì)于多尺度模型,把局部薄弱易損傷區(qū)域用實(shí)體單元C3D20R模擬,通過(guò)上一節(jié)中的計(jì)算分析可知,為了保證缺陷部位計(jì)算的精度,多尺度模型用實(shí)體單元模擬的精細(xì)部分在跨尺度界面和薄弱部位之間要給予適當(dāng)?shù)倪^(guò)渡區(qū)域,該區(qū)域的長(zhǎng)度最好能取梁橫截面的最大尺寸。由于應(yīng)用損傷理論來(lái)分析模型的缺陷部位,所以要保證在缺陷部位的實(shí)體單元的特征尺寸在1~5 mm范圍內(nèi)。多尺度模型的其它非重要部分采用梁?jiǎn)卧狟31來(lái)模擬,梁?jiǎn)卧M部分由于一直處于線彈性階段,所以采用線彈性本構(gòu)關(guān)系。多尺度有限元模型的跨尺度界面采用耦合的方法將兩種尺度模型連接起來(lái),耦合類型為kinematic,該類型耦合方法與本文列舉的滿足跨尺度界面位移協(xié)調(diào)的約束方法類似。

      有限元模型(a)共有19 733個(gè)節(jié)點(diǎn),實(shí)體單元C3D20R共有2 964個(gè),有限元模型(b)共有12 497個(gè)節(jié)點(diǎn),其中實(shí)體單元C3D20R共有1 920個(gè)。所以,多尺度模型相對(duì)于單一小尺度精細(xì)模型節(jié)省了近1/3的節(jié)點(diǎn)數(shù)量和單元數(shù)量。

      邊界條件及加載條件:見(jiàn)圖9,在剛節(jié)點(diǎn)中柱底面的x、y、z方向設(shè)置位移約束,在柱頂面x、z方向設(shè)置位移約束,在梁端控制y方向位移。首先通過(guò)單向載荷下剛節(jié)點(diǎn)的響應(yīng)分析,可以確定該削弱截面處開(kāi)始進(jìn)入塑性時(shí),y方向的屈服位移Δy=0.025 m。

      圖9 狗骨式節(jié)點(diǎn)有限元模型及其薄弱處的單元網(wǎng)格Fig.9 The finite element model of the dog-bone frame joint

      考慮了《建筑抗震試驗(yàn)方法規(guī)程》(JGJ101-96)相關(guān)要求,采用ECCS完全加載制度,加載時(shí)梁端位移按以下方式進(jìn)行:

      要確定節(jié)點(diǎn)關(guān)鍵截面處梁翼緣全截面材料的累積塑性應(yīng)變是否達(dá)到了極限值,可以根據(jù)文獻(xiàn)[23]的實(shí)驗(yàn)結(jié)果,在剛節(jié)點(diǎn)構(gòu)件損傷過(guò)程和抗震性能分析中,認(rèn)為梁削弱處全截面累積塑性應(yīng)變值達(dá)到0.15時(shí),構(gòu)件失去承載能力;梁削弱處全截面累積塑性應(yīng)變值達(dá)到0.25時(shí),構(gòu)件發(fā)生破壞。剛節(jié)點(diǎn)在低周反復(fù)加載的計(jì)算分析過(guò)程中,每一周加載到極限值時(shí)所用的分析時(shí)間設(shè)為1 s。經(jīng)過(guò)計(jì)算,加載過(guò)程中當(dāng)Δ=2Δ+y(t=5 s時(shí)刻)開(kāi)始,累積塑性應(yīng)變達(dá)到損傷起始值,剛節(jié)點(diǎn)梁部分削弱程度最大截面翼緣處的材料損傷開(kāi)始萌生和演化;當(dāng)加載位移由3Δy增至4Δy后,梁削弱處全截面累積塑性應(yīng)變達(dá)到極限值,載荷作用下截面削弱處較長(zhǎng)梁段材料均進(jìn)入塑性并產(chǎn)生不同程度的損傷。于是,剛節(jié)點(diǎn)梁端作用的位移低周反復(fù)載荷在第一次達(dá)到4Δ+y時(shí)停止,一共循環(huán)了6周半,總共分析時(shí)間為13 s。比較單一小尺度實(shí)體單元模型與多尺度有限元模型在加載到13 s時(shí),兩種有限元模型在局部處的損傷分布,見(jiàn)圖10。

      圖10 采用兩種模型計(jì)算得到的損傷分布狀況Fig.10 The damage distribution on vulnerable areas in two different finite element models

      從圖10中可見(jiàn)兩種模型計(jì)算得到的損傷分布基本一致,剛節(jié)點(diǎn)梁部分削弱程度最大截面的翼緣外側(cè)的損傷量最大,且表現(xiàn)出此時(shí)狗骨式剛節(jié)點(diǎn)的材料損傷主要分布在梁削弱截面處,翼緣削弱程度越大則損傷量越大。為了比較兩種狗骨式剛節(jié)點(diǎn)有限元模型加載各階段在梁截面削弱處損傷演化的具體差異,從加載時(shí)間的第5 s、剛出現(xiàn)損傷開(kāi)始,列出模型(a)、(b)在各時(shí)刻的損傷最大值,也即翼緣削弱程度最大處的損傷值,見(jiàn)表3。

      表3 兩種模型計(jì)算得到的損傷值Tab.3 The comparisons of damage values got from two different finite element models

      從上表可以得到,兩種模型在加載過(guò)程中,損傷增量越來(lái)越大,損傷演化速度加快;除去損傷剛開(kāi)始不久5 s時(shí)的損傷值,兩種模型相同位置處損傷值之間的相對(duì)誤差也越來(lái)越大,這是可能是由于載荷幅值不斷加大以及計(jì)算誤差不斷累積造成的。盡管兩種模型之間存在一定的計(jì)算誤差,多尺度有限元模型依然能夠準(zhǔn)確地估計(jì)狗骨式剛節(jié)點(diǎn)薄弱區(qū)域的損傷起始時(shí)間,準(zhǔn)確地反映薄弱區(qū)域的損傷演化及分布情況。在加載的最后時(shí)刻,兩類有限元模型在剛節(jié)點(diǎn)梁削弱處的損傷值誤差達(dá)到最大,但基本可以確定是在剛進(jìn)入4Δ+y位移加載循環(huán)時(shí)達(dá)到承載極限。

      在同一臺(tái)電腦上,(a)、(b)兩種模型的計(jì)算時(shí)間比較:

      (a) 模型的CPU運(yùn)行時(shí)間:2 353.5 s

      (b) 模型的CPU運(yùn)行時(shí)間:1 525.1 s

      從對(duì)比可以看出,(b)模型的CPU運(yùn)行時(shí)間相對(duì)于(a)模型節(jié)省了近1/3的時(shí)間,大大提高了計(jì)算效率。通過(guò)此次狗骨式剛節(jié)點(diǎn)考慮材料損傷演化的計(jì)算分析對(duì)比,多尺度有限元模型總體上的損傷分布情況基本和單一尺度實(shí)體單元模型一致且計(jì)算結(jié)果相差不大。因此,可以認(rèn)為在進(jìn)行強(qiáng)載荷作用下鋼構(gòu)件的動(dòng)力響應(yīng)和損傷分析時(shí),引用跨尺度分析方法不僅可行而且可以提高計(jì)算效率。

      4 鋼桁架結(jié)構(gòu)的損傷跨尺度分析

      為了進(jìn)一步探索跨尺度分析方法在結(jié)構(gòu)損傷分析中的應(yīng)用,并盡量避免由于結(jié)構(gòu)模型復(fù)雜而對(duì)計(jì)算結(jié)果準(zhǔn)確性造成的不可預(yù)知影響,本文分析了具有代表性的某大跨懸索橋鋼箱梁縱向加勁鋼桁架結(jié)構(gòu),分別建立單一小尺度精細(xì)單元模型和多尺度有限元模型并對(duì)比它們的靜力響應(yīng)、動(dòng)力特性以及強(qiáng)載荷下的非線性動(dòng)力響應(yīng)和計(jì)算效率。該結(jié)構(gòu)中的構(gòu)件截面特點(diǎn)和尺寸都比較規(guī)則,也具有一定的工程應(yīng)用典型性。

      在大跨橋梁結(jié)構(gòu)中,其鋼箱梁結(jié)構(gòu)形式非常有代表性,選取其中縱向加勁桁架結(jié)構(gòu)的典型標(biāo)準(zhǔn)段按照1∶5的比例制作了縮尺實(shí)驗(yàn)結(jié)構(gòu)試樣??s尺結(jié)構(gòu)試樣的主要結(jié)構(gòu)尺寸、焊縫形式、加工工藝等均以與原橋鋼箱梁縱向加勁桁架原型實(shí)際相似為準(zhǔn)則,材料為普通Q235鋼,整個(gè)模型高1.32 m,長(zhǎng)4.2 m,焊接鋼桁架試驗(yàn)系統(tǒng)實(shí)體圖見(jiàn)圖11。

      圖11 焊接鋼桁架結(jié)構(gòu)試驗(yàn)系統(tǒng)實(shí)體圖Fig.11 The testing system of the welding steel truss

      4.1 多尺度有限元模型的建立

      在整個(gè)剛桁架結(jié)構(gòu)中,有很多地方是符合梁?jiǎn)卧匦缘?,且在加載過(guò)程中始終不會(huì)有損傷產(chǎn)生,屬于不需要關(guān)注的部位。于是,針對(duì)這樣的情況可以選擇跨尺度分析方法來(lái)模擬整個(gè)剛桁架結(jié)構(gòu),將可能發(fā)生損傷的局部缺陷部位用適用于小尺度損傷分析的實(shí)體單元來(lái)模擬,不發(fā)生損傷且符合梁?jiǎn)卧匦缘牟糠钟眠m用于大尺度分析的梁?jiǎn)卧獊?lái)模擬。

      根據(jù)對(duì)跨尺度界面的要求和圣維南原理,小尺度局部節(jié)點(diǎn)區(qū)域在應(yīng)力集中區(qū)域和跨尺度界面之間要留有一定的過(guò)渡區(qū)域,以防止由于局部應(yīng)力集中對(duì)跨尺度界面產(chǎn)生影響,引起計(jì)算結(jié)果產(chǎn)生誤差;在本例中,對(duì)于易發(fā)生損傷的梁附近留有沿梁長(zhǎng)方向0.15 m的過(guò)渡區(qū)域(0.15 m為該加勁鋼桁架結(jié)構(gòu)梁的最大尺寸),為了保險(xiǎn)起見(jiàn),對(duì)于沒(méi)有發(fā)生損傷的節(jié)點(diǎn)區(qū)域也沿梁長(zhǎng)方向留有0.1 m的過(guò)渡區(qū)域,以保證模型的計(jì)算精度。建立好后的多尺度有限元模型包含了59 980個(gè)節(jié)點(diǎn),8 412個(gè)C3D20R單元。沒(méi)有采用跨尺度分析方法的單一小尺度實(shí)體單元模型包含了72 656個(gè)節(jié)點(diǎn),10 406個(gè)C3D20R單元,見(jiàn)圖12。

      圖12 鋼桁架結(jié)構(gòu)的兩種有限元模型Fig.12 Two different finite element models of the steel truss

      4.2 實(shí)驗(yàn)驗(yàn)證及對(duì)比

      為了對(duì)比本文所建的單一小尺度實(shí)體單元模型和多尺度有限元模型、并將它們與實(shí)驗(yàn)數(shù)據(jù)做比較,驗(yàn)證這兩種模型的準(zhǔn)確性,根據(jù)實(shí)驗(yàn)工況加載(見(jiàn)圖11),計(jì)算了在200 kN載荷作用下,兩種模型在圖13中測(cè)點(diǎn)位置上(虛線位置)的應(yīng)變分布特性。

      計(jì)算后,得到鋼桁架結(jié)構(gòu)在200 kN載荷作用下,(a)、(b)兩種模型與應(yīng)變分布實(shí)驗(yàn)在測(cè)點(diǎn)位置的應(yīng)變值分布,見(jiàn)圖14。

      圖13 應(yīng)變分布實(shí)驗(yàn)測(cè)量位置Fig.13 The locations of the strain distribution test

      圖14 兩種有限元模型與應(yīng)變分布實(shí)驗(yàn)在測(cè)點(diǎn)位置處的應(yīng)變值分布Fig.14 The strain values got from the finite element models and the test in different locations

      從圖14中,發(fā)現(xiàn)單元小尺度實(shí)體單元模型與多尺度有限元模型之間的計(jì)算結(jié)果差別很小,可以證明多尺度有限元模型可以替代單一小尺度實(shí)體單元模型進(jìn)行靜載荷下關(guān)注局部熱點(diǎn)應(yīng)力、應(yīng)變分布的計(jì)算分析。有限元模型計(jì)算得到的應(yīng)變值與實(shí)驗(yàn)測(cè)得的應(yīng)變值相對(duì)于測(cè)點(diǎn)位置的變化趨勢(shì)是十分吻合的。但是,數(shù)值模擬得到的結(jié)果與實(shí)驗(yàn)結(jié)果相比整體偏小,這主要是由于數(shù)值模型及載荷、位移邊界條件都無(wú)法還原真實(shí)情況造成的。

      分別用單一小尺度實(shí)體單元模型和多尺度有限元模型計(jì)算鋼桁架結(jié)構(gòu)的整體一階彎曲振型頻率和局部斜向構(gòu)件一階彎曲振型頻率并做比較(見(jiàn)圖15),考察多尺度模型替代單一尺度模型進(jìn)行動(dòng)力特性分析的可行性。再用兩種模型的數(shù)值模擬結(jié)果來(lái)對(duì)比實(shí)驗(yàn)測(cè)試結(jié)果(見(jiàn)表4)。

      圖15 加勁鋼桁架結(jié)構(gòu)兩種有限元模型的振型圖對(duì)比Fig.15 The vibration modes of the two different steel truss finite element models

      表4 鋼桁架結(jié)構(gòu)實(shí)驗(yàn)測(cè)試和兩種有限元模型模擬的固有頻率對(duì)比Tab.4 The comparisons of steel truss natural frequency got from two different finite element models and the test

      從圖15的兩種模型振型圖對(duì)比和表4的各項(xiàng)數(shù)值可以看出,多尺度有限元模型和單一小尺度實(shí)體單元模型的相似度很高,雖然前者相對(duì)于后者使用了大量梁?jiǎn)卧獊?lái)替代實(shí)體單元,但是通過(guò)結(jié)構(gòu)整體一階彎曲振型及它們頻率值的對(duì)比,可以證明兩種模型的質(zhì)量及剛度分布一致,通過(guò)局部斜向構(gòu)件一階彎曲振型及它們的頻率值的對(duì)比,可以證明多尺度有限元模型可以替代單一尺度實(shí)體單元模型識(shí)別結(jié)構(gòu)局部損傷狀態(tài)。通過(guò)對(duì)應(yīng)振型固有頻率的數(shù)值計(jì)算結(jié)果與實(shí)驗(yàn)測(cè)試結(jié)果的對(duì)比,發(fā)現(xiàn)它們之間的相對(duì)誤差均在10%以內(nèi),兩種結(jié)果比較接近,可以認(rèn)為單一小尺度實(shí)體單元模型和多尺度有限元模型計(jì)算出的結(jié)構(gòu)動(dòng)力特性比較符合實(shí)際情況。

      4.3 鋼桁架結(jié)構(gòu)的動(dòng)力響應(yīng)與損傷跨尺度分析

      為分析低周反復(fù)載荷下鋼桁架結(jié)構(gòu)的損傷失效過(guò)程,根據(jù)本文3.3節(jié)中介紹的用于抗震分析的ECCS完全加載制度施加位移控制載荷,當(dāng)結(jié)構(gòu)危險(xiǎn)點(diǎn)處累積塑性應(yīng)變達(dá)到極限值而導(dǎo)致該位置處材料失去承載能力時(shí)結(jié)束加載。載荷施加方式與模型邊界條件如圖12所示,鋼桁架兩邊底部的節(jié)點(diǎn)施加固定約束,位移控制載荷施加在鋼桁架中部的頂端節(jié)點(diǎn)、腹桿中部及底端節(jié)點(diǎn)三處。

      通過(guò)單向載荷下鋼結(jié)構(gòu)的響應(yīng)分析,可以確定鋼桁架結(jié)構(gòu)節(jié)點(diǎn)薄弱區(qū)域開(kāi)始進(jìn)入塑性時(shí),其加載方向y方向的屈服位移Δy=0.002 m。在進(jìn)行低周反復(fù)載荷下鋼桁架結(jié)構(gòu)的動(dòng)力響應(yīng)與損傷分析時(shí),循環(huán)一周的時(shí)間仍按2 s計(jì),載荷分析步時(shí)間初設(shè)為0.05 s。

      通過(guò)計(jì)算,鋼桁架單一小尺度實(shí)體單元模型在位移載荷第一次達(dá)到4Δ+y時(shí),其最大累積塑性應(yīng)變達(dá)到0.15,該位置處材料失去承載能力,加載停止,總共加載過(guò)程歷經(jīng)時(shí)間13 s,269個(gè)載荷分析步。鋼桁架多尺度有限元模型在位移載荷接近4Δ+y時(shí)(12.96 s),其最大累積塑性應(yīng)變達(dá)到0.15,為了便于與單一小尺度實(shí)體單元模型對(duì)比,也計(jì)算到13 s,總共經(jīng)過(guò)了268個(gè)載荷分析步。加載完成后,對(duì)比整體結(jié)構(gòu)上所有的損傷區(qū)域,損傷值比較大的區(qū)域都出現(xiàn)在鋼桁架結(jié)構(gòu)的下端。給出兩種模型最后時(shí)刻危險(xiǎn)點(diǎn)(塑性和損傷累積程度最高處)區(qū)域的損傷分布情況(見(jiàn)圖16)及在危險(xiǎn)點(diǎn)處各個(gè)加載時(shí)刻的損傷值(見(jiàn)表5)。

      通過(guò)上面的對(duì)比可以發(fā)現(xiàn)兩種模型在最后時(shí)刻的損傷區(qū)分布一致,各個(gè)加載時(shí)刻的損傷值也十分接近。雖然兩者之間的計(jì)算結(jié)果會(huì)隨著加載過(guò)程不斷增大,但它們最終的誤差不大,且多尺度有限元模型估計(jì)的損傷起始時(shí)刻及危險(xiǎn)點(diǎn)處材料的承載力失效時(shí)刻都和單一小尺度實(shí)體單元模型估計(jì)的幾乎一致。此次計(jì)算,單一小尺度實(shí)體單元模型一共經(jīng)歷了269個(gè)載荷分析步、6 656.9 s的計(jì)算時(shí)間,多尺度有限元模型一共經(jīng)歷了268個(gè)載荷分析步、4 120.3 s的計(jì)算時(shí)間??绯叨确治龇椒ㄔ诖舜文M地震載荷下的結(jié)構(gòu)動(dòng)力響應(yīng)與損傷分析中節(jié)省了38%的計(jì)算時(shí)間,體現(xiàn)出了極大的優(yōu)越性。

      表5 兩種模型計(jì)算得到的危險(xiǎn)點(diǎn)處損傷值Tab.5 The comparisons of damage values got from two different finite element models

      圖16 低周反復(fù)載荷完成后鋼桁架有限元模型在危險(xiǎn)點(diǎn)處的損傷區(qū)分布Fig.16 The damage distribution in the steel truss under ECCS cyclic loading

      5 結(jié)論

      由本文的研究可得到以下結(jié)論:

      (1)從應(yīng)用角度考慮,滿足跨尺度界面位移協(xié)調(diào)的約束方程的建立過(guò)程比較簡(jiǎn)單、易于實(shí)現(xiàn)程序化,而滿足跨尺度界面應(yīng)力協(xié)調(diào)的約束方程的建立過(guò)程比較繁瑣、實(shí)現(xiàn)起來(lái)比較麻煩。且兩種跨尺度界面連接方法成立的條件都是是跨尺度界面所在位置要滿足彈性小變形以及相關(guān)的梁?jiǎn)卧僭O(shè),因此,跨尺度界面必須遠(yuǎn)離塑性區(qū)或者損傷區(qū)才能應(yīng)用于損傷非線性分析。

      (2)狗骨式剛節(jié)點(diǎn)的多尺度有限元模型與單一小尺度實(shí)體單元模型在多步計(jì)算以后,其損傷累積值差別不大,且各階段損傷分布基本一致。通過(guò)兩種模型的計(jì)算時(shí)間比較,多尺度模型替代單一小尺度精細(xì)模型可大大提高計(jì)算效率。雖然本文分析的構(gòu)件的計(jì)算規(guī)模較小,但可以預(yù)見(jiàn),所分析的結(jié)構(gòu)計(jì)算規(guī)模越大,可節(jié)省的計(jì)算時(shí)間就會(huì)越多。

      (3)本文建立的鋼桁架結(jié)構(gòu)多尺度有限元模型是比較成功的,在靜動(dòng)力分析中都能很好的近似單一小尺度實(shí)體單元模型,且都接近實(shí)驗(yàn)測(cè)試結(jié)果,具有較高的可信性。文中的跨尺度分析方法在結(jié)構(gòu)動(dòng)力響應(yīng)和損傷分析中的應(yīng)用,實(shí)現(xiàn)了強(qiáng)載荷下由材料損傷劣化引起構(gòu)件和結(jié)構(gòu)局部失效的模擬,更準(zhǔn)確地描述了強(qiáng)動(dòng)載荷作用下結(jié)構(gòu)中由于材料損傷演化導(dǎo)致結(jié)構(gòu)的非線性響應(yīng)和局部失效的過(guò)程,進(jìn)一步解釋了強(qiáng)動(dòng)載荷下發(fā)生的從材料損傷到構(gòu)件節(jié)點(diǎn)失效再到結(jié)構(gòu)破壞的機(jī)理。而且應(yīng)用該跨尺度分析方法建模比較方便,且可以提高分析效率,在不失精度的前提下,體現(xiàn)了極大的優(yōu)越性和應(yīng)用前景。

      [1]吳佰建,李兆霞,湯可可.大型土木結(jié)構(gòu)多尺度模擬與損傷分析—從材料多尺度力學(xué)到結(jié)構(gòu)多尺度力學(xué)[J].力學(xué)進(jìn)展,2007,37(3):321 -336.

      [2]李兆霞,孫正華,郭 力,等.結(jié)構(gòu)損傷一致多尺度模擬和分析方法[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,37(2):251-260.

      [3]李兆霞,王 瀅,吳佰建,等.橋梁結(jié)構(gòu)劣化與損傷過(guò)程的多尺度分析方法及其應(yīng)用[J].固體力學(xué)學(xué)報(bào),2010,31(6):731-756.

      [4]孫正華,李兆霞,陳鴻天,等.考慮局部細(xì)節(jié)特性的結(jié)構(gòu)多尺度模擬方法研究[J].特種結(jié)構(gòu),2007.3,24(1):71-75.

      [5]Monaghan D J,Doherty I W,McCourt D,et al.Coupling 1D beam to 3D bodies[C]. 7th InternationalMeshing Roundtable. Sandia National Laboratories, Dearborn,Michigan,1998:285-293.

      [6]McCune R W,Armstrong C G,Robinson D J.Mixed dimensionalcoupling in finite element models[J].International Journal for Numerical Methods in Engineering,2002,49:725-750.

      [7]Shim K W,Monaghan D J, Armstrong C G. Mixed dimensional coupling in finite element stress analysis[J].Engineering with Computers,2002,18:241 -251.

      [8]Surana K S.Transition finite elements for axisymmetric stress analysis[J].International Journal for Numerical Methods in Engineering,1980,15:809 -832.

      [9]Surana K S.Transition finite element for three dimensional stress analysis[J].International Journal for Numerical Methods in Engineering,1980,15:991 1020.

      [10]Garusi E,Tralli A.A hybrid stress-assumed transition element for solid-to-beam and plate-to-beam connections[J].Computers and Structures,2002,80:105 -115.

      [11]Kim H S,Hong S M.Formulation of transition elements for the analysis of coupled wall structures[J].Computers and Structures,1995,57(2):333-344.

      [12]McCune R W,Armstrong C G,Robinson D J.Mixed dimensionalcoupling in finite elementmodels [J].International Journal for Numerical Methods in Engineering,2000,49:725-750.

      [13]Wenzel M.On dimensional adaptivity for mixed beam-shellstructures[J].PAMM-Proc.Appl.Math.Mech,2004,4:382-383.

      [14]Chavan K S,Wriggers P.Consistent coupling of beam and shell models for thermo-elastic analysis[J].International Journal for Numerical Methods in Engineering,2004,59:1861-1878.

      [15]王勖成.有限單元法[M].北京:清華大學(xué)出版社,2003.

      [16]陸新征,林旭川,葉列平.多尺度有限元建模方法及其應(yīng)用[J].華中科技大學(xué)學(xué)報(bào)(城市科學(xué)版),2008,25(4):76-79.

      [17]林旭川,陸新征,葉列平.鋼-混凝土混合框架結(jié)構(gòu)多尺度分析及其建模方法[J].計(jì)算力學(xué)學(xué)報(bào),2010,27(3):469-475.

      [18]ANSYS Release 10.0,ANSYS Inc.,2007.

      [19]ABAQUS Theory Manual[M].ABAQUS,Inc,2006.

      [20]Lemaitre J.A Course on damage mechanics[M].Spring-Verlag,1992.

      [21]Lemaitre J,Desmorat R.Engineering damage mechanics[M].Springer-Verlag,2005.

      [22]羅邦富,魏明鐘,沈祖炎.鋼結(jié)構(gòu)設(shè)計(jì)手冊(cè)(第二版)[M].北京:中國(guó)建筑工業(yè)出版社,1989.

      [23]張 莉.鋼結(jié)構(gòu)剛性梁柱節(jié)點(diǎn)抗震性能的研究[D].天津:天津大學(xué),2004.

      [24]宋振森.剛性鋼框架梁柱連接在地震作用下的累積損傷破壞機(jī)理及抗震設(shè)計(jì)對(duì)策[D].西安:西安建筑科技大學(xué),2001.

      猜你喜歡
      桁架尺度載荷
      桁架式吸泥機(jī)改造
      交通運(yùn)輸部海事局“新一代衛(wèi)星AIS驗(yàn)證載荷”成功發(fā)射
      水上消防(2022年2期)2022-07-22 08:45:00
      財(cái)產(chǎn)的五大尺度和五重應(yīng)對(duì)
      擺臂式復(fù)合桁架機(jī)器人的開(kāi)發(fā)
      Loader軸在雙機(jī)桁架機(jī)械手上的應(yīng)用
      滾轉(zhuǎn)機(jī)動(dòng)載荷減緩風(fēng)洞試驗(yàn)
      宇宙的尺度
      太空探索(2016年5期)2016-07-12 15:17:55
      矮寨特大懸索橋鋼桁架安裝
      一種基于白噪聲響應(yīng)的隨機(jī)載荷譜識(shí)別方法
      9
      镇康县| 永兴县| 赤城县| 阿克| 苏尼特左旗| 河曲县| 永丰县| 娄底市| 东兴市| 临清市| 车险| 天峻县| 喀喇| 隆回县| 和静县| 梁平县| 榆社县| 鲁甸县| 疏附县| 日土县| 通州市| 汽车| 广昌县| 上杭县| 吐鲁番市| 博客| 永昌县| 土默特左旗| 宁强县| 元氏县| 壶关县| 龙胜| 毕节市| 芦山县| 西乌| 吴旗县| 乌兰浩特市| 宜都市| 拜城县| 安图县| 广宁县|