劉 波
(湖北民族學(xué)院理學(xué)院,湖北恩施445000)
對種群動力學(xué)模型而言,計算機數(shù)值仿真是模型檢驗和預(yù)測的一種重要手段[1-3].計算機數(shù)值仿真可以將抽象復(fù)雜的理論研究結(jié)果,轉(zhuǎn)化成易于人們理解的數(shù)值序列或圖形演示,使復(fù)雜的動力學(xué)分析和數(shù)量巨大的參數(shù)篩選及動態(tài)過程的模擬成為可能[4].基于Matlab的兩種群動力學(xué)模型數(shù)值仿真手段主要有三種:時間序列圖、斜率場圖、相平面軌跡圖[5-7],時間序列圖能夠直觀反映種群隨著時間演化的趨勢,例如持續(xù)生存性、絕滅性和周期性.斜率場圖和相平面軌跡圖都屬于相平面圖形,尤其適合反映種群的相關(guān)變化趨勢.斜率場圖的最大優(yōu)勢在于從整體反映斜率場的分布,且不必求解微分方程.相平面軌跡圖的最大優(yōu)勢在于對應(yīng)不同初值條件反映軌線的走向,有助于分析系統(tǒng)的穩(wěn)定性.綜合運用以上三種數(shù)值仿真手段,可以進一步揭示兩種群動力學(xué)模型更為復(fù)雜的漸近行為.
考慮一類經(jīng)典的Lotka-volterra兩種群動力學(xué)模型:
r1和r2分別表示兩種群的內(nèi)稟增長率,a和d分別表示兩種群的種內(nèi)作用系數(shù),b和c分別表示兩種群的種間作用系數(shù),為了揭示模型(1)的漸近行為,下面分別采用時間序列圖、斜率場圖、相平面軌跡圖三種不同的仿真手段,編寫Matlab程序?qū)δP?1)進行數(shù)值仿真.根據(jù)實際生物意義,以下僅在區(qū)域R2+={(x,y)|x≥0,y≥0}中繪制圖形.
在模型(1)中,取 r1=1,a=0,b=-0.1,r2=-0.5,c=0.02,d=0 得到如下系統(tǒng):
對系統(tǒng)(2),只要給定初值條件(x0,y0),即可利用函數(shù)ode45求得數(shù)值解,由此繪制的圖形x(t)和y(t)稱為時間序列圖.下面給出繪制系統(tǒng)(2)時間序列圖的Matlab程序及圖例:
function xdot=TimeSeries(t,x)
r1=1;a=0;b=-0.1;r2=-0.5;c=0.02;d=0;
xdot=[x(1)*(r1+a*x(1)+b*x(2));x(2)*(r2+c*x(1)+d*x(2))];
functionLoadTimeSeries(x0,y0)%LoadTimeSeries(25,2)
tspan=0:0.01:25;cond0=[x0,y0];
[t,x]=ode45('timeseries',tspan,cond0);
plot(t,x(:,1),'r-',t,x(:,2),'b-');legend('x(t)','y(t)');xlabel('t');ylabel('x(t)and y(t)');
通過觀察圖1所示時間序列圖,可以分析得知系統(tǒng)(2)在初值條件cond0=[25,2]下,種群x和種群y持續(xù)生存,且呈現(xiàn)出近似周期性.
在系統(tǒng)(2)中,消去dt可以得到形如dy/dx的斜率表達式,在R2+中取定一矩形區(qū)域并稱之為場,自場中每一點(xi,yi)引出斜率為Ki的短線段,由此繪制的圖形就是斜率場圖.下面給出繪制系統(tǒng)(2)斜率場圖的Matlab程序及圖例:
function SlopesField(r1,a,b,r2,c,d)%SlopesField(1,0,-0.1,-0.5,0.02,0)
syms x y;fun=y*(r2+c*x+d*y)/(x*(r1+a*x+b*y));hx=120/30;hy=30/30;x0=0;y0=0;hold on
for i=1:30,x=x0+(i-1)*hx;for j=1:30,y=y0+(j-1)*hy;k=eval(fun);
if abs(hx*k)>hy,plot([x,x+hy/k*2/3],[y,y+hy*2/3]);else plot([x,x+hx*2/3],[y,y+hx*k*2/3]);end;end;end;
xlabel('x');ylabel('y');box on;warning off;
通過觀察圖2所示斜率場圖,可以分析得知系統(tǒng)(2)在不同初值條件下,斜率場圍繞在正平衡點(25,10)周圍,種群x和種群y持續(xù)生存,從場中一點出發(fā)即可判斷出大致走向.
在系統(tǒng)(2)中,考慮將數(shù)值解法求得的時間序列數(shù)據(jù)x(t)和y(t)繪制在相平面XOY上,由此得到的圖形稱為相平面軌跡圖.下面給出繪制系統(tǒng)(2)相平面軌跡圖的Matlab程序及圖例:
通過觀察圖3所示相平面軌跡圖,可以分析得知系統(tǒng)(2)在不同初值條件,軌線以正平衡點(25,10)為中心環(huán)狀分布,種群x和種群y持續(xù)生存,進一步驗證可知系統(tǒng)是全局一致漸近穩(wěn)定的[7].
圖1 時間序列圖Fig.1 Time series plot
圖2 斜率場圖Fig 2 Field of slopes
圖3 相平面軌跡圖Fig 3 Phase plane plot
本文分析和對比了三種不同的數(shù)值仿真手段在兩種群動力學(xué)模型仿真中的應(yīng)用,通過編寫Matlab程序?qū)σ活惤?jīng)典的Lotka-volterra兩種群動力學(xué)模型進行數(shù)值仿真,結(jié)果表明目前使用較為廣泛的時間序列圖在確定周期性上并不準確,斜率場圖最值得關(guān)注的特點是不必求解微分方程,相平面軌跡圖則彌補了斜率場圖在方向性上的不足,并且對系統(tǒng)穩(wěn)定性分析有直接幫助.綜合應(yīng)用本文介紹的三種數(shù)值仿真手段,可以幫助我們更加深刻地認識和理解種群動力學(xué)模型背后復(fù)雜的漸近行為.
[1] 劉波.單種群動力學(xué)模型的MATLAB仿真[J].湖北民族學(xué)院學(xué)報:自然科學(xué)版,2011,29(4):368-370.
[2] 梁仁君,林振山,韓洪凌,等.物種對資源競爭的動力機制及數(shù)值模擬[J].生態(tài)學(xué)報,2007,27(12):5390-5397.
[3] 劉波,劉志軍.一類食餌具有S-型變收獲率的非自治離散捕食系統(tǒng)漸近行為[J].生物數(shù)學(xué)學(xué)報,2012,27(3):499-506.
[4] 黃樨.數(shù)學(xué)與計算機仿真在生態(tài)學(xué)研究中的應(yīng)用[J].南京林業(yè)大學(xué)學(xué)報,2009,25(5):63-66.
[5] 桂占吉.生物動力學(xué)模型與計算機仿真[M].北京:科學(xué)出版社,2005.
[6] 馬知恩.種群生態(tài)學(xué)的數(shù)學(xué)建模與研究[M].合肥:安徽教育出版社,1996.
[7] 馬知恩,周義倉.常微分方程定性與穩(wěn)定性方法[M].北京:科學(xué)出版社,2001.