• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

      2012-10-25 06:23:20張興秋
      關(guān)鍵詞:王永慶邊值問題不動點

      王 林,張興秋

      分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

      *王 林,張興秋

      (聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東,聊城 252059)

      利用不動點指數(shù)理論在相應(yīng)線性算子的第一特征值條件下,得到一類分?jǐn)?shù)階微分方程積分邊值問題正解的存在性定理。

      分?jǐn)?shù)階微分方程;積分邊值問題;第一特征值;正解;不動點指數(shù)

      近年來,分?jǐn)?shù)階微分方程成為人們研究的熱點,其廣泛應(yīng)用于數(shù)學(xué)、流體力學(xué)、流變學(xué)、粘彈性力學(xué)等諸多學(xué)科。其中許多數(shù)學(xué)工作者對分?jǐn)?shù)階微分方程解的存在性做了大量研究[1-10]。

      在文獻[1]中,王永慶等在Banach空間研究分?jǐn)?shù)階微分方程

      在文獻[4]中,李等研究分?jǐn)?shù)階微分方程

      在文獻[10]中,白等研究分?jǐn)?shù)階微分方程

      目前,結(jié)合第一特征值研究分?jǐn)?shù)階微分方程積分邊值問題正解存在性的結(jié)果較少。

      本文利用不動點指數(shù)理論結(jié)合相應(yīng)線性算子的第一特征值研究下面的分?jǐn)?shù)階微分方程積分邊值問題正解的存在性。

      1 預(yù)備知識

      其中

      證 應(yīng)用引理1.2,將(1)中微分方程轉(zhuǎn)化為等價的積分方程

      因此得到

      將(1.3)式從0到1積分得

      因此,

      證畢。

      證畢。

      .

      定義

      由Krein-Rutmann定理,引入下面的引理。

      2 主要結(jié)果及其證明

      定理2.1設(shè)

      則邊值問題(1)至少有一個正解。

      我們斷言

      下面證明是有界的。

      則是有界的。

      由引理1.9知

      由(2.3)、(2.6) 得

      證畢。

      [1] 王永慶, 劉立山. Banach空間中分?jǐn)?shù)階微分方程點邊值問題的正解[J]. 數(shù)學(xué)物理學(xué)報, 2012(32):246-256.

      [2] Xu Xiaojie, Jiang Daqing, Yuan Chengjun. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J]. Nonlinear Analysis, 2009(71): 4676-4688.

      [3] Bai Zhanbing. On positive solutions of a nonlocal fractional boundary value problem [J]. Nonlinear Analysis, 2010 (72):916-924.

      [4] Li C F, Luo X N, Yong Zhou. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Computers and Mathematics with Applications, 2010(59):1363-1375.

      [5] Zhao Yige, Sun Shurong, Han Zhenlai, et al. The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2011(16):2086-2097.

      [6] Christopher S Goodrich. Existence of a positive solution to a class of fractional differential equations[J]. Applied Mathematics Letters, 2010(23):1050-1055.

      [7] Wang Yongqing, Liu Lishan, Wu Yonghong. Positive solutions for a nonlocal fractional differential equation[J]. Nonlinear Analysis, 2011(74):3599-3605.

      [8] Babakhani A, Varsha Daftardar-Gejji. Existence of positive solutions of nonlinear fractional differential equations[J]. J. Math. Anal. Appl., 2003(278) :434-442.

      [9] Zhao Yige, Sun Shurong, Han Zhenlai, et al. Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Applied Mathematics and Computation,2011(217):6950-6958.

      [10] Bai Zhanbing, LüHaishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl.,2005(311): 495-505.

      [11] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones[M]. New York :Academic Press, 1988.

      [12] 郭大鈞. 非線性泛函分析[M]. 濟南:山東科學(xué)技術(shù)出版社, 2004.

      EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY VALUE PROBLEM

      *WANG Lin,ZHANG Xing-qiu

      (Department of Mathematics, Liaocheng University ,Liaocheng , Shangdong 252059, China )

      In this paper, we are concerned with the existence of positive solutions for a class of fractional differential equations with integral boundary value problem. Furthermore, we obtain the existence of positive solutions by fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator.

      fractional differential equations; integral boundary problem; the first eigenvalue; positive solution; fixed point index

      O175.8

      A

      10.3969/j.issn.1674-8085.2012.06.001

      1674-8085(2012)06-0001-05

      2012-06-12;

      2012-07-28

      國家自然科學(xué)基金項目(10971179);山東省優(yōu)秀中青年科學(xué)家獎勵基金項目(BS2010SF004);山東省高等學(xué)??萍及l(fā)展計劃項目(J10LA53)

      *王 林(1985-),男,山東茌平人,碩士生,主要從事非線性系統(tǒng)理論及應(yīng)用研究(E-mail:15020608675@163.com);

      張興秋(1975-),男,山東濟寧人,副教授,博士,主要從事微分方程理論及應(yīng)用研究(E-mail:zhxq197508@163.com).

      猜你喜歡
      王永慶邊值問題不動點
      非線性n 階m 點邊值問題正解的存在性
      凌晨三點的面試
      凌晨三點的面試
      帶有積分邊界條件的奇異攝動邊值問題的漸近解
      一類抽象二元非線性算子的不動點的存在性與唯一性
      活用“不動點”解決幾類數(shù)學(xué)問題
      凌晨三點的面試
      雜文選刊(2019年1期)2019-01-14 02:23:58
      Research on inter-satellite measurement technique in high dynamic environment
      不動點集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對合
      非線性m點邊值問題的多重正解
      辰溪县| 容城县| 清丰县| 文水县| 左云县| 叙永县| 商南县| 冷水江市| 固镇县| 泸溪县| 惠来县| 华坪县| 综艺| 阜阳市| 酒泉市| 黎平县| 临江市| 河津市| 霍邱县| 临洮县| 繁峙县| 白河县| 涞水县| 集贤县| 仁化县| 东宁县| 美姑县| 桂平市| 辉县市| 长丰县| 叶城县| 共和县| 贞丰县| 信阳市| 磐安县| 荣昌县| 姜堰市| 南陵县| 唐河县| 多伦县| 宜宾市|