| 文 ·崔人元
相比日常生活經(jīng)驗(yàn),量子世界不可思議,如愛(ài)因斯坦所說(shuō):“量子力學(xué)越是取得成功,它自身就越顯得荒誕?!笨萍歼M(jìn)步不但更新生產(chǎn)力,也更新著我們的思想
多年以前,高科技最牛的美國(guó)就已不把電子計(jì)算機(jī)列為高科技產(chǎn)品了。
但巨高性能計(jì)算機(jī)仍是信息時(shí)代的高科技標(biāo)志物件之一。2012年諾貝爾物理學(xué)獎(jiǎng)發(fā)給了法國(guó)人塞爾日·阿羅什和美國(guó)人大衛(wèi)·維恩蘭德,這兩位科學(xué)家的研究成果為新一代超級(jí)量子計(jì)算機(jī)的誕生提供了可能性。
不往濫俗里想,那么,答案就是很文藝化的表達(dá)了。其實(shí),“信息”最初是相當(dāng)文藝范兒的,而不是20世紀(jì)中期才開(kāi)始熱門(mén)起來(lái)的科技詞匯。
一般認(rèn)為,中文的“信息”一詞出自南唐詩(shī)人李中《暮春懷故人》:“夢(mèng)斷美人沉信息,目穿長(zhǎng)路倚樓臺(tái)。”——“美眉音信消息全無(wú)啊,夢(mèng)里也夢(mèng)不到你,我獨(dú)自上樓倚欄,望眼欲穿望到長(zhǎng)路盡頭也不見(jiàn)你。”這么拙劣地意譯,也讓人感覺(jué)到深深的思念。
其實(shí),在李中之前一百多年,與李商隱齊名的唐朝大詩(shī)人杜牧《寄遠(yuǎn)》里就有“信息”了:“塞外音書(shū)無(wú)信息,道旁車(chē)馬起塵埃?!边€有比小杜更早的,唐朝詩(shī)人崔備的《清溪路中寄諸公》:“別來(lái)無(wú)信息,可謂井瓶沉?!?/p>
宋朝的婉約派大詞人柳永、李清照也用過(guò)“信息”這個(gè)詞。因金兵入侵而流離失所的李清照思念當(dāng)年安樂(lè)的故鄉(xiāng),心理上把信息的價(jià)格定成了真正的天價(jià):“不乞隋珠與和璧,只乞鄉(xiāng)關(guān)新信息?!薄昵暗奶扑沃袊?guó),其高科技雖是世界第一,但信息技術(shù)還是跟現(xiàn)在沒(méi)法比的,要靠驛馬、鴻雁甚至人步行來(lái)傳遞信息,速度慢而效率低,信息珍貴啊。
在地球的西方呢?雖然香農(nóng)1948年就劃時(shí)代地把信息引為數(shù)學(xué)研究的對(duì)象,賦予其新的科學(xué)的涵義;至1956年,“人工智能”術(shù)語(yǔ)也出現(xiàn)了??勺钤缬懻摂?shù)據(jù)、信息、知識(shí)與智慧之間關(guān)系的,卻是得過(guò)諾貝爾文學(xué)獎(jiǎng)的大詩(shī)人艾略特(T. S.Eliot;錢(qián)鐘書(shū)故意譯為“愛(ài)利惡德”)。他在1934年的詩(shī)歌“The Rock”中寫(xiě)道:
Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?
Where is the information we have lost in data?
我們迷失于生活中的生命在哪里?
我們迷失于知識(shí)中的智慧在哪里?
我們迷失于信息中的知識(shí)在哪里?
我們迷失于數(shù)據(jù)中的信息在哪里?
盡管第四句是好事者后加的,但詩(shī)人還是直指本質(zhì)地提出了信息暴炸時(shí)代最困擾人的難題:如何不讓我們的生命和智慧都迷失在數(shù)據(jù)中?
量子計(jì)算機(jī)和量子信息技術(shù),提供了一種讓生命和智慧不要淹沒(méi)在數(shù)據(jù)的海洋中的途徑、工具和可能。
量子理論是現(xiàn)代物理學(xué)的兩大基石之一,為從微觀理解宏觀提供了理論基礎(chǔ)??陀^世界有物質(zhì)、能量?jī)煞N存在形式,物質(zhì)和能量可以互相轉(zhuǎn)換(見(jiàn)愛(ài)因斯坦的質(zhì)能方程),量子理論就是從研究極度微觀領(lǐng)域物質(zhì)的能量入手而建立起來(lái)的。
我們知道,微觀世界中有許多不同于宏觀世界的現(xiàn)象和規(guī)則。經(jīng)典物理學(xué)理論中的能量是連續(xù)變化的,可取任意值,但科學(xué)家們發(fā)現(xiàn)微觀世界中的很多物理現(xiàn)象無(wú)法解釋。1900年12月14日,普朗克在解釋“黑體輻射”時(shí)提出:像原子是一切物質(zhì)的構(gòu)成單元一樣,“能量子(量子)”是能量的最小單元,原子吸收或發(fā)射能量是一份一份地進(jìn)行的。這是量子物理理論的誕生。
1905年,愛(ài)因斯坦把量子概念引進(jìn)光的傳播過(guò)程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布羅意提出“物質(zhì)波”概念,即一切物質(zhì)粒子均有波粒二象性,海森堡等建立了量子矩陣力學(xué),薛定諤建立了量子波動(dòng)力學(xué),量子理論進(jìn)入了量子力學(xué)階段。1928年,狄拉克完成了矩陣力學(xué)和波動(dòng)力學(xué)之間的數(shù)學(xué)轉(zhuǎn)換,對(duì)量子力學(xué)理論進(jìn)行了系統(tǒng)的總結(jié),成功地將相對(duì)論和量子力學(xué)兩大理論體系結(jié)合起來(lái),使量子理論進(jìn)入量子場(chǎng)論階段。
“量子”詞源拉丁語(yǔ)quantum,意為“某數(shù)量的某事物”?,F(xiàn)代物理學(xué)中,某些物理量的變化是以最小的單位跳躍式進(jìn)行的,而不是連續(xù)的,這個(gè)最小的基本單位叫做量子;或者說(shuō),一個(gè)物理量如果有不可連續(xù)分割的最小的基本單位,則這個(gè)物理量(所有的有形性質(zhì))是“可量子化的”,或者說(shuō)其物理量的數(shù)值會(huì)是特定的數(shù)值而非任意值。例如,在(休息狀態(tài))的原子中,電子的能量是可量子化的,這能決定原子的穩(wěn)定和一般問(wèn)題。
雖然量子理論與我們?nèi)粘=?jīng)驗(yàn)感覺(jué)的世界大不一樣,但量子力學(xué)已經(jīng)在真實(shí)世界應(yīng)用。激光器工作的原理,實(shí)際上就是激發(fā)一個(gè)特定量子散發(fā)能量?,F(xiàn)代社會(huì)要處理大量數(shù)據(jù)和信息,需要計(jì)算的機(jī)器(計(jì)算機(jī))。量子力學(xué)的突破,使瓦格納等于1930年發(fā)現(xiàn)半導(dǎo)體同時(shí)有導(dǎo)體和絕緣體的性質(zhì),后來(lái)才有了用于電子計(jì)算機(jī)的同時(shí)作為電子信號(hào)放大器和轉(zhuǎn)換器的晶體管,再有了集成電路芯片,今天的一個(gè)尖端芯片可集聚數(shù)十億個(gè)微處理器。
隨著計(jì)算機(jī)科技的發(fā)展,發(fā)現(xiàn)能耗導(dǎo)致發(fā)熱而影響芯片集成度,限制了計(jì)算速度;能耗源于計(jì)算過(guò)程中的不可逆操作,但計(jì)算機(jī)都可找到對(duì)應(yīng)的可逆計(jì)算機(jī)且不影響運(yùn)算能力。既然都能改為可逆操作,在量子力學(xué)中則可用一個(gè)幺正變換來(lái)表示。1969年,威斯納提出“基于量子力學(xué)的計(jì)算設(shè)備”,豪勒夫等于1970年代論述了“基于量子力學(xué)的信息處理”。1980年代量子計(jì)算機(jī)的理論變得很熱鬧。費(fèi)曼發(fā)現(xiàn)模擬量子現(xiàn)象時(shí),數(shù)據(jù)量大至無(wú)法用電子計(jì)算機(jī)計(jì)算,在1982年提出用量子系統(tǒng)實(shí)現(xiàn)通用計(jì)算以減少運(yùn)算時(shí)間;杜斯于1985年提出量子圖靈機(jī)模型。1994年,數(shù)學(xué)家彼得·秀爾提出量子質(zhì)因子分解算法,因其可破解現(xiàn)行銀行和網(wǎng)絡(luò)應(yīng)用中的加密,許多人開(kāi)始研究實(shí)際的量子計(jì)算機(jī)。
在物理上,傳統(tǒng)的電子計(jì)算機(jī)可以被描述為對(duì)輸入信號(hào)串行按一定算法進(jìn)行變換的機(jī)器,其算法由機(jī)器內(nèi)部半導(dǎo)體集成邏輯電路來(lái)實(shí)現(xiàn),其輸入態(tài)和輸出態(tài)都是傳統(tǒng)信號(hào)(輸入態(tài)和輸出態(tài)都是某一力學(xué)量的本征態(tài)),存儲(chǔ)數(shù)據(jù)的每個(gè)單元(比特bit)要么是“0”要么是“1”,即在某一時(shí)間僅能存儲(chǔ)4個(gè)二進(jìn)制數(shù)(00、01、10、11)中的一個(gè)。而量子計(jì)算機(jī)靠控制原子或小分子的狀態(tài),用量子算法運(yùn)算數(shù)據(jù),輸入態(tài)和輸出態(tài)為一般的疊加態(tài),其相互之間通常不正交,其中的變換為所有可能的幺正變換;因?yàn)榱孔討B(tài)有疊加性(重疊)和相干性(牽連、糾纏)兩個(gè)本質(zhì)特性,量子比特(量子位qubit)可是“0”或“1”或兩個(gè)“0”或兩個(gè)“1”,即可同時(shí)存儲(chǔ)4個(gè)二進(jìn)制數(shù)(00、01、10、11),實(shí)現(xiàn)量子并行計(jì)算(量子計(jì)算機(jī)對(duì)每一個(gè)疊加分量實(shí)現(xiàn)的變換相當(dāng)于一種傳統(tǒng)計(jì)算,所有傳統(tǒng)計(jì)算同時(shí)完成,并按一定的概率振幅疊加,給出量子計(jì)算機(jī)的輸出結(jié)果),從而呈指數(shù)級(jí)地提高了運(yùn)算能力——一臺(tái)未來(lái)的量子計(jì)算機(jī)3分鐘就能搞定當(dāng)今世界上所有電子計(jì)算機(jī)合起來(lái)100萬(wàn)年才能處理完的數(shù)據(jù)。用量子力學(xué)語(yǔ)言說(shuō),傳統(tǒng)計(jì)算機(jī)是沒(méi)有用到量子力學(xué)中重疊和牽連特性的一種特殊的量子計(jì)算機(jī)。從理論上講,一個(gè)250量子比特(由250個(gè)原子構(gòu)成)的存儲(chǔ)器,可能存儲(chǔ)2的250次方個(gè)二進(jìn)制數(shù),比人類(lèi)已知宇宙中的全部原子數(shù)還多。而且,集成芯片制造業(yè)很快將步入16納米的工藝,而量子效應(yīng)將嚴(yán)重影響芯片的設(shè)計(jì)和生產(chǎn),又因傳統(tǒng)技術(shù)的物理局限性,硅芯片已到盡頭,突破的希望在于量子計(jì)算。
喜好科技的文藝青年可能看過(guò)美劇《生活大爆炸》,其中有那只著名的“薛定諤貓”:一只被關(guān)在黑箱里的貓,箱里有毒藥瓶,瓶上有錘子,錘子由電子開(kāi)關(guān)控制,電子開(kāi)關(guān)由一個(gè)獨(dú)立的放射性原子控制;若原子核衰變放出粒子觸動(dòng)開(kāi)關(guān),錘落砸瓶放毒,則貓死。薛定諤構(gòu)想的這個(gè)實(shí)驗(yàn),被引為解釋量子世界的經(jīng)典。而量子理論認(rèn)為,單個(gè)原子的狀態(tài)其實(shí)不是非此即彼,或說(shuō)箱里的原子既衰變又沒(méi)有衰變,表現(xiàn)為一種概率;對(duì)應(yīng)到貓,則是既死又活。若我們不揭開(kāi)蓋子觀察,永遠(yuǎn)也不知道貓的死活,它永遠(yuǎn)處于非死非活的疊加態(tài)。
宏觀態(tài)的確定性,其實(shí)是億萬(wàn)微觀粒子、無(wú)數(shù)種概率的宏觀統(tǒng)計(jì)結(jié)果。微觀粒子通常表現(xiàn)為兩種截然不同的狀態(tài)糾纏一起,一旦用宏觀方法觀察這種量子態(tài),只要稍一揭開(kāi)箱蓋,疊加態(tài)立即就塌縮了(被干擾破壞掉),薛定諤貓就突然由量子的又死又活疊加態(tài)變成宏觀的確定態(tài)。用實(shí)驗(yàn)研究量子,首先要捕獲單個(gè)的量子。即若不分離出單個(gè)粒子,則粒子神秘的量子性質(zhì)便會(huì)消失。科學(xué)家們長(zhǎng)期以來(lái)頭疼的是,未找到既不破壞量子態(tài),又能實(shí)際觀測(cè)它的實(shí)驗(yàn)方法,他們只能在頭腦中進(jìn)行思想實(shí)驗(yàn),而無(wú)法實(shí)際驗(yàn)證其預(yù)言。
而阿羅什和維恩蘭德的研究,發(fā)明了在保持個(gè)體粒子的量子力學(xué)屬性的情況下對(duì)其進(jìn)行觀測(cè)和操控的方法,則可實(shí)證地說(shuō)出薛定諤貓究竟是死貓還是活貓,而且為研制超級(jí)量子計(jì)算機(jī)帶來(lái)了更大可能,因?yàn)榱孔佑?jì)算機(jī)中最基礎(chǔ)的部分——得到1個(gè)量子比特已獲成功。
光子和原子是量子世界中的兩種基本粒子,光子形成可見(jiàn)光或其他電磁波,原子構(gòu)成物質(zhì)。他們研究光與物質(zhì)間的基本相互作用,方法大同小異:維因蘭德利用光或光子來(lái)捕捉、控制以及測(cè)量帶電原子或者離子。他平行放置兩面極精巧的鏡子,鏡間是真空空腔,溫度接近絕對(duì)零度(約-273℃)。一個(gè)光子進(jìn)入空腔后,在兩鏡面間不斷反射。阿羅什則通過(guò)發(fā)射原子穿過(guò)阱,控制并測(cè)量了捕獲的光子或粒子。他用一系列電極營(yíng)造出一個(gè)電場(chǎng)囚籠,粒子像是被裝進(jìn)碗里的玻璃球;然后用激光冷卻粒子,最終有一個(gè)最冷的粒子停在了碗底。阿羅什在捕獲單個(gè)光子后,引入了特殊的里德伯原子,作為觀測(cè)工具,從而得到光子的數(shù)據(jù)。維因蘭德向碗中發(fā)射激光,通過(guò)觀測(cè)光譜線而得到碗底粒子的數(shù)據(jù)。
2007年以來(lái),加拿大、美國(guó)、德國(guó)和中國(guó)的科學(xué)家都說(shuō)自己研制出了某種級(jí)別的量子計(jì)算機(jī),但到今天卻仍無(wú)一個(gè)投入實(shí)用。光鐘更接近現(xiàn)實(shí),因?yàn)榭刹倏貑蝹€(gè)量子,就能按意愿調(diào)控量子的振蕩(相當(dāng)于鐘擺)頻率,越高越精;目前實(shí)驗(yàn)的光鐘,若從宇宙產(chǎn)生起開(kāi)始計(jì)時(shí),至今只誤差5秒。光鐘可使衛(wèi)星定位和計(jì)算太空船的位置更精確……
科幻作家克萊頓(著有《侏羅紀(jì)公園》、《失去的世界》等)在科幻小說(shuō)《時(shí)間線》中,曾文藝化地描述量子計(jì)算,用了“量子多宇宙”、“量子泡沫蟲(chóng)洞”、“量子運(yùn)輸”、“量子糾纏態(tài)”、“電子的32個(gè)量子態(tài)”等讓常人倍感高深的說(shuō)法。其中一些如今正在證實(shí)或變現(xiàn)。
如果清朝政府的通信密碼不被日本破譯,那么李鴻章甲午海戰(zhàn)后去日本談判時(shí)就很可能是另外一種結(jié)局,今天也不會(huì)有釣魚(yú)島的問(wèn)題了。目前世界的密碼系統(tǒng)大都采用單項(xiàng)數(shù)學(xué)函數(shù)的方式,應(yīng)用了因數(shù)分解等數(shù)學(xué)原理,例如目前網(wǎng)絡(luò)上常用的密碼算法。秀爾提出的量子算法利用量子計(jì)算的并行性,能輕松破解以大數(shù)因式分解算法為根基的密碼體系。量子算法中,量子搜尋算法等也能分分鐘攻破現(xiàn)有密碼體系??烧f(shuō)量子這種技術(shù)在現(xiàn)代軍事上的意義不亞于核彈。但同時(shí),量子信息技術(shù)也將發(fā)展出一種理論上永遠(yuǎn)無(wú)法破譯的密碼——量子密碼。
保密通信分為加密、接收、解密三個(gè)過(guò)程,密鑰的保密和不被破解至為關(guān)鍵。量子密碼采用量子態(tài)作為密鑰,是不可復(fù)制的,至少在理論上是無(wú)破譯的可能。量子通信是用量子態(tài)的微觀粒子攜帶的量子信息作為加密和解密用的密鑰,其密鑰安全性不再由數(shù)學(xué)計(jì)算,而是由微觀粒子所遵循的物理規(guī)律來(lái)保證,竊密者只有突破物理法則才有可能盜取密鑰(根據(jù)海森堡的測(cè)不準(zhǔn)原理,任何測(cè)量都無(wú)法窮盡量子的所有信息)。而且量子通信中,量子糾纏態(tài)(有共同來(lái)源的兩個(gè)粒子存在著糾纏關(guān)系,似有“心靈感應(yīng)”,無(wú)論距離多遠(yuǎn),一個(gè)粒子的狀態(tài)發(fā)生變化,另一個(gè)粒子也發(fā)生變化,速度遠(yuǎn)遠(yuǎn)超過(guò)光速,一旦受擾即不再糾纏。愛(ài)因斯坦稱(chēng)這種發(fā)生機(jī)理至今未解的量子糾纏為“幽靈般的超距作用”)被用于傳輸和保證信息安全,使任何竊密行為都會(huì)擾亂傳送密鑰的量子狀態(tài),從而留下痕跡。
1984年,本奈特和布拉薩德提出了BB84保密通信協(xié)議。??颂赜?991年提出了E91通信協(xié)議。1992年又出現(xiàn)變體的B92通信協(xié)議。三者是目前應(yīng)用最廣泛的量子保密通信體系。量子通信實(shí)際應(yīng)用中,目前的問(wèn)題是如何得到單個(gè)光子源和減少光子信號(hào)在傳輸中的損耗等。目前,美國(guó)、中國(guó)、歐洲科學(xué)家在延長(zhǎng)量子通信的距離上取得了領(lǐng)先成果。奧地利銀行2004年采用了量子通信,瑞士2007年全國(guó)大選的結(jié)果傳送采用了量子通信,中國(guó)2009年在安徽開(kāi)通了量子政務(wù)網(wǎng),由新華社和中國(guó)科技大學(xué)共同研發(fā)建設(shè)的金融信息量子通信驗(yàn)證網(wǎng)2012年正式開(kāi)通。
量子信息技術(shù)的發(fā)展,甚至可能讓穿越時(shí)空成為現(xiàn)實(shí)。量子計(jì)算機(jī)和量子信息科技的前景,是讓人感到美妙的前景。