胡國文
(湖北科技學(xué)院 核技術(shù)與化學(xué)生物學(xué)院,湖北 咸寧 437100)
離子交換膜輻射合成研究進(jìn)展*
胡國文
(湖北科技學(xué)院 核技術(shù)與化學(xué)生物學(xué)院,湖北 咸寧 437100)
講述了離子交換膜的種類和用途、離子交換膜的輻射接枝的發(fā)展?fàn)顩r,重點(diǎn)介紹了陽離子交換膜、陰離子交換膜及兩性離子交換膜的進(jìn)展,同時對離子交換膜的輻射接枝的工業(yè)化提出了展望.
陽離子交換膜;陰離子交換膜;兩性離子交換膜;輻射接枝
離子交換膜是一種對溶液里的離子具有選擇性透過性的含有離子基團(tuán)的高分子材料.離子交換膜在分離科學(xué)和工程技術(shù)領(lǐng)域起著重要的作用,并促使化學(xué)、醫(yī)藥學(xué)、食物、燃料、紡織、汽車等工業(yè)的發(fā)展.隨著離子交換膜應(yīng)用領(lǐng)域的不斷擴(kuò)展,對膜功能多元化的需求也與日俱增,界面聚合、原位聚合和接枝共聚等技術(shù)被廣泛應(yīng)用于制備離子交換膜.與加引發(fā)劑進(jìn)行化學(xué)接枝相比,輻射接枝具有以下獨(dú)特的優(yōu)勢:可在室溫條件下接枝、接枝鏈不含引發(fā)劑殘片,因而較純凈、接枝率易于控制.
輻射源有γ射線和X射線、電子束、中子束和重離子束等.前兩者為電磁輻射源,后三者為粒子輻射源.被輻照的物質(zhì)吸收輻射能后產(chǎn)生次級電子與物質(zhì)分子相互作用引發(fā)化學(xué)反應(yīng)[1].聚合物受輻照后可產(chǎn)生交聯(lián)和降解兩種輻射效應(yīng),而在聚合物受輻照后引入單體或聚合物與單體一起輻照,則單體可在聚合物上形成接枝鏈,得到接枝共聚物.
輻射接枝的研究開始于20世紀(jì)50年代,是聚合物材料改性的重要方法之一.輻射接枝由于不需引發(fā)劑,反應(yīng)條件溫和而倍受人們青睞.研究者對接枝反應(yīng)條件、聚合物基材的種類和厚度、單體的種類和濃度等對接枝反應(yīng)動力學(xué)及聚合物結(jié)構(gòu)性能的影響[2~4].每年發(fā)表上百篇論文及專利,這些研究成果在燃料電池[5]、鋰電池[6]、釩液流電池[7]等領(lǐng)域得到了應(yīng)用.
輻射接枝的手段有預(yù)輻照和共輻照兩種.共輻照接枝就是將聚合物基材膜與單體一起輻照,在輻照時單體接枝到聚合物膜上[8,9].預(yù)輻照就是將聚合物基材膜在冷凍條件下單獨(dú)進(jìn)行輻照一定劑量后,放入接枝單體或其溶液中,研究在不同的溫度下的接枝規(guī)律[10~12].與預(yù)輻照相比,共輻照工藝簡單,不需用干冰冷凍,但是,在接枝的同時,將有很大一部分單體進(jìn)行了均聚,單體浪費(fèi)嚴(yán)重.
在膜基材上直接接枝單體,存在接枝鏈分布不均勻的問題.這一缺陷可以通過以下兩種方法改進(jìn).
利用活性聚合技術(shù)可以很方便地控制聚合物的分子量及其結(jié)構(gòu).1956年,Szwarc等發(fā)現(xiàn)陰離子活性聚合,開創(chuàng)了活性聚合的里程碑.隨后,原子轉(zhuǎn)移聚合(ATRP)和可逆加成-斷裂-鏈轉(zhuǎn)移聚合(RAFT)等活性聚合體系相繼被發(fā)現(xiàn).將活性聚合引入到輻射接枝中,可使接枝鏈的長短及在基材膜上分布均勻.
Holmberg等人[13]采用輻射接枝技術(shù)與活性自由基聚合(TEMPO)相結(jié)合的方法在聚偏二氟乙烯(PVDF)膜上進(jìn)行了苯乙烯(St)利用的可控輻射接枝,然后磺化得到了含有磺酸基的離子交換膜.翟茂林等[14]利用原子轉(zhuǎn)移自由基聚合技術(shù),在輻射條件下將一溴四氟乙烷全氟乙烯基醚和苯乙烯接枝到聚乙烯-四氟乙烯基材膜上,磺化后得到陽離子交換膜.這樣得到的膜通過性能測試發(fā)現(xiàn),接枝鏈在整個基材內(nèi)分布均勻,從而在較低的接枝率下具有比較高的電導(dǎo)率.Yu等[15]用RAFT技術(shù)成功地將丙烯酸及N-異丙基丙烯酰胺接枝到聚丙烯多孔膜上,制備出對溫度及pH值響應(yīng)的接枝共聚物.
在聚合物基材膜上接枝,可能會遇到單體僅在基材膜表面接枝,而內(nèi)部得不到接枝的情況,這樣即使接枝率高,但電導(dǎo)率低.為了避免這一缺陷,可以先在粉體上接枝,然后采用溶液相轉(zhuǎn)移法[16~18]、熱致相轉(zhuǎn)移法[19]等方法制備成接枝膜.但是,接枝率高到一定程度后,接枝共聚物轉(zhuǎn)變?yōu)椴蝗懿蝗鄣母叻肿游镔|(zhì),難以將粉體制成膜.
離子交換膜有四種類型:(1)陽離子交換膜.(2)陰離子交換膜.它們連接在分子鏈上的基團(tuán)分別是帶負(fù)電荷的基團(tuán),如-SO3-和 -COO-,用帶正電的基團(tuán),如,由于靜電排斥作用,分別提高陽離子和陰離子的交換能力.(3)兩性離子交換膜,分子鏈上同時帶有正、負(fù)離子,具有陰、陽離子的交換能力.(4)雙極膜.這是一種陰陽離子復(fù)合膜,即將預(yù)先制備好的陰、陽離子交換膜復(fù)合在某一基材上而制得.盡管雙極膜不同于兩性離子交換膜,但還是可以把它歸納至兩性離子交換膜中.
在陽離子交換膜中,分子鏈上連接的基團(tuán)一般為弱酸性的羧基和強(qiáng)酸性的磺酸基兩種.直接接枝烯丙基單體如丙烯酸或甲基丙烯酸,或它們的混合物,可以制備羧酸基的陽離子交換膜.接枝丙烯酸縮水甘油酯或甲基丙烯酸縮水甘油酯類環(huán)氧類單體,然后將環(huán)氧基團(tuán)以亞硫酸鈉處理可轉(zhuǎn)化為磺酸基的陽離子交換樹脂[20,21],用磷酸處理則得磷酸基的陽離子交換樹脂[22].
大多數(shù)強(qiáng)酸基陽離子交換膜是在聚合物上接枝苯乙烯,然后磺化來制備.Chen等人[23]首次報道了在聚乙烯(PE)膜上輻射接枝苯乙烯(St)以制備陽離子交換膜.其制備過程如圖1所示.
圖1 苯乙烯磺化法制備陽離子交換樹脂
選用氯磺酸、磺酰氯或濃硫酸為磺化劑,以抗磺化的溶劑如二氯甲烷、四氯乙烷等稀釋,可實(shí)現(xiàn)磺化過程.
接枝苯乙烯然后磺化制備的陽離子交換膜,由于其α-H易受氧化劑的攻擊使其化學(xué)穩(wěn)定性(耐氧化性)能差[24,25].為了提高膜的化學(xué)穩(wěn)定性和耐久性,可以選擇耐腐蝕性的含氟聚合物為基材,也可用對二乙烯基苯對接枝鏈進(jìn)行交聯(lián)[26,27],或者接枝 α,β,β - 三氟苯乙烯(TFS)[28]或 α - 甲基苯乙烯(AMS)[29~31].接枝對氯甲基苯乙烯(VBC),再經(jīng)一系列化學(xué)反應(yīng),也可制備磺酸基陽離子交換膜,對位上氯甲基使膜的化學(xué)穩(wěn)定性大大增強(qiáng)[32].其制備程序圖如圖書室所示.
圖2 接枝VBC制備陽離子交換膜程序圖
制備陰離子交換膜的方法有:(1)接枝含氨基的單體如甲基丙烯酸二甲胺基乙酯(DMAEMA),然后加鹽酸質(zhì)子化[33];(2)接枝乙烯基吡啶類單體,再以碘甲烷季胺化得陰離子交換膜[34];(3)接枝對氯甲基苯乙烯,然后以三甲胺季胺化得陰離子交換膜[35].陰離子交換膜上的陽離子基團(tuán)與釩離子間存在Donnan排斥效應(yīng),具有很好的阻釩性能.
兩性離子交換膜同時含有陰、陽離子交換基團(tuán),其所表現(xiàn)出來的性能主要由環(huán)境的離子濃度、溫度及pH等決定.可以采用共輻射法將兩種單體接枝到聚合物基材膜上,然后轉(zhuǎn)換成陰、陽離子交換基團(tuán)[36],也可以采用分步接枝法將兩種單體先后輻射接枝到聚合物基膜上,再轉(zhuǎn)換成陰、陽離子交換基團(tuán),制備兩性離子交換膜[37].
胡國文等[7]采用共輻射接枝法在聚偏二氟乙烯上接枝AMS和DMAEMA,將AMS接枝鏈磺化,而將DMAEMA季胺化制備兩性離子交換膜(圖3).這樣制得的膜化學(xué)穩(wěn)定性好,阻釩性能好.
圖3 兩性離子交換膜制備程序圖
離子交換膜可以應(yīng)用于燃料電池、鋰電池、釩液流電池、污水處理、海水脫鹽等領(lǐng)域,特別是膜分離,具有簡單、低能耗、環(huán)保等優(yōu)勢,引起人們的廣泛關(guān)注.離子交換膜有共聚或共混法、輻射接枝法等制備方法.輻射接枝法操作簡單,可在室溫下進(jìn)行,反應(yīng)條件溫和.但是,與高分子的輻射交聯(lián)技術(shù)相比,輻射接枝技術(shù)產(chǎn)業(yè)化的規(guī)模還很小,還需要更為系統(tǒng)深入的研究.通過人們不懈地努力,輻射接枝產(chǎn)業(yè)化技術(shù)將會迅速發(fā)展,成為工業(yè)上制備離子交換膜的主要手段.
[1]翟茂林,伊敏,哈鴻飛.高分子材料輻射加工技術(shù)進(jìn)展[M].北京:化學(xué)工業(yè)出版社,2004.
[2]S.A.Gu¨rsel,H.B.Youcef,A.Wokaun,et al.Influence of reaction parameters on grafting of styrene into poly(ethylene- alt- tetrafluoroethylene)films[J].Nuclear Instruments and Methods in Physics Research B,2007,(265):198~203.
[3]H.B.Youcef,S.A.Gu¨rsel,A.Wokaun,et al.The influence of crosslinker on the properties of radiationgrafted films and membranes based on ETFE[J].Journal of Membrane Science,2008,(311):208 ~215.
[4]R.Rohani,M.M.Nasef,H.Saidi,et al.Effect of reaction conditions on electron induced graft copolymerization of styrene onto poly(ethylene-co-tetrafluoroethylene)films:Kinetics study [J].Chemical Engineering Journal,2007,(132):27 ~35.
[5]J.H.Chen,M.Asano,Y.Maekawa,et al.Suitability of some fluoropolymers used as base films for preparation of polymer electrolyte fuel cell membranes[J].Journal of Membrane.Science,2006,(277):249 ~257.
[6]M.M.Nasef,R.R.Suppiah,K.Z.M.Dahlan.Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization[J].Solid State Ionics,2004,(171):243 ~249.
[7]G.W.Hu,Y.Wang,J.Ma,et al.A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α - methylstyrene and N,N - dimethylaminoethyl methacrylate for vanadium redox flow battery application[J].Journal of Membrane Science,2012,(407 ~ 408):184~192.
[8]Y.C.Nho,J.Shin,G.Fei,et al.Simultaneous Radiation Grafting of Vinylbenzyl Chloride onto Poly(tetrafluoroethylene-co-h(huán)exafluoropropylene)Films[J].Journal of Applied Polymer Science,2009,(113):2 858 ~2 862.
[9]J.Y.Li,B.Deng,Z.C.Hou,et al.Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence[J].Radiation Physical& Chemistry,2008,(77):898~906.
[10]M.D.Guiver,T.A.Sherazi,S.Ahmad,et al.Radiation-induced grafting of styrene onto ultra-h(huán)igh molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes:I.Influence of grafting conditions[J].Journal of Membrane Science,2008,(325):964 ~972.
[11]J.Y.Li,L.F.Li,B.Deng,et al.A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization[J].Journal of Membrane Science,2010,(346):113 ~120.
[12]M.L.Zhai,J.Y.Qiu,L.Zhao,et al.Pre - irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries[J].Journal of Power Sources,2008,(177):617~623.
[13]S.Holmberg,P.Holmlund,R.Nicolas,et al.Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization [J].Macromolecules,2004,37(26):9 909~9 915.
[14]M.L.Zhai,J.H.Chen,Shin Hasegawa,et al.Synthesis of fluorinated polymer electrolyte membranes by radiation grafting and atom transfer radical polymerization techniques[J].Polymer,2009,(50):1 159 ~1 165.
[15]H.Y.Yu,W.Li,J.Zhou,et al.Thermo- and pH -responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization[J].Journal of Membrane Science,2009,(343):82~89.
[16]T.A.Sherazi ,S.Ahmad,M.A.Kashmiri,et al.Radiation-induced grafting of styrene onto ultra-h(huán)igh molecular weight polyethylene powder and subsequent film fabrication for application as polymer electrolyte membranes:I.Influence of grafting conditions[J].Journal of Membrane Science,2008,(325):964 ~972.
[17]T.A.Sherazi ,S.Ahmad,M.A.Kashmiri,et al.Radiation-induced grafting of styrene onto ultra-h(huán)igh molecular weight polyethylene powder for polymer electrolyte fuel cell application II.Sulfonation and characterization[J].Journal of Membrane Science,2009,(333):59~67.
[18]L.F.Li,B.Deng,Y.L.Ji,et al.A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization[J].Journal of Membrane Science,2010,(346):113 ~120.
[19]林亞凱,唐元暉,馬恒宇,等.熱致相分離法制備聚偏氟乙烯微孔膜[J].膜科學(xué)與技術(shù),2009,(29):36~39.
[20]S.Shkolink,D.Behar.Radiation-induced grafting of sulfonates on polyethylene[J].Journal of Applied Polymer Science,1982,(27):2 189 ~2 196.
[21]M.Kim,K.Saito.Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate onto porous hollow fiber membranes with different pore sizes[J].Radiation Physical Chemistry,2000,(57):167 ~172.
[22]S.H.Choi,J.Y.Han,R.J.Jeong,K.P.Lee.Desalination by electrodialysis with the ion-exchange membrane prepared by radiation - induced graft polymerization[J].Radiation Physical Chemistry,2001,(60):503 ~511.
[23]W.W.Chen,R.Mesrobian,A.Glines.Graft copolymers derived by ionizing radiation[J].Journal of Polymer Science,1957,(23):903 ~913.
[24] J.Brandrup,E.Immergut.Polymer Handbook[M].New York:Wiley-Interscience,1989.
[25]J.H.Chen,M.Asano,T.Yamaki,et al.Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes[J].Journal of Applied Polymer Science,2006,(100):4 565~4 574.
[26]J.H.Chen,M.Asano,T.Yamaki,et al.Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications[J].Journal of Power Sources,2006,(158):69~77.
[27]J.H.Chen,M.Asano,T.Yamaki,et al.Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films[J].Journal of Membrane Science,2006,(269):194 ~204.
[28]A.E.Steck,C .Stone,O.Savadogo,et al.New materials for fuel cell and modern battery systems II:Proceedings of the second international symposium on new materials for fuel cell and modern battery systems,Ecole Polytechnique Montreal[J].Montreal,1997,(792).
[29] J.Y.Li,F(xiàn).Muto,T.Miura,et al.Improving the properties of the proton exchange membranes by introducing α-methylstyrene in the pre-irradiation induced graft polymerization [J].European Polymer Journal,2006,(42):1 222~1 228.
[30] L.Gubler,M.Slaski,F(xiàn).Wallasch,et al.Radiation grafted fuel cell membranes based on co -grafting of α -methylstyrene and methacrylonitrile into a fluoropolymer base film [J].Journal of Membrane Science,2008,(339):68~77.
[31]J.J.Wooa,S.J.Seoa,S.H.Yun,et al.Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with α - methylstyrene and acrylonitrile [J].Journal of Membrane Science,2010,(363):80 ~86.
[32]T.N.Danks,R.C.T.Slade,J.R.Varcoe.Comparison of PVDF and FEP-based radiation grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs[J].Journal of Material Chemistry,2002,(12):3 371 ~3 375.
[33]J.Y.Qiu,M.Y.Li,J.F.Ni,et al.,Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery[J].Journal of Membrane Science,2007,(297):174 ~180.
[34]G..Kostov,S.Tumanova.Radiation - initiated graft copolymerization of 4-vinylpyridine onto polyethylene and polytetrafluoroethylene films and anion-exchange membranes therefrom [J].Journal of Applied Polymer Science,1997,(64):1 469 ~1 475.
[35]H.Liu,S.H.Yang,S.L.Wang,et al.Preparation and characterization of radiation-grafted poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether)membranes for alkaline anion-exchange membrane fuel cells[J].Journal of Membrane Science,2011,(369):277 ~283.
[36]E.A.Hegazy,H.El- Rehim,H.Shawky,et al.Investigations and characterization of radiation grafted copolymers for possible practical use in waste water treatment[J].Radiation Physical Chemistry,2000,(57):85 ~95.
[37]J.Y.Qiu,M.L.Zhai,J.H.Chen,et al.Performance of vanadium redox flow batteries of amphoteric ion exchange membrane synthesized by two-step grafting method[J].Journal of Membrane Science,2009,(342):215 ~220.
TQ325.4
A
1006-5342(2012)06-0011-04
2012-05-15