高 爽,查笑君,潘建偉
(浙江師范大學 化學與生命科學學院,浙江 金華 321004)
蛋白質(zhì)翻譯延伸因子(translation elongation factor,EF)最初從大腸桿菌(Escherichia coli)細胞中分離獲得,具有三磷酸鳥苷(GTP)或鳥苷二磷酸(GDP)親和性,參與肽鏈的延伸過程.在原核細胞中,有3 類延伸因子,分別被命名為EF-Tu(elongation factor thermo unstable),EF-Ts(elongation factor thermo stable)和EF-G(elongation factor G);而在真核細胞中,相對應的分別為eEF1A(eukaryotic translation elongation factor 1A),eEF1B(eukaryotic translation elongation factor 1B)和eEF2(eukaryotic translation elongation factor 2).蛋白質(zhì)生物合成過程大致可分為3 個階段:起始、延伸和終止.在肽鏈延伸階段,EF1A 與GTP 結(jié)合產(chǎn)生EF1A·GTP 復合體,此復合體再與特異的氨酰-tRNA 結(jié)合并將其運送到核糖體A 位點,并伴隨著GTP 的水解,最后EF1A·GDP 從核糖體釋放出來.EF1A·GDP 經(jīng)EF1B 催化又重新形成EF1A·GTP.在核糖體肽酰轉(zhuǎn)移酶作用下,位于核糖體P 位點的多肽被轉(zhuǎn)移到A 位點,與新進入的氨酰-tRNA 形成新的肽鍵,再由EF2 催化肽基-tRNA·mRNA 復合物從核糖體A 位點轉(zhuǎn)移至P位點,空出的A 位點將接納下一個新的氨酰-tRNA.重復此過程,蛋白多肽鏈將最終被合成[1-2].
eEF1A 胞內(nèi)含量很高,僅次于肌動蛋白,其基因及表達調(diào)控十分保守.eEF1A 由一個多基因家族編碼,不同的物種具有不同數(shù)量的eEF1A 同源基因,如:酵母中有2 個eEF1A 同源基因;擬南芥和水稻中分別有4 個eEF1A 同源基因;玉米中有10~15 個eEF1A 同源基因;人類有多于18 個eEF1A 同源基因.蛋白結(jié)構(gòu)分析表明,eEF1A 具有3 個構(gòu)象不同的功能結(jié)構(gòu)域,結(jié)構(gòu)域Ⅰ與GTP 結(jié)合,結(jié)構(gòu)域Ⅱ與氨酰-tRNA 結(jié)合,結(jié)構(gòu)域Ⅰ和Ⅱ還與eEF1Bα(組成eEF1B 的亞基之一)互作,結(jié)構(gòu)域Ⅱ和Ⅲ共同參與和肌動蛋白的互作[3].過去20 年的研究表明,eEF1A 除參與蛋白質(zhì)翻譯外,還具有多種生物學功能.本文主要就真核細胞eEF1A 在蛋白質(zhì)降解、細胞骨架組織調(diào)控、細胞凋亡、核物質(zhì)輸出和病毒繁殖等過程中的生物學功能作一扼要綜述.
泛素(ubiquitin)介導的蛋白降解是蛋白質(zhì)代謝的主要機制之一,在動植物生長發(fā)育過程中具有重要的調(diào)控作用.最初發(fā)現(xiàn)eEF1A 作為一個必需因子參與泛素介導的N-α-蛋白降解過程[4].eEF1A 的原核同源蛋白EF-Tu 被證實有類似分子伴侶的活性[5].隨后的研究表明,eEF1A 既能與合成中的新生肽鏈互作,也能與翻譯后折疊錯誤的蛋白質(zhì)結(jié)合[6].進一步的證據(jù)表明:eEF1A能有效緩解參與蛋白降解的RAD23 和RPN10 功能缺失后所引起的細胞生長緩慢等表型[7];eEF1A 能與蛋白酶體的19S 調(diào)節(jié)亞基RPT1 直接互作,RPT1 的功能缺失可降低eEF1A 與蛋白酶體的互作,同時胞內(nèi)出現(xiàn)受損蛋白的代謝缺陷[7];刀豆氨酸(canavanine)能誘導蛋白折疊錯誤而使后者進入泛素化降解途徑,但當eEF1A 的GTP 結(jié)合域第156 位天冬氨酸(Asp)突變?yōu)樘於0?Asn)后,細胞對刀豆氨酸表現(xiàn)出較高的抗性[7].這些研究結(jié)果充分暗示,eEF1A 參與介導受損或錯誤折疊的蛋白從核糖體到蛋白酶體的過程.
細胞骨架是細胞內(nèi)錯綜復雜的動態(tài)纖維狀網(wǎng)絡結(jié)構(gòu),除具有維持細胞形態(tài)和調(diào)控細胞增殖外,對蛋白質(zhì)翻譯的組織與調(diào)控也具有重要的生物學意義[8].許多蛋白質(zhì)翻譯系統(tǒng)的組分,如氨酰-tRNA合成酶、真核起始因子eIF(eukaryotic initiation factor)和翻譯延伸因子EF 直接或間接地與細胞骨架相連.來自哺乳動物細胞和釀酒酵母的證據(jù)表明,微絲骨架系統(tǒng)的任何缺陷均會影響肽鏈合成的正常進行[9].
盡管eEF1A 最初被鑒定為翻譯系統(tǒng)的重要作用因子,但后續(xù)的研究表明eEF1A 是一類進化上保守的肌動蛋白結(jié)合蛋白(actin-binding protein),具有調(diào)控肌動蛋白組裝微絲的功能[10].eEF1A 通過抑制微絲纖維末端肌動蛋白單體的加聚和解聚,從而調(diào)控微絲纖維的組裝,最終影響與微絲相關(guān)的貨物運輸、定位及mRNA 的翻譯[11].eEF1A 與肌動蛋白纖維或氨酰-tRNA 的結(jié)合受胞內(nèi)pH 調(diào)控:當pH 值逐漸增大時,促進eEF1A 與肌動蛋白的解離,利于eEF1A 與氨酰-tRNA 的結(jié)合和肽鏈合成;而pH 值逐漸減小時,促進eEF1A與肌動蛋白的結(jié)合.而且競爭性結(jié)合實驗進一步證實,這兩種結(jié)合是相互排斥的[12].在海膽的受精過程中,胞內(nèi)pH 值的增加作為信號刺激蛋白質(zhì)合成[13].eEF1A 能與微絲骨架調(diào)節(jié)蛋白Rho1p的下游靶蛋白Bni1p 互作[14].這些研究結(jié)果表明,細胞通過pH 的變化調(diào)控eEF1A 介導的肽鏈延伸和微絲骨架組織之間的切換.
為進一步提供eEF1A 在微絲骨架組織中的遺傳學證據(jù),超表達eEF1A 的釀酒酵母在沒有顯著影響蛋白質(zhì)合成的前提下引起了微絲骨架的組織紊亂,細胞生長緩慢[15].釀酒酵母eEF1A 遺傳突變篩選獲得2 類突變體:一類使蛋白質(zhì)合成功能維持正常,但存在微絲骨架組織缺陷,其eEF1A與肌動蛋白結(jié)合的功能維持正常,但將肌動蛋白組裝成束的功能下降[16];另一類表現(xiàn)為更嚴重的微絲骨架組織紊亂,蛋白質(zhì)翻譯起始缺陷,細胞生長緩慢[9].最近的體外實驗發(fā)現(xiàn),eEF1Bα 能抑制eEF1A 對肌動蛋白組裝成束的生物學功能[17].皮膚性人乳頭瘤病毒HPV38 的E7 蛋白能與eEF1A結(jié)構(gòu)域Ⅲ的C 末端區(qū)域結(jié)合,從而抑制后者對微絲骨架的組織功能[18].
eEF1A 除了參與微絲骨架的組織外,也參與微管蛋白的組裝.在海膽卵中,首次發(fā)現(xiàn)eEF1A作為有絲分裂活動的重要組分[19].體外實驗表明,胡蘿卜eEF1A 以一種Ca2+/鈣調(diào)蛋白依賴的方式結(jié)合并促進微管組裝成束,穩(wěn)定微管骨架[20-21].非洲爪蟾和哺乳動物eEF1A 均被鑒定具有切割微管的活性[22].然而,eEF1A 參與微管組織的分子調(diào)控機制至今仍不清楚.
早期的研究發(fā)現(xiàn),體外培養(yǎng)的鼠成纖維細胞內(nèi)eEF1A 表達水平與去除血清后誘導的細胞凋亡率呈正相關(guān)[23].在過氧化氫誘導的細胞凋亡前,胞內(nèi)eEF1A 表達水平迅速上升[24].這些結(jié)果暗示eEF1A 能促進細胞凋亡.而另一研究中篩選細胞凋亡抑制因子時,分離得到了eEF1A[25].這似乎與之前的研究結(jié)果互相矛盾,但后續(xù)的研究為其作出了解釋.哺乳動物中存在功能差異的2種eEF1A 亞型,即eEF1A1 和eEF1A2,分別由不同的基因編碼,氨基酸序列同源性約為92%[26].盡管兩者在多肽延伸過程中作用相似,但它們的表達模式卻具有不同的時空特異性,eEF1A1 在各組織中廣泛表達,而eEF1A2 似乎只在骨骼肌、心肌和腦細胞中表達[26-27].在成肌細胞分化過程中,發(fā)現(xiàn)eEF1A1 具有促進細胞凋亡的作用,而eEF1A2 的作用則相反[28].在研究脂毒性細胞凋亡機制時,也發(fā)現(xiàn)抑制eEF1A1 的表達可阻礙細胞凋亡[29].這些研究結(jié)果表明,eEF1A1 和eEF1A2 表達水平的差異參與決定細胞的命運[27-28,30].
最近的研究表明,脅迫刺激如病毒感染等誘導的干擾素誘導蛋白IFIT1(interferon-induced protein with tetratricopeptide repeats-1)通過與eEF1A1 互作,從而促進細胞凋亡[31].在人巨噬細胞內(nèi),艾滋病毒HIV-1 Nef 蛋白與eEF1A1 結(jié)合,通過eEF1A1 和tRNA 的核-質(zhì)重定位從而抑制由內(nèi)質(zhì)網(wǎng)應激介導的細胞凋亡[32].另有研究表明,eEF1A2 通過與抗氧化蛋白peroxiredoxinⅠ的互作,從而抑制由氧化脅迫誘導的細胞凋亡[33].這些研究結(jié)果說明,eEF1A 通過與功能不同的靶蛋白互作,行使不同的功能.
上述研究所涉及的都是依賴于半胱天冬酶的細胞凋亡.然而,越來越多的證據(jù)說明,細胞還有不依賴于半胱天冬酶的凋亡途徑[34-35].在四倍體細胞中發(fā)現(xiàn)了一種不依賴于半胱天冬酶的細胞凋亡,這種凋亡由eEF1A1 的表達下調(diào)引起,能幫助除去異常四倍體細胞和抑制腫瘤發(fā)生[36].
有實驗證據(jù)表明eEF1A 參與細胞核物質(zhì)的輸出過程.在釀酒酵母中,表達突變的eEF1AE286K或E291K(tRNA 結(jié)合位點突變)的菌株表現(xiàn)為核輸出氨酰-tRNA 障礙而累積于核中[37-38].tRNA 氨?;莈EF1A 與tRNA 有效結(jié)合的前提[39],也是tRNA 被運輸?shù)胶送獾那疤幔?7].Exportin-5 屬于細胞核質(zhì)轉(zhuǎn)運受體importinβ 家族.在哺乳動物中,eEF1A 通過氨酰-tRNA 與Exportin-5 結(jié)合形成輸出復合物,隨后eEF1A 與氨酰-tRNA 一同被輸出到核外[40-41].eEF1A 不僅參與核輸出氨酰-tRNA,在哺乳動物細胞核輸出蛋白質(zhì)的過程中也起到重要的作用.轉(zhuǎn)錄依賴的核輸出序列TD-NEM(transcription-dependent nuclear export motif)是一種新發(fā)現(xiàn)的核輸出信號序列[42],eEF1A 與TD-NEM 互作,參與介導了含有此信號序列的蛋白向核外輸出的過程[43].
自從發(fā)現(xiàn)eEF1A 參與核物質(zhì)輸出以來,其在細胞核與質(zhì)之間的穿梭成為了討論的熱點.由于正常條件下eEF1A 定位于核外,而且Exportin-5對eEF1A 的輸出也確保了其在核外,所以人們推測其在核物質(zhì)輸出過程中所起的作用都是在核膜的胞質(zhì)側(cè)完成的.然而,在一個核物質(zhì)輸出受體Msn5 突變的釀酒酵母菌株的細胞核中能檢測到eEF1A 的存在,暗示了其進入細胞核內(nèi)參與核物質(zhì)輸出的可能性[44].因此,eEF1A 參與核物質(zhì)輸出的具體作用位置仍有待進一步驗證.
eEF1A 作為細胞內(nèi)最豐富的蛋白質(zhì)之一,也參與了病毒生活史的循環(huán).所報道的eEF1A 參與病毒復制大都來自于正鏈RNA 病毒,如登革熱病毒(DV)[45]、黃蘿卜花葉病病毒(TYMV)[46]、煙草花葉病毒(TMV)[47]、西尼羅河病毒(WNV)[48]和蕪菁皺縮病毒(TCV)[49];但也有報道表明其參與負鏈RNA 病毒如水皰性口炎病毒(VSV)的復制[50].eEF1A 能與這些病毒基因組3′非編碼區(qū)的類tRNA 二級結(jié)構(gòu)結(jié)合,并與它們各自編碼的RNA 依賴性RNA 聚合酶類(RdRP)互作.eEF1A能刺激TCV 的RdRP 活性及負鏈RNA 的合成[49].WNV 基因組的eEF1A 結(jié)合位點突變,引起eEF1A 結(jié)合障礙,表現(xiàn)為負鏈RNA 合成降低,病毒復制受阻[51].然而,對于TYMV,eEF1A 對其基因組的結(jié)合似乎強烈抑制了負鏈RNA 的合成[46].這可能是因為:病毒侵染早期,eEF1A 結(jié)合其基因組,阻礙了RdRP 以正鏈RNA 為模板的復制行為,但正鏈RNA 指導的翻譯活動正常進行;當RdRP 等病毒蛋白質(zhì)合成達到一定量時,RdRP與eEF1A 競爭并結(jié)合到基因組的3′端,合成負鏈RNA.在本氏煙中,eEF1A 表達下調(diào)抑制TMV 的復制和傳播[52].eEF1A 可能作為番茄叢矮病毒(TBSV)復制酶復合體的一個組分,通過提高復制輔助因子p33 的穩(wěn)定性來促進病毒復制.從釀酒酵母中分離出的一個突變體eEF1AT22S,表現(xiàn)為p33 的半衰期縮減,病毒復制受阻[53].以上研究結(jié)果表明,eEF1A 對病毒復制具有重要作用.病毒的復制由一系列程序化事件組成,eEF1A 可能幫助維持了這種程序.
綜上所述,eEF1A 是一類具有多種生物學功能的重要調(diào)控蛋白.對于eEF1A 生物學功能的研究具有重要的應用價值.由于eEF1A 參與調(diào)控細胞凋亡,為腫瘤疾病的防治提供了新的策略和靶點,經(jīng)工程改良的eEF1A 很可能成為腫瘤治療的重要藥物.同時,eEF1A 也參與心血管系統(tǒng)的調(diào)節(jié),為相關(guān)疾病的防治提出了新的思路[54].eEF1A 作為細胞內(nèi)含量第2 高的蛋白質(zhì),其基因的表達必定由強啟動子啟動,該啟動子可用來提高外源基因的表達和一些蛋白質(zhì)的工業(yè)生產(chǎn)[55].另外,eEF1A 還可作為玉米、大麥和高粱胚乳賴氨酸含量的指示物,谷物籽粒的賴氨酸含量是判斷其營養(yǎng)價值的重要指標[56].
目前,有關(guān)eEF1A 生物學功能的證據(jù)主要來自于酵母和哺乳動物,對于植物eEF1A 的生物學功能和作用機制知之甚少.因此,對于植物eEF1A的研究還有待進一步深入.
[1]Dever T E,Green R.The elongation,termination,and recycling phases of translation in eukaryotes[J].Cold Spring Harb Perspect Biol,2012,4(7):a013706.
[2]Kavaliauskas D,Nissen P,Knudsen C R.The busiest of all ribosomal assistants:elongation factor Tu[J].Biochemistry,2012,51(13):2642 2651.
[3]Sasikumar A N,Perez W B,Kinzy T G.The many roles of the eukaryotic elongation factor 1 complex[J].Wiley Interdiscip Rev RNA,2012,3(4):543-555.
[4]Gonen H,Smith C E,Siegel N R,et al.Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu[J].Proc Natl Acad Sci USA,1994,91(16):7648-7652.
[5]Caldas T D,Yaagoubi A El,Richarme G.Chaperone properties of bacterial elongation factor EF-Tu[J].J Biol Chem,1998,273(19):11478 11482.
[6]Hotokezaka Y,Tobben U,Hotokezaka H,et al.Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides[J].J Bio Chem,2002,277(21):18545-18551.
[7]Chuang S M,Li Chen,Lambertson D,et al.Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elonga tion factor 1A[J].Mol Cell Biol,2005,25(1):403-413.
[8]Kim S,Coulombe P A.Emerging role for the cytoskeleton as an organizer and regulator of translation[J].Nat Rev Mol Cell Biol,2010,11(1):75-81.
[9]Gross S R,Kinzy T G.Improper organization of the actin cytoskeleton affects protein synthesis at initiation[J].Mol Cell Biol,2007,27(5):1974-1989.
[10]Fan Yang,Demma M,Warren V,et al.Identification of an actin-binding protein from Dictyostelium as elongation factor 1a[J].Nature,1990,347(6292):494-496.
[11]Murray J W,Edmonds B T,Liu Gang,et al.Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament end[J].J Cell Biol,1996,135(5):1309-1321.
[12]Liu Gang,Tang Jianzhong,Edmonds B T,et al.F-actin sequesters elongation factor 1 alpha from interaction with aminoacyl-tRNA in a pH-de pendent reaction[J].J Cell Biol,1996,135(4):953-963.
[13]Winkler M,Steinhardt R,Grainger J,et al.Dual ionic controls for the activation of protein synthesis at fertilization[J].Nature,1980,287(5782):558-560.
[14]Umikawa M,Tanaka K,Kamei T,et al.Interaction of Rho1p target Bni1p with F-actin-binding elongation factor 1alpha:implication in Rho1p regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae[J].Oncogene,1998,16(15):2011-2016.
[15]Munshi R,Kandl K A,Carr-Schmid A,et al.Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast[J].Genetics,2001,157(4):1425-1436.
[16]Gross S R,Kinzy T G.Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology[J].Nat Struc Mol Biol,2005,12(9):772-778.
[17]Pittman Y R,Kandl K,Lewis M,et al.Coordination of eukaryotic translation elongation factor 1A (eEF1A)function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Bα[J].J Biol Chem,2009,284(7):4739-4747.
[18]Yue J,Shukla R,Accardi R,et al.Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell prolif eration through CK2 and the eukaryotic elongation factor 1A[J].J Virol,2011,85(17):8477-8494.
[19]Ohta K,Toriyama M,Miyazaki M,et al.The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and i immunologically related to yeast polypeptide elongation factor 1 alpha[J].J Biol Chem,1990,265(6):3240-3247.
[20]Durso N A,Cyr R J.A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha[J].Plan Cell,1994,6(6):893-905.
[21]Moore R C,Durso N A,Cyr R J.Elongation factor-1a stabilizes microtubules in a calcium/calmodulin-dependent manner[J].Cell Motil Cy toskelet,1998,41(2):168-180.
[22]Shiina N,Gotoh Y,Kubomura N,et al.Microtubule severing by elongation factor 1 alpha[J].Science,1994,266(5183):282-285.
[23]Duttaroy A,Bourbeau D,Wang Xiaoling,et al.Apoptosis rate can be accelerated or decelerated by overexpression or reduction of the level of e longation factor-1alpha[J].Exp Cell Res,1998,238(1):168-176.
[24]Edwin C,Proestou G,Bourbeau D,et al.Rapid up-regulation of peptide elongation factor EF-1alpha protein levels is an immediate early even during oxidative stress-induced apoptosis[J].Exp Cell Res,2000,259(1):140-148.
[25]Talapatra S,Wagner J D O,Thompson C B.Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis[J].Cell Death Differ,2002,9(8):856-861.
[26]Kahns S,Knudsen C,Clark B,et al.The elongation factor 1 A-2 isoform from rabbit:cloning of the cDNA and characterization of the protein[J].Nucleic Acids Res,1998,26(8):1884-1890.
[27]Lee S,F(xiàn)rancoeur A M,Liu S,et al.Tissue-specific expression in mammalian brain,heart,and muscle of S1,a member of the elongation factor 1 alpha gene family[J].J Biol Chem,1992,267(33):24064-24068.
[28]Ruest L B,Marcotte R,Eugenia W.Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis[J].J Biol Chem,2002,277(7):5418-5425.
[29]Borradaile N M,Buhman K K,Listenberger L L,et al.A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death[J].Mol Bio Cell,2006,17(2):770-778.
[30]Lee S,Wolfraim L A,Wang E.Differential expression of S1 and elongation factor-1 alpha during rat development[J].J Biol Chem,1993,268(32):24453-24459.
[31]Li Hongtao,Su Yongping,Cheng Tianmin,et al.The interaction between interferon-induced protein with tetratricopeptide repeats-1 and eukary otic elongation factor-1A[J].Mol Cell Biochem,2010,337(1/2):101-110.
[32]Abbas W,Khan K A,Tripathy M K,et al.Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization o eEF1A by the HIV-1 Nef protein[J].Cell Death Dis,2012,3(4):e292.
[33]Chang Ruying,Eugenia W.Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress[J].J Cell Biochem,2007,100(2):267-278.
[34]Chipuk J E,Green D R.Do inducers of apoptosis trigger caspase-independent cell death?[J].Nat Rev Mol Cell Biol,2005,6(3):268-275.
[35]Okada H,Mak T W.Pathways of apoptotic and non-apoptotic death in tumour cells[J].Nat Rev Cancer,2004,4(8):592-603.
[36]Kobayashi Y,Yonehara S.Novel cell death by downregulation of eEF1A1 expression in tetraploids[J].Cell Death Differ,2008,16(1):139 150.
[37]Grosshans H,Hurt E,Simos G.An aminoacylation-dependent nuclear tRNA export pathway in yeast[J].Genes Dev,2000,14(7):830-840.
[38]Grosshans H,Simos G,Hurt E.Review:transport of tRNA out of the nucleus-direct channeling to the ribosome?[J].J Struct Biol,2000,129(2/3):288-294.
[39]Dreher T W,Uhlenbeck O C,Browning K S.Quantitative assessment of EF-1a·GTP Binding to aminoacyl-tRNAs,aminoacyl-viral RNA,and tRNA shows close correspondence to the RNA binding properties of EF-Tu[J].J Biol Chem,1999,274(2):666-672.
[40]Bohnsack M T,Regener K,Schwappach B,et al.Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm[J].EMBO J,2002,21(22):6205-6215.
[41]Calado A,Treichel N,Müller E C,et al.Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA[J].EMBO J,2002,21(22):6216-6224.
[42]Khacho M,Mekhail K,Pilon-Larose K,et al.Cancer-causing mutations in a novel transcription-dependent nuclear export motif of VHL abrogate oxygen-dependent degradation of hypoxia-inducible factor[J].Mol Cell Biol,2008,28(1):302-314.
[43]Khacho M,Mekhail K,Pilon-Larose K,et al.eEF1A is a novel component of the mammalian nuclear protein export machinery[J].Mol Cel Biol,2008,19(12):5296-5308.
[44]Murthi A,Shaheen H H,Huang H Y,et al.Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae[J].Mol Biol Cell,2010,21(4):639-649.
[45]Nova-Ocampo M De,Villegas-Sepulveda N,del Angel R M.Translation elongation factor-1alpha,La,and PTB interact with the 3′ untranslated region of dengue 4 virus RNA[J].Virology,2002,295(2):337-347.
[46]Matsuda D,Yoshinari S,Dreher T W.eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependen RNA polymerase[J].Virology,2004,321(1):47-56.
[47]Yamaji Y,Kobayashi T,Hamada K,et al.In vivo interaction between Tobacco mosaic virus RNA-dependent RNA polymerase and host transla tion elongation factor 1A[J].Virology,2006,347(1):100-108.
[48]Blackwell J L,Brinton M A.Translation elongation factor-1 alpha interacts with the 3′stem-loop region of West Nile virus genomic RNA[J].J Virol,1997,71(9):6433-6444.
[49]Li Zhenghe,Pogany J,Tupman S,et al.Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates mi nus-strand synthesis[J].PLoS Pathog,2010,6(11):e1001175.
[50]Das T,Mathur M,Gupta A K,et al.RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 αβγ for its activity[J].Proc Natl Acad Sci USA,1998,95(4):1449-1454.
[51]Davis W G,Blackwell J L,Shi Peiyong,et al.Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile viru genomic RNA facilitates viral minus-strand RNA synthesis[J].J Virol,2007,81(18):10172-10187.
[52]Yamaji Y,Sakurai K,Hamada K,et al.Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection[J].Arch Virol,2010,155(2):263-268.
[53]Li Zhenghe,Pogany J,Panavas T,et al.Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor[J].Virology,2009,385(1):245-260.
[54]程君,芮耀誠.真核延長因子eEF1A 功能研究進展[J].藥學實踐雜志,2012,30(2):89-92.
[55]Ahn J,Hong J,Lee H,et al.Translation elongation factor 1-alpha gene from Pichia pastoris:molecular cloning,sequence,and use of its promot er[J].Appl Microbiol Biotechnol,2007,74(3):601-608
[56]Habben J E,Moro G L,Hunter B G,et al.Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endo sperm[J].Proc Natl Acad Sci USA,1995,92(19):8640-8644.