伊順仁 黃藝珠 陳景容 福州大北農(nóng)生物技術(shù)有限公司 福州 350014
對于豬繁殖與呼吸障礙綜合征病毒免疫學方面的研究盡管還有許多令人期待的未知,但近年來的研究報道也有很多值得關(guān)注的內(nèi)容。文中針對豬繁殖與呼吸障礙綜合征病毒的特異性免疫應答在保護性免疫中的作用、免疫調(diào)節(jié)及免疫逃避等內(nèi)容做一綜述,為臨床免疫的研究應用提供借鑒。
1.1 體液免疫
1.1.1 PRRSV體液反應動力學及ADE現(xiàn)象 健康豬感染PRRSV后可引發(fā)機體產(chǎn)生全身性的體液免疫應答。體液免疫由胸腺依賴性抗原和非胸腺依賴性抗原(TI)誘發(fā)[1]。一些豬在感染 PRRSV 5~7 d就可檢測到抗體,到14 d時,所有豬的血清發(fā)生轉(zhuǎn)陽[2]。特異性IgM抗體在14 d時達到高峰,然后下降,到42 d時基本檢測不到。特異性IgG抗體在感染后21~49 d達到高峰[3]。但是,這些感染早期快速產(chǎn)生的IgM、IgG并沒有中和作用,其主要作用對象是GP5和N蛋白[4-5],結(jié)合在病毒粒子表面,可促進病毒粒子進入巨噬細胞。能迅速增強PRRSV在巨噬細胞中復制的能力,即所謂的抗體依賴性增強作用(Antibody-Dependent Enhancement,ADE)現(xiàn)象[4,6]。在肺泡巨噬細胞培養(yǎng)物中,加入一定效價的PRRSV抗體,可使PRRSV產(chǎn)量明顯增加,甚至會提高10~100倍。通過母源抗體獲得被動免疫的仔豬,一旦母源抗體水平下降至保護水平以下,PRRSV就會表現(xiàn)ADE現(xiàn)象,從而增加了仔豬的易感性。所以,亞中和水平的體液抗體反而能促進PRRSV的感染。
Ne1son等(1994)研究了豬抗PRRSV美洲株的體液反應動力學,結(jié)果顯示:最早檢測到的抗體是抗N蛋白抗體,接著是抗M蛋白抗體,然后是抗GP5蛋白抗體[7]。另有研究顯示:非結(jié)構(gòu)蛋白2(Nsp2)包含一組非中和的B表位,可能是PRRSV的免疫活性蛋白[8-9]。目前大多數(shù)診斷檢測方法主要是針對N蛋白誘導產(chǎn)生的抗體,這些抗體出現(xiàn)在感染后第1周并持續(xù)幾個月,但抗體的滴度與保護力不相關(guān)。
1.1.2 PRRSV的中和抗體及其保護意義 中和抗體在抗PRRSV的保護性免疫反應中起重要的作用。有人進行了血清輸入實驗,證實單獨使用中和抗體可以完全防止PRRSV感染妊娠母豬。另外,無論是仔豬還是母豬,被動輸入的中和抗體可消除病毒血癥,對感染豬輸入中和抗體后,病毒分離和RTPCR等方法不能從這些豬的淋巴器官中檢測到病毒。同樣,中和抗體對幼豬也有保護作用,能夠100%保護易感動物抵抗PRRSV病毒血癥的最低抗體滴度是1:8[10]。但由于PRRSV感染后中和抗體的產(chǎn)生比較慢而且不規(guī)則,所以中和抗體在保護機體免受PRRSV感染中所起的作用也是有限的[11-12]。
通過被動免疫產(chǎn)生的中和抗體可以使易感動物受到暫時的保護[13]。在感染后一個月內(nèi),用常規(guī)病毒中和試驗檢測不到中和抗體。添加新鮮的補體或延長病毒與血清的作用時間可以增加中和試驗的敏感性,可在感染后9~12 d檢測到中和抗體[14]。另有研究顯示,補體可使中和試驗提高一個滴度[12,15]。但是即使采用改良的病毒中和試驗,感染后42 d中和抗體滴度依然很低,僅為1:32~1:64。歐洲株和美洲株產(chǎn)生的中和抗體,都可在感染28 d后檢測到。
有報道顯示 M、GP2a、GP3、GP4 和 GP5 上都有病毒的中和表位[5,16-20]。但在誘導中和抗體產(chǎn)生方面GP5更加重要。用PRRSV GP5接種免疫豬后可誘導產(chǎn)生中等水平的中和抗體,盡管如此,當用同種(或同源)毒株攻毒時,豬可被保護,僅表現(xiàn)輕微發(fā)熱,用MARC-145細胞只能從肺和縱膈淋巴結(jié)回收到病毒,攻毒 2 周后,中和抗體滴度增加到1:128[21-22]。
無論是母豬還是仔豬,中和抗體在血清中的滴度與對豬抗PRRSV感染的免疫保護作用呈正相關(guān)。向懷孕母豬體內(nèi)輸入1:8或更高滴度的抗體,可阻止仔豬病毒血癥的出現(xiàn);輸入1:16滴度的抗體,可保護母豬免于繁殖障礙和胎盤感染;當?shù)味冗_到1:32時,則可清除病毒感染[23]。這些結(jié)果表明,如果疫苗能夠誘導產(chǎn)生1:32的抗體滴度,則能有效地預防疾病,并且可在清除PRRSV中成為有力的手段。
1.2 細胞免疫 細胞免疫對于預防PRRSV感染具有十分重要的作用。Mo1itor等(1997)報道,PRRSV感染后不僅產(chǎn)生針對病毒多肽的以各種特異性抗體為特征的體液疫,而且還產(chǎn)生CD4+細胞增殖和遲發(fā)型變態(tài)反應為特征的細胞免疫[24]。一般在外周血循環(huán)中CD4+T細胞的百分比與感染豬發(fā)病的嚴重程度有直接關(guān)系,CD4+比例愈小,感染豬越有可能發(fā)生嚴重癥狀。由此看出,豬感染疾病的臨床診斷在一定程度上建立于CD4+水平上。
PRRSV感染后第4周左右出現(xiàn)抗原特異性淋巴細胞的增生,第7周左右達到高峰,第11周左右開始下降,最多可以持續(xù)3個月[25]。此增殖性反應可被由抗CD4+和MHC-Ⅱ類抗原產(chǎn)生的抗體所抑制,說明這種反應是依賴CD4+和T淋巴細胞的[26]。
在自然感染PRRSV的豬體內(nèi)淋巴細胞亞群會發(fā)生變化,外周血中的CD4+/CD8+細胞的比例會顯著降低。但是PRRSV并非總是誘導這樣的變化,由于毒株的來源及毒力的差異,有的甚至會產(chǎn)生相反的結(jié)果[27]。Bruin等(2000)通過淋巴細胞增生試驗和病毒特異性干擾素產(chǎn)生的細胞試驗比較了PRRSV野毒接種豬、偽狂犬病病毒 (PRV)疫苗接種豬及PRRSV疫苗接種豬的細胞免疫反應情況,結(jié)果發(fā)現(xiàn),PRRSV野毒接種豬可產(chǎn)生長期而強烈的細胞免疫反應,與PRV疫苗接種豬的細胞免疫反應相當。而PRRSV減毒活疫苗接種豬的細胞免疫反應與保護性極好的PRV疫苗誘導的細胞免疫反應效果相差甚遠[28]。
PRRSV 的 GP2a、GP3、GP4、GP5、M、N 蛋白都能刺激T淋巴細胞的增生[29]。但是,N蛋白的作用最弱,M蛋白的作用最強。各種蛋白的誘導作用和該蛋白的濃度呈正相關(guān)。這表明M蛋白在細胞免疫中居主要地位。
2.1 干擾素 PRRSV可以引起繼發(fā)感染,通過阻斷一種抗病毒蛋白的激活或抑制豬體內(nèi)α干擾素(IFN-α)的活性是PRRSV免疫逃避的防御機制之一。A1bina等(1998)發(fā)現(xiàn)PRRSV在肺泡巨噬細胞中復制,而巨噬細胞和PBMC都不產(chǎn)生IFN-α[30]。Góm ez-Laguna等(2010)發(fā)現(xiàn)PRRSV可誘導產(chǎn)生少量IFN-α,但它在血清中的出現(xiàn)較晚,與病毒血癥的消退相吻合[31]。PRRSV感染可能干擾維甲酸誘導基因-Ⅰ(RIG-Ⅰ)、To11樣受體 3(TLR3)和 IPS-1(IFN-β啟動刺激因子1)信號轉(zhuǎn)導來抑制IFN-β啟動子活性及IFN-β產(chǎn)生,減少IFN-α表達量,從而減弱固有免疫應答,繼而影響獲得性免疫應答(包括延緩產(chǎn)生IFN-γ和中和抗體),并最終引起病毒血癥和持續(xù)性感染[32-34]。
另有體外的研究結(jié)果表明IFN-α和IFN-β在凈化PRRSV中起重要作用。重組豬IFN-α(rpIFN-α)可以抑制PRRSV在巨噬細胞中的復制并誘導其他抗 PRRSV 介質(zhì)因子的轉(zhuǎn)錄[30,34-35]。用含有豬IFN-β(swIFN-β)表達的細胞上清液孵育M arc-145細胞后再接種PRRSV,結(jié)果未出現(xiàn)細胞病變。而用不含swIFN-β的細胞培養(yǎng)液孵育M arc-145細胞,則在病毒感染后出現(xiàn)細胞病變。此外用swIFN-β培養(yǎng)液孵育分離于PRRSV陰性豬的支氣管肺泡灌肺泡巨噬細胞后再接種PRRSV,用Rea1time RT-PCR測定發(fā)現(xiàn)病毒RNA載量顯著減少;這些研究結(jié)果充分表明,Ⅰ型IFN在干預PRRSV感染方面有很大潛力。
2.2 細胞因子 IFN-γ是Th1類細胞因子的典型代表,并且是促進細胞免疫應答的效應因子,可抑制PRRSV在巨噬細胞中的復制,其作用機制是能阻斷病毒蛋白的正常合成,還能增強巨噬細胞產(chǎn)生超氧負離子的能力。提示IFN-γ可以抑制PRRSV對巨噬細胞的感染。但是,低水平的IFN-γ不能消除PRRSV[36],且在病毒感染期間影響機體免疫系統(tǒng)[37],可以說,PRRSV持續(xù)性感染與機體有效細胞免疫應答低下有關(guān)。
IL-1是致炎性細胞因子,參與免疫防御抗感染。Van Reeth等(2000)研究發(fā)現(xiàn)接種PRRSV后第3~10 d,感染豬肺臟產(chǎn)生高水平的 IL-1[38]。Góm ez-Laguna等(2010)發(fā)現(xiàn)感染PRRSV后,豬肺臟損傷程度、巨噬細胞數(shù)量與IL-1α表達量顯著相關(guān)[31]。Labarque等(2003)發(fā)現(xiàn)在感染后第9 d IL-1產(chǎn)量達到峰值,而未感染PRRSV的細胞凋亡數(shù)量急劇上升[39]。因此,IL-1可能介導PRRSV感染后的病理發(fā)生。
IL-2是調(diào)節(jié)細胞介導免疫應答的主要細胞因子之一。Rompato等(2006)用IL-2表達質(zhì)粒作為PRRSV ORF7DNA疫苗佐劑給豬免疫,經(jīng)過二免后攻毒發(fā)現(xiàn),IL-2能明顯提高T細胞增殖[40]。Xue等(2004)用IL-2作為PRRSV ORF5和ORF7疫苗的佐劑一起免疫豬,然后用同型PRRSV攻毒,發(fā)現(xiàn)豬血清、PAM和淋巴組織中病毒載量明顯減少[41]。可見,應用IL-2作為PRRSV疫苗佐劑有非常不錯的前景。
IL-6與豬的細胞免疫可能有關(guān)。Liu等(2009)發(fā)現(xiàn)8周齡的豬感染PRRSV后第7 d,豬肺泡巨噬細胞產(chǎn)生大量 IL-6[42]。A1bina等(1998)報道,8 周齡的豬感染PRRSV后第3周,CD8+T細胞和IgM顯著增多[30]。CD8+T細胞能殺傷表達抗原的靶細胞,它是抗病毒感染的重要效應細胞。IL-6誘導CD8+細胞大量增殖,對于清除PRRSV感染有潛在作用。
IL-8是病毒急性感染后免疫防御機制的一部分。Aasted等(2002)發(fā)現(xiàn)經(jīng)子宮感染PRRSV的小母豬在2~6周時,血液中檢測不到IL-8,且巨噬細胞減少;這可能是由于PRRSV復制導致巨噬細胞功能受損,使生成IL-8水平降低。因而血液循環(huán)中的IL-8水平可能反映巨噬細胞的功能狀態(tài)[43]。Ait-A1i等(2007)研究發(fā)現(xiàn)感染PRRSV 2 h后,長白豬和皮特蘭豬的肺泡巨噬細胞中IL-8水平急劇升高,隨后IL-8水平穩(wěn)步升高。進一步研究發(fā)現(xiàn),累積高水平IL-8能使PRRSV減少或延遲復制[44]。由此可見,IL-8參與豬機體抵御PRRSV感染過程。
IL-10對PRRSV的免疫應答調(diào)節(jié)起很重要的作用。不論是感染PRRSV歐洲株還是美洲株,豬外周血單核細胞(PBMCs)中IL-10的mRNA水平均得到了提高,且支氣管肺泡灌洗液中IL-10的濃度也增加了[45]。某些歐洲株能夠在陰性豬的PBMCs中誘導產(chǎn)生強烈的IL-10反應,表明這是一種非記憶特性的[15]。接種IL-10誘導型毒株的豬,其特異性IFN-γ的分泌頻率要低于接種非IL-10誘導型毒株的豬,這表明IL-10的產(chǎn)生可能是PRRSV感染后體液免疫受到一定抑制的原因之一[46]。給PRRSV血清陰性豬接種PRRSV之前轉(zhuǎn)染IL-10 mRNA,PBMCs內(nèi)IL-10和IL-12 mRNA顯著減少,而IFN-γmRNA升高,TNF-α和IL-4 mRNA沒有變化。這表明外源的IL-10 mRNA可以干擾PRRSV感染后IL-10 mRNA 的表達[47]。
PRRSV感染后對IL-12表達的影響,目前相關(guān)文獻的研究結(jié)果并不一致。有研究結(jié)果指出,PRRSV能刺激機體產(chǎn)生少量IL-12,但表達水平很弱[48-51]。
體外研究結(jié)果也發(fā)現(xiàn),不論在mRNA還是在蛋白水平,PBMCs感染PRRSV后表達的IL-12量也非常少[52]。但PRRSV感染豬的樹突狀細胞(DCs)中IL-12水平增高[53],感染PRRSV后第48 h,豬DCs中IL-12的濃度大約是紫外線滅活PRRSV處理的DCs中IL-12濃度的2.7倍,提示PRRSV對不同組織細胞內(nèi)的IL-12的影響不同。
IL-18能在免疫活性細胞中誘導IFN-γ、GMCSF、TNF-α和IL-1等細胞因子,其中以刺激產(chǎn)生IFN-γ的能力最為顯著,它和IL-12共同協(xié)調(diào)刺激釋放IFN-γ。近來的研究結(jié)果發(fā)現(xiàn),IL-18有潛在促進PRRSV免疫的作用。Shen等(2007)給小豬接種rFPV-IL-18后攻擊PRRSV,接種rFPV-IL-18的小豬產(chǎn)生的中和抗體水平、IFN-γ量和T淋巴細胞免疫增殖反應高于對照組,這表明IL-18在某種程度上能有效提高機體產(chǎn)生PRRSV特異的體液免疫和細胞免疫[54];但目前沒有內(nèi)源性IL-18參與PRRS免疫調(diào)節(jié)的研究結(jié)論。
GM-CSF可促進DCs、中性白細胞和巨噬細胞成熟,活化成熟粒細胞和單核吞噬細胞,調(diào)節(jié)單核細胞衍生的DCs、郎格罕氏細胞和抗原遞呈細胞。Wang等(2009)構(gòu)建出融合表達PRRSV GP3及GP5與GM-CSF的重組腺病毒,給豬免疫rAd-GF35(含 GM-CSF)后所產(chǎn)生的 PRRSV GP3/GP5 的特異抗體水平明顯高于無GM-CSF組對照豬,PBMCs中PRRSV增殖指數(shù)明顯高于對照組[48]。提示GM-CSF能明顯增強豬體針對PRRSV的體液免疫和細胞免疫。
TNF-α是活化的巨噬細胞、DC和T細胞早期分泌產(chǎn)生的細胞因子,可協(xié)同IFN-γ抵抗病毒感染細胞,但它在PRRSV感染后處于受抑制狀態(tài)。Murtaugh等(2002)發(fā)現(xiàn)感染PRRSV后,豬肺臟中TNF-α表達受抑制或表達量明顯減少,并且抑制病毒復制的能力減弱,導致宿主針對PRRSV的免疫應答減弱,使呼吸道出現(xiàn)PRRS亞臨床癥狀,還能引起機體持續(xù)感染 PRRSV[33]。Subramaniam 等(2010)研究發(fā)現(xiàn),在體外感染PRRSV后,PBMCs的TNF-α轉(zhuǎn)錄被抑制,細胞內(nèi)也未測到TNF-α蛋白[55]。TNF-α的表達與病毒復制呈明顯的負相關(guān),感染后12h病毒復制達到高峰,而TNF-α水平最低。TNF-α表達水平低可能是PRRSV逃逸宿主免疫應答的機制之一[31],因此,促進內(nèi)源性TNF-α的表達有助于豬體抗PRRSV感染。
TNF-β的表達水平可能與PRRSV致病力有一定相關(guān)性。有報道指出,豬接種PRRSV美洲株2周后PBMCs中TNF-β和IL-10基因表達提高[52],而豬感染PRRSV歐洲株后,PBMC中TNF-β水平無顯著變化,但是IL-10水平提高[12]。同樣,在感染PRRSV歐洲株的DCs中未能檢測到TNF-β,而感染美洲株的DCs中TNF-βmRNA表達提高[56]。由于美洲型PRRSV株的致病力一般高于歐洲型毒株,上述2個研究小組的發(fā)現(xiàn),提示TNF-β與PRRSV病理發(fā)生有一定的相關(guān)性,PRRSV的致病力對TNF-β的影響仍待進一步深入研究。
2.3 抗原提呈 PRRSV可能會干擾正確的抗原提呈和T淋巴細胞的活化。PRRSV能下調(diào)樹突細胞(DCs)中主要組織相容性復合體MHC-Ⅰ的表達,不過這與混合型白細胞反應中增值反應的減弱無關(guān)[35]。當PRRSV感染激活單核細胞衍生的樹突細胞時,CD11b/c、CD14、CD80/86、MHC-Ⅰ、MHC-Ⅱ的表達均下調(diào)[57-58],用滅活的PRRSV時則沒有下調(diào)。同時,當受感染的樹突細胞與同源的或同種異體的淋巴細胞配套使用時,增值反應減弱,由此表明受感染的樹突細胞抗原提呈能力下降[58]。PRRSV能夠通過改變樹突狀細胞和巨噬細胞的細胞因子類型,以及通過改變參與抗原提呈的分子的表達,從而減弱獲得性免疫應答。
2.4 GP5的誘騙表位和糖基化位點 GP5蛋白胞外結(jié)構(gòu)域氨基端高度糖基化,并與M蛋白形成異原二聚體[59-60],用反向免疫法和其他涉及重疊蛋白的研究證實GP5主要中和位點與中和抗體的活動相關(guān),這個位點的最小抗原區(qū)域在33~47位氨基酸,已被確認是中和表位的核心區(qū)域[13,61-63],這個核心區(qū)域被稱做B位點,此中和位點在糖基化位點的側(cè)面。GP5的另一個優(yōu)勢顯性表位A位點,位于GP5氨基末端的胞外域(第27~31位氨基酸處),具有誘騙表位的特性,與人HIV-1中的Decoy相似[13]。Decoy位點是導致中和位點免疫反應性降低的毗鄰于中和位點的位點??刮稽cA的抗體在PRRSV感染早期被誘導產(chǎn)生,而在感染后前30 d不能檢測到抗 B 位點的抗體[63-64]。
因此,認為A位點與中和B位點的同時出現(xiàn)將抑制對中和位點B的反應??怪泻臀稽cB的抗體的延遲產(chǎn)生可以解釋早期研究者所描述的無中和抗體產(chǎn)生的原因,因此,中和抗體延緩產(chǎn)生是PRRSV逃逸免疫監(jiān)視的主要機制,也是PRRSV感染的主要特征。
但是,誘騙表位不是PRRSV逃避體液免疫的唯一方式。GP5蛋白含有4個糖基化位點,這些位點位于或靠近中和位點內(nèi)。在受感染豬中,上游高變區(qū)缺失糖基化位點的美洲分離株與下游N-44位缺失糖基化位點的毒株相比,產(chǎn)生中和抗體的能力快速而且強烈[65]。西班牙分離株在1991-2005年的進化過程中呈現(xiàn)出一個趨勢,即N-46(相當于美洲株的N-44位置)糖基化位點逐漸消失,而在側(cè)面(N-37和N-53)保持或獲得新的糖基化位點,這與誘導較弱的中和抗體毒株是一致的[66]。
[1] Frai1e L,Ca1samig1ia M,Mateu E,et a1.Preva1ence of in fection with porcine circovirus-2 (PCV-2)and porcine reproductive and respiratory syndrome virus(PRRSV)in an integrated swine production system experiencing postweaning mu1tisystemic wasting syndrome [J].Can J Vet Res,2009,73(4):308-312.
[2] Yoon K J,Zimmerman JJ,Swenson SL,et a1.Characterizati on of the humora1 mimune response to porcine reproductive and respiratory syndrome (PRRS)virus infection[J].JVet DiagnInvest,1995,7(3):305-312.
[3] Vezina SA,Loemba H,F(xiàn)ournier M,et a1.Antibody producti on and b1astogenic response in pigs experimenta11y infected with porcine reproductive and respiratory syndrome virus [J].Canadian Journa1 of Veterinary Research,1996,60:94-99.
[4] Yoon KJ,Wu L L,Zimmerman JJ,et a1.Antibody-dependent enhancement(ADE)of porcine reproductive and respiratory syndrome virus (PRRSV)infection in pigs[J].Vira1 Immuno1ogy,1996,9:51-63.
[5] Cance1-Tirado SM,Evans RB,Yoon K J,et a1.Monoc1ona1 antibody ana1ysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibodydependent enhancement and neutra1ization of virus infection[J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:249-262.
[6] Yoon K J,Wu L L,Zimmerman JJ,et a1.Fie1d iso1ates of porcine reproductive and respiratory syndrome virus(PRRSV)vary in their susceptibi1ity to antibody dependent enhancement(ADE)of infection[J].Veterinary Microbio1ogy,1997,55:277-287.
[7] Ne1son E A,Christopher-Hennings J,Benfie1d D A,et a1.Serum immune responses to the proteins of porcine reproductive and respiratory syndrome(PRRS)virus[J].Journa1 of Veterinary Diagnostic Investigation,1994(6):410-415.
[8] O1eksiewicz M B,Botner A,Toft P,et a1.Epitope mapping porcine reproductive and respiratory syndrome virus by phage disp1ay:the nsp2 fragment of the rep1icase po1yprotein contains a c1uster of B-ce11 epitopes[J].Journa1of Viro1ogy,2001,75:3277-3290.
[9] Lima M D,Pattnaik A K,F(xiàn)1ores E F,et a1.Sero1ogic marker candidates identified among B-ce11 1inear epitopes of Nsp2 and structura1 proteins of a North American strain of porcine eproductive and respiratory syndrome virus[J].Viro1ogy,2006,353:410-421.
[10] Gorcyca D E,Sch1esinger K,Ch1adek D,et a1.A summary of experimenta1 and fie1d studies eva1uating the safety and efficacy of RespPRRS/Repro for the contro1of PRRS-induced reproductive disease[J].Vet,1995,11:102-107.
[11] Murtaugh M P,Xiao Z,Johnson C R,et a1.Porcine immunity to porcine reproductive and respiratory syndrome virus(PRRSV):systemic and 1oca1response in acute and persistent infection[J].Proceedings of the IX Internationa1 Sym posium on Nidoviruses(Arteriviruses and Coronaviruses),2003(7):61.
[12] Diaz I,Darwich L,Pappaterra G,et a1.Immune responses of pigs after experimenta1infection with a European strain of porcine reproductive and respiratory syndrome virus[J].Journa1of Genera1Viro1ogy,2005,86:1943-1951.
[13] Ostrowski M,Ga1eota J A,Jar A M,et a1.Identification of neutra1izing and nonneutra1izing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain [J].Journa1 of Viro1ogy,2002,76:4241-4250.
[14] Takikawa N,Kobayashi S,Ide S,et a1.Detection of antibodies against porcine reproductive and respiratory syndrome(PRRS)virus in swine sera by enzyme-1inked immunosorbent assay[J].Journa1of Veterinary Medica1 Science,1996,58:355-357.
[15] Diaz I,Darwich L,Pappaterra G,et a1.Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immuno1ogica1 properties and confer different protection to pigs[J].Viro1ogy,2006,351:249-259.
[16] Kim W I,Yoon K J.Mo1ecu1ar assessment of the ro1e of enve1op eassociated structura1proteins in cross neutra1ization among different PRRS viruses [J].Virus genes,2008,37:380-391.
[17] P1agemann P G.Neutra1izing antibody formation in swine infected with seven strains of porcine reproductive and respiratory syndrome virus as measured by indirect ELISA with peptides containing the GP5 neutra1-ization epitope[J].Vira1Immuno1,2006,19:285-293.
[18] Ansari I H,Kwon B,Osorio F A,et a1.Inf1uence of N-1inked g1ycosy1ation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity,antigenicity,and abi1ity to induce neutra1izing antibodies[J].JViro1,2006,80:3994-4004.
[19] Van Nieuwstadt A P,Meu1enberg J J,van Essen-Zanbergen A,et a1.Proteins encoded by open reading frames 3 and 4 of the genome of Le1ystad virus(Arteriviridae)are structura1 proteins of the virion [J].J Viro1,1996,70:4767-4772.
[20] Yang L,F(xiàn)rey M L,Yoon K J,et a1.Categorization of North American porcine reproductive and respiratory syndrome viruses:epitopic profi1es of the N,M,GP5 and GP3 proteins and susceptibi1ity to neutra1ization[J].Arch Viro1,2000,145:1599-1619.
[21] Pirzadeh B,Dea S.Immune response in pigs vaccinated with p1asmid DNA encoding ORF5 of porcine reprodu ctive and respiratory syndrome virus[J].Gen Viro1,1998,79:989-999.
[22] Qiu H J,Tian Z J,Tong G Z,et a1.Protective immunity induced by a recombinant pseudorabies virus expres sing the GP5 of porcine reproductive and respiratory syndrome virus in pig1ets[J].Vet Immuno1Immun opatho1,2005,106(3/4):309-319.
[23] Osorio F A,Ga1eota J A,Ne1son E,et a1.Passive transfer of virusspecific antibodies confers protection against reproductive fai1ure induced by a viru1ent strain of porcine reproductive and respiratory syndrome virus and estab1ishes steri1izing immunity [J].Viro1ogy,2002,302:9-20.
[24] Mo1it T W,Bautist E M,Choi C S.Immunity to PRRSV:Doub1e edged sword[J].Vet Microbio1,1997,55:265-267.
[25] Rossow K D,Co11ins JE,Goya1SM,et a1.Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs [J].Vet Patho1,1995,32(4):361-373.
[26] Saa1mu11er A,Aasted B,Cana1s A,et a1.Ana1yses of mAb reactive with porcine CD8[J].Vet Immuno1immunopatho1,1994,43(1/3):249-254.
[27] Ro1and R R,Rpbinson B,Stefanick J ,et a1.Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recover of virus rep1ication with 2-aminopurine[J].Arch Viro1,2001,146(3):539-555.
[28] De Bruin M G M,Samsom J N,Voermans J J M,et a1.Effects of a porcine reproductive and respiratory syndrome virus infection on the deve1opment of the immune response against pseudorabies virus [J].Veterinary Immuno1ogy and Immunopatho1ogy,2000,76:125-135.
[29] Bautista E M,Suarez P,Mo1itor T W.T ce11responses to the structura1 po1ypeptides of porcine reproductive and respiratory syndrome virus[J].Arch Viro1,1999,144(1):117-134.
[30] A1bina E,Carrat C,Char1ey B.Interferon-a1pha response to swine arterivirus(PoAV),the porcine reproductive and respiratory syndrome virus[J].JInterf Cytok Res,1998,18:485-490.
[31] Gómez-Laguna J,Sa1guero F J,Barranco I,et a1.Cytokine expression by macrophages in the 1ung of pigs infected with the porcine reproductive and respiratory syndrome virus[J].JComppath,2010,142(1):51-60.
[32] Luo R,Xiao S,Jiang Y,et a1.Porcine reproductive and respiratory syndrome virus(PRRSV)suppresses in-terferon-beta production by interfering with RIG-I signa1ing pathway[J].Mo1Immuno1,2008,45(10):2839-2846.
[33] Murtaugh M P,Xiao Z,Zuckermann F.Immuno1ogica1 responses of swine to porcine reproductive and respiratory syndrome virus infection [J].Vira1 Immuno1,2002,15(4):533-547.
[34] Overend C,Mitche11 R,He D,et a1.Recombinant swine beta interferon protects swine a1veo1ar macrophages and Marc-145 ce11s from infection with porcine reproductive and respiratory syndrome virus[J].JGen Viro1,2007,88:925-931.
[35] Loving C L,Brockmeier S L,Sacco R E.Differentia1 type I interferon activation and susceptibi1ity of dendritic ce11 popu1ations to porcine arterivirus[J].Immuno1ogy,2007,120(2):217-229.
[36] Suradhat S,Thanawongnuwech R,Poovorawan Y.Upregu1ation of IL-10 gene expression in porcine in porcine periphera1 b1ood mononuc1ear ce11s by porcine reproductive and respiratory syndrome virus[J].JGen Viro1,2003,84:453-459.
[37] Row1and R R,Robinson B,Stefanick J,et a1.Inhibition of porcine reproductive and respiratory syndrome virus rep1ication with 2-aminopurine [J].Arch Viro1,2001,146(3):539-555.
[38] Van Reeth K,Nauwynck H.Proinf1ammatory cytokines and vira1 respiratory disease in pigs [J].Vet Res,2000,1(2):187-213.
[39] Labarque G,Van Gucht S,Nauwynck H,et a1.Apoptosis in the 1ungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines[J].Vet Res,2003,34(3):249-260.
[40] Rompato G,Ling E,Chen Z,et a1.Positive inductive effect of IL-2 on virus-specific ce11u1ar responses e1icited by a PRRSV-ORF7 DNA vaccine swine[J].Vet Immuno1immunop,2006,109(1/2):151-160.
[41]Xue Q,Zhao Y G,Zhou Y J,et a1.Immune responses of swine fo11owing DNA immunization with p1asmids encoding porcine reproductive and respiratory syndromevirus ORFs 5 and 7,and porcine IL-2 and IFN-γ [J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:291-298.
[42] Liu C,Chaung H,Chang H,et a1.Expression of To11-1ike receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J].Vet Micobio1,2009,136(3/4):266-276.
[43] Aasted B,Bach P,Nie1sen J,et a1.Cytokine profi1es in periphera1 b1ood mononuc1ear ce11s and 1ymph node ce11s from pig1ets in utero with porcine reproductive and respiratory syndrome virus[J].C1in Diagn Lab Immun,2002,9(6):1229-1234.
[44] Ait-Ait T,Wi1son A D,Westcott D G,et a1.Innate immune responses to rep1ication of porcine reproductive and respiratory syndrome virus iso1ated swine a1veo1ar macrophage[J].Vira1Immuno1,2007,20(1):105-118.
[45] Suradhat S,Thanawongnuwech R,Poovorawan Y.Upregu1ation of IL-10 gene expression in porcine periphera1 b1ood mononuc1ear ce11s by porcine reproductive and respiratory syndrome virus[J].Journa1of Genera1 Viro1ogy,2003,84:453-459.
[46] Charerntantanaku1 W,P1att R,Roth J A.Effects of porcine reproductive and respiratory syndrome virusinfected antigen-presenting ce11s on T ce11 activation and antivira1cytokine production[J].Vira1Immuno1ogy,2006,19:646-661.
[47] Charerntantanaku1 W,Kasinrerk W.Inter1eukin-10 antisense o1igodeoxynuc1eotide suppresses IL-10 expression and effects on proinf1ammatory cytokine responses to porcine reproductive and respiratory syndrome virus[J].Vira1Immuno1,2010,23(4):425-435.
[48] Wang X,Li J,Jiang P,et a1.GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against viru1ent PRRSV chan11enge[J].Virus Res,2009,143(1):24-32.
[49] Thanawongnuwech R,Young T F,Thacker B J,et a1.Differentia1 production of proinf1ammatory cytokines:in vitro PRRSV and Mycop1asma hyopneumoniae co-infection mode1[J].Vet Immuno1Immunop,2001,79(1/2):115-127.
[50] Chung H K,Chae C.Expression of inter1eukin-10 and inter1eukin-12 in pig1ets experimenta11y infected with porcine reproductive and respiratory syndrome virus(PRRSV)[J].JComp Path,2003,129(2/3):205-212.
[51] Xiao Z,Batista L,Dee S,et a1.Immune responses of swine fo11owing DNA immunization with p1asmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7,and porcine IL-2 and IFN-gamma[J].Vet Immuno1 immunop,2004,102(3):291-298.
[52] Royaee A R,Husmann R J,Dawson H D,et a1.Deciphering the invo1vement of innate immune factors in the deve1opment of the host response to PRRSV vaccination[J].Vet Immuno1Immunop,2004,102(3):199-216.
[53] Park J Y,Kim H S,Seo SH.Characterization of interaction between porcine reproductive and respiratory syndrome virus and porcine dendritic ce11s[J].J Microbio1Biotechno1,2008,18(10):1709-1716.
[54] Shen G,Jin N,Ma M,et a1.Immune responses of pigs inocu1ated with a recombinant fow1pox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18[J].Vaccine,2007,25(21):4193-4202.
[55] Subramaniam S,Kwon B,Beura L K,et a1.Porcine reproductive and respiratory syndrome virus non-structura1 protein 1 suppresses tumor necrosis factor-a1pha promoter activation by inhibiting NF-κB and Sp1[J].Viro1ogy,2010,406(2):270-279.
[56] Si1va-Campa E,Cordoba L,F(xiàn)rai1e L,et a1.European genotype of porcine reproductive and respiratory syndrome (PRRSV)infects monocyte-derived dendritic ce11s but does not induce Treg ce11s [J].Viro1ogy,2010,396(2):264-271.
[57] Genini S,De1putte PL,Ma1inverni R,et a1.Genomewide transcriptiona1 response of primary a1veo1ar macrophages fo11owinginfection with porcine reproductive and respiratory syndrome virus.J Gen Viro1,2008,89:2550-2564.
[58] Wang X,Eatonm,Mayerm,et a1.Porcine reproductive and respiratory syndrome virus productive1y in fectsmonocyte-derived dendritic ce11s and compromises their an tigen-presenting abi1ity [J].Archives of V iro1ogy,2007,152(2):289-303.
[59] Pirzadeh B,Dea S.Antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define 1inear neutra1izing determinants [J].Journa1 of Genera1Viro1ogy,1997,78:1867-1873.
[60] Kheyar A,Jabrane A,Zhu C,et a1.A1ternative codonusage of PRRS virus ORF5 gene increases eucaryo ic expression of GP(5)g1ycoprotein and improves immune response in cha11enged pigs [J].Vaccine,2005,23(31):4016-4022.
[61] P1agemann PG,Row1and R R,F(xiàn)aaberg K S.The primary neutra1ization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is 1ocated in the midd1e of the GP5 ectodomain [J].Archives of Viro1ogy,2002,147:2327-2347.
[62] Wissink E H,Van Wijk H A,Kroese M V,et a1.The major enve1ope protein,GP5,of a European porcine reproductive and respiratory syndrome virus contains a neutra1ization epitope in its N-termina1ectodomain[J].Jouran1of Genera1Viro1ogy,2003,84:1535-1543.
[63] P1agemann PG.The primaty GP5 neutra1ization epitope of North American iso1ates of porcine reproductive and respiratory syndrome virus[J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:263-275.
[64] P1agemann P G.Comp1exity of the sing1e 1inear n eutra1ization epitope of the mouse arterivirus 1actate dehydrogenase e1evating virus [J].Viro1ogy,2001,290:11-20.
[65] Faaberg K S,Hocker J D,Erdman M M,et a1.Neutra1izing antibody responses of pigs infected with natura1GP5 N-g1ycan mutants of porcine reproductive and respiratory syndrome virus [J].Vira1 Immuno1ogy,2006,19:294-304.
[66] Mateu E,Diaz I,Darwich L,et a1.Evo1ution of ORF5 of Spanish orcine reproductive and respiratory syndrome virus strains from 1991 to 2005[J].Virus Research,2006,115(2):198-206.