陳開懋
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,教學(xué)時(shí)都是以基本函數(shù)為主,而考題中往往以形式比較復(fù)雜的函數(shù)出現(xiàn)(一般為復(fù)合函數(shù)),從而學(xué)生覺得比較難,筆者在此用幾個(gè)典型學(xué)生易錯(cuò)題來闡釋如何用復(fù)合函數(shù)的觀點(diǎn)來處理函數(shù)中常見的三類問題.
1用復(fù)合函數(shù)的觀點(diǎn)處理函數(shù)值域問題
2用復(fù)合函數(shù)的觀點(diǎn)處理函數(shù)單調(diào)性問題
原理分析“同增異減”的原則,即當(dāng)外層函數(shù)與內(nèi)層函數(shù)的單調(diào)性相同時(shí),復(fù)合函數(shù)遞增,即當(dāng)外層函數(shù)與內(nèi)層函數(shù)的單調(diào)性相反時(shí),復(fù)合函數(shù)遞減
內(nèi)層函數(shù)
3用復(fù)合函數(shù)的觀點(diǎn)處理函數(shù)的零點(diǎn)問題