趙振東,李嘉誠(chéng),馮玉紅,孟曉靜,金彪
(海南大學(xué)材料與化工學(xué)院,???570228)
超高效液相色譜-串聯(lián)質(zhì)譜法鑒別十字花科植物中硫代葡萄糖苷*
趙振東,李嘉誠(chéng),馮玉紅,孟曉靜,金彪
(海南大學(xué)材料與化工學(xué)院,海口 570228)
建立超高效液相色譜-串聯(lián)質(zhì)譜法鑒別十字花科植物中硫代葡萄糖苷的分析方法。采用70%甲醇水溶液提取白芥種子中的硫代葡萄糖苷,通過(guò)反相C18柱分離,電噴霧-離子阱-飛行時(shí)間質(zhì)譜測(cè)定。利用硫代葡萄糖苷二級(jí)質(zhì)譜裂解產(chǎn)生的m/z 195,241,259,275,291特征離子和伴隨產(chǎn)生的80,162,163,196,242 Da中性分子丟失規(guī)律,共鑒別出5種硫代葡萄糖苷。
硫代葡萄糖苷;十字花科;液相色譜;質(zhì)譜
硫代葡萄糖苷(簡(jiǎn)稱硫苷)是廣泛存在于十字花科植物中的含硫次級(jí)代謝產(chǎn)物,主要分布于植物的根、莖和葉中。當(dāng)植物細(xì)胞受到破壞(如擠壓、蟲(chóng)咬等)后,硫苷與植物內(nèi)生的黑芥子酶接觸,降解產(chǎn)生異硫氰酸酯、惡唑烷酮和硫氰酸酯等化合物[1],其中異硫氰酸酯具有良好的生物活性,而且對(duì)人畜無(wú)害。因此硫苷及其降解產(chǎn)物的研究引起了科學(xué)工作者的濃厚興趣。根據(jù)側(cè)鏈R基團(tuán)的不同,目前已發(fā)現(xiàn)約120種硫苷,其中有多種具有抗癌、抗腫瘤、殺菌和殺蟲(chóng)活性的異硫氰酸酯,如吳華等[2]比較幾種異硫氰酸酯的殺線蟲(chóng)活性,發(fā)現(xiàn)烯丙基和丙烯?;惲蚯杷狨ゾ哂辛己玫臍⒕€蟲(chóng)活性。大量研究表明甲硫基己基異硫氰酸酯等具有良好的抗腫瘤活性,是非常具有潛力的抗癌藥物[3-6]。
硫苷的檢測(cè)方法主要是傳統(tǒng)的化學(xué)方法和現(xiàn)代的儀器分析手段?;瘜W(xué)方法耗時(shí)、誤差大、操作繁瑣,只能測(cè)定硫苷總量。液相色譜法具有很高的分離效率,但對(duì)于硫苷單體鑒別需要對(duì)照品,無(wú)法滿足快速鑒別硫苷的需要。筆者采用超高效液相色譜-離子阱-飛行時(shí)間質(zhì)譜聯(lián)用技術(shù),既能高效分離硫苷,又能準(zhǔn)確、快速鑒別硫苷。對(duì)于硫苷及降解產(chǎn)物的研究具有重要意義,同時(shí)又能夠提高工作效率。
1.1 主要儀器與試劑
超高效液相色譜-離子阱-飛行時(shí)間質(zhì)譜儀:LCMS-IT-TOF型,日本島津公司;
數(shù)顯恒溫水浴鍋:HH-6型,常州澳華儀器有限公司;
真空干燥箱:VD23型,德國(guó)BINDER公司;電子天平:AUY220型,日本島津公司;
超聲波清洗器:KS-120EI型,寧波海曙科生超聲設(shè)備有限公司;
旋轉(zhuǎn)蒸發(fā)儀:R-216型,瑞士BUCHI公司;臺(tái)式高速離心機(jī):H-1650型,長(zhǎng)沙湘儀離心機(jī)儀器有限公司;
研磨機(jī):A11基本型,德國(guó)IKA公司;
白芥種子:產(chǎn)地為湖北武漢;
正己烷、氯仿、乙酸銨、甲酸:分析純,廣州化學(xué)試劑廠;
甲醇:色譜純,美國(guó)Fisher公司;
實(shí)驗(yàn)用水為美國(guó)Pall公司Purelab Ultra超純水系統(tǒng)制備的超純水,電阻率為18.2 MΩ·cm。
1.2 硫代葡萄糖苷提?。?-8]
白芥種子在105℃干燥3 h,以滅活黑芥子酶保護(hù)硫苷。干燥種子經(jīng)粉碎后,過(guò)420 μm篩。稱取粗粉約50 g于錐形瓶中,依次用正己烷50 mL,氯仿50 mL 各3次除脂。殘?jiān)?jīng)真空干燥,用300 mL沸騰的70%甲醇水溶液浸泡,超聲提取30 min,連續(xù)2次,合并提取液,靜置至室溫。提取液經(jīng)離心分離,將清液真空下濃縮至原體積的20%。取1 mL濃縮液經(jīng)石墨化碳脫色,濾液供超高效液相色譜-串聯(lián)質(zhì)譜分析。
1.3 流動(dòng)相配制
用電子天平準(zhǔn)確稱量乙酸銨0.385 g,置于1 L量瓶中,加入1 mL甲酸,用水溶解定容后,經(jīng)0.22 μm微膜過(guò)濾,超聲波脫氣后使用。
1.4 液質(zhì)聯(lián)用分析條件
(1)UPLC條件
ODS C18柱(100 mm×2.1 mm,3.5 μm,日本島津公司);柱溫:30℃;流動(dòng)相A:5 mmol/L乙酸銨-1‰甲酸溶液;流動(dòng)相B:甲醇;流動(dòng)相流速:0.2 mL/min;進(jìn)樣體積:20 μL;梯度洗脫:0~3 min,98% A;3~25 min,98%~20% A;25~30 min,20%~20 % A;30~35 min,20%~98% A。
(2)MS條件
ESI負(fù)離子模式;電壓:-3.5 kV;霧化氣:N2,流量為1.5 L/min;干燥氣壓力:100 kPa;碰撞氣:Ar;檢測(cè)器電壓:1.7 kV;Heat Block溫度:200℃;CDL溫度:200℃;一級(jí)質(zhì)譜掃描范圍:m/z 300~700;母離子掃描范圍:m/z 315~650;二級(jí)質(zhì)譜掃描范圍:m/z 50~700;離子累積時(shí)間:10 ms;CID碰撞能量:100%;碰撞氣能量:100%。
2.1 分析條件選擇
硫苷在水溶液中是親水性陰離子化合物,在反相色譜柱中,保留時(shí)間短。優(yōu)化實(shí)驗(yàn)發(fā)現(xiàn),在ODS-C18柱上采用流動(dòng)相A(5 mmol/L的乙酸銨+0.1%甲酸)和流動(dòng)相B(甲醇)能夠很好分離,并且有很好的質(zhì)譜響應(yīng)。質(zhì)譜Heat Block和CDL溫度采用200℃,溫度過(guò)高會(huì)造成硫苷裂解,過(guò)低則影響離子化和脫溶劑化效果。為獲得比較豐富的二級(jí)離子碎片信息,CID碰撞能量和碰撞氣能量均采用100%。
2.2 分析結(jié)果
按照1.4分析條件檢測(cè)白芥種子提取液,獲取硫苷提取離子流色譜圖及其一、二級(jí)質(zhì)譜圖(見(jiàn)圖1~圖11)。根據(jù)裂解機(jī)理,并參考文獻(xiàn)[9-12],共鑒定出5種硫苷,結(jié)果見(jiàn)表1。
圖1 白芥種子中硫代葡萄糖苷的提取離子流色譜圖
圖2 progoitrin一級(jí)質(zhì)譜圖(MS1)
圖3 progoitrin二級(jí)質(zhì)譜圖(MS2)
圖4 Sinigrin一級(jí)質(zhì)譜圖(MS1)
圖5 Sinigrin二級(jí)質(zhì)譜圖(MS2)
圖6 Gluconapin一級(jí)質(zhì)譜圖(MS1)
圖7 Gluconapin二級(jí)質(zhì)譜圖(MS2)
圖8 Glucobrassicanapin一級(jí)質(zhì)譜圖(MS1)
圖9 Glucobrassicanapin二級(jí)質(zhì)譜圖(MS2)
圖10 Gluconasturtiin一級(jí)質(zhì)譜圖(MS1)
圖11 Gluconasturtiin二級(jí)質(zhì)譜圖(MS2)
2.3 質(zhì)譜碎片離子裂解機(jī)理
二級(jí)質(zhì)譜特征離子,對(duì)于鑒別硫苷具有重要意義。在MS2中,母離子先后失去SO3(80 Da)和C6H10O5(162 Da)后產(chǎn)生242 Da中性分子丟失,氫重排后出現(xiàn)相對(duì)應(yīng)的R—C(SH)=N—O—離子。另一裂解途徑是硫苷上的氫發(fā)生重排后,失去C6H11O5(163 Da)和C6H12O5S(196 Da)中性碎片。與此同時(shí),二級(jí)質(zhì)譜中還能觀察到m/z 195,241,259,275,291的特征離子,這些離子是由于硫與相鄰碳原子發(fā)生斷裂,并伴有氫重排形成的。
硫代葡萄糖苷負(fù)離子模式下主要特征二級(jí)碎片離子裂解機(jī)理見(jiàn)圖12[13-14]。
利用液相色譜-串聯(lián)質(zhì)譜技術(shù)快速、高效、準(zhǔn)確的分離與鑒定十字花科植物中硫代葡萄糖苷,對(duì)硫代葡萄糖苷二級(jí)質(zhì)譜80,162,163,196,242 Da中性分子丟失和m/z 195,241,259,275,291特征離子裂解機(jī)理進(jìn)行了闡述和總結(jié),能夠準(zhǔn)確推測(cè)硫代葡萄糖苷化學(xué)結(jié)構(gòu),對(duì)于十字花科植物的開(kāi)發(fā)與利用具有重要意義。
[1]Luca Lazzeri,Giovanna Curto,Onofrio Leoni,et al. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode meloidogyne incognita (kofoid et white)chitw[J]. J Agric Food Chem,2004,52: 6 703-6 707.
表1 白芥種子中硫苷主要二級(jí)質(zhì)譜離子表
圖12 硫代葡萄糖苷質(zhì)譜裂解規(guī)律示意圖
[2]Hua Wu,Chao-Jun Wang,Xiao-Wei Bian,et al. Nematicidal efficacy of isothiocyanates against root-knot nematode eloidogyne javanica in cucumber[J]. Crop Protection,2011,30: 33-37.
[3]Adarsh Pal Vig,Geetanjali Rampal,Tarunpreet Singh Thind,et al. Bio-protective effects of glucosinolates-a review[J]. Food Science and Technology,2009,42: 1 561-1 572.
[4]Al-Gendy A A,El-gindi O D,Hafez Al S,et al. Glucosinolates,volatile constituents and biological activities of Erysimum corinthium boiss.(brassicaceae)[J]. Food Chemistry,2010,118: 519-524.
[5]Steven F Vaughn,Debra E Palmquist,Sandra M Duval,et al. Herbicidal activity of glucosinolate-containing seedmeals[J]. Weed Science,2006,54: 743-748.
[6]Luisa M Manici,Luca Lazzeri,Sandro Palmieri. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi[J]. J Agric Food Chem,1997,45: 2 768-2 773.
[7]Steven F Vaughn,Mark A Berhow. Glucosinolate hydrolysis products from various plant sources pH effects,isolation,and purification[J]. Industrial Crops and Products,2005,21: 193-202.
[8]Lijiang Song,Renato Iori,Paul J Thornalley. Purification of major glucosinolates from Brassicaceae seeds and preparation of isothiocyanate and amine metabolites[J]. J Sci Food Agric,2006,86: 1 271-1 280.
[9]Kim-Chung Lee,Wan Chan,Zhitao Liang,et al. Rapid screening method for intact glucosinolates in Chinese medicinal herbs by using liquid chromatography coupled with electrospray ionization ion trap mass spectrometry in negative ion mode[J]. Rapid Commun Mass Spectrom,2008,22: 2 825-2 834.
[10]Nicolas Fabre,Véréna Poinsot,Laurent Debrauwer,et al. Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time-of-flight mass spectrometry[J]. Phytochem Anal,2007,18: 306-319.
[11]Simone J Rochfort,V Craige Trenerry,Michael Imsic,et al. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSnfragmentation[J]. Phytochemistry,2008,69: 1 671-1 679.
[12]Jason B Bialecki,Josef Ruzicka,Carl S Weisbecker,et al. Collision-induced dissociation mass spectra of glucosinolate anions[J]. J Mass Spectrom,2010,45: 272-283.
[13]Filomena Lelario,Giuliana Bianco,Sabino A Bufo,et al. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fouriertransform ion cyclotron resonance mass[J]. Phytochemistry,2012,73(1): 74-83.
[14]Tommaso R I Cataldi,Alessandra Rubino,F(xiàn)ilomena Lelario,et al. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry[J]. Rapid Commun Mass Spectrom,2007,21: 2 374-2 388.
Separation and Identification of Glucosinolates in the Cruciferae Crops by UPLC-MS/MS
Zhao Zhendong,Li Jiacheng,F(xiàn)eng Yuhong,Meng Xiaojing,Jin Biao
(Materials and Chemical Engineering of Hainan University,Haikou 570228, China)
A method for precise identification of glucosinolates in the Cruciferae Crops by UPLC-MS/MS was established. The glucosinolates were extracted with methanol-water (volume ratio 70∶30),while the separation and qualitative determination of the individual glucosinolates was achieved using RP-UPLC-ESI-IT-TOF. The glucosinolates was confirmed with the use of product ions at m/z 195,241,259,275,291 in MS2. Further identification of the five glucosinolates was based on the detection of compounds with a constant neutral loss of 80, 162, 163, 196, 242 Da in collision-induced dissociation.
glucosinolate; cruciferae; liquid chromatography; mass spectrometry
O657.63
A
1008-6145(2013)02-0012-04
10.3969/j.issn.1008-6145.2013.02.003
*“十二五”科技支撐計(jì)劃(2011BAE06B06-7,2011BAE06B04-7);海南大學(xué)青年基金項(xiàng)目(qnjj1220)
聯(lián)系人:馮玉紅;E-mail: ljcfyh@263.net
2012-12-12