文開庭 李和睿
摘要 利用KKM技巧, 建立了FC度量空間中轉(zhuǎn)移緊開值映射的Ky Fan匹配定理. 作為應(yīng)用,獲得了FC度量空間中的Ky Fan重合定理、定性對策和抽象經(jīng)濟的平衡存在定理. 結(jié)論統(tǒng)一、改進和推廣了一些近期文獻的已知結(jié)果.
關(guān)鍵詞 FC度量空間; 匹配; 重合;抽象經(jīng)濟; 平衡.
中圖分類號O177.91文獻標識碼A
1引言
1999年, Yuan[1]研究了超凸空間中有限度量開值GMKKM映射和Ky Fan匹配定理,Park[2]獲得了超凸空間中開值映射的Ky Fan匹配定理. 2006~2008年,文獻[3-5]進一步研究了超凸空間中的Ky Fan匹配定理. 2007年以來,文獻[6-8]建立了完備L凸度量空間中的Ky Fan匹配定理.2010年至今,文獻[9-11]引入了FC度量空間,并研究了其中的RKKM定理、Browder不動點定理、重合定理以及抽象經(jīng)濟和定性對策的平衡存在定理等.
本文的目的是研究FC度量空間中轉(zhuǎn)移緊開值映射的Ky Fan匹配定理,作為應(yīng)用,進一步研究FC度量空間中的Ky Fan重合定理、抽象經(jīng)濟和定性對策的平衡存在定理.本文結(jié)論統(tǒng)一、改進和推廣了一些近期文獻的已知結(jié)果.
2預(yù)備知識
熟知,每一個開(相應(yīng)地, 閉)值集值映射是轉(zhuǎn)移開(相應(yīng)地, 閉)值的,同時也是緊開(相應(yīng)地, 閉)值的; 每一個轉(zhuǎn)移開(相應(yīng)地, 閉)值或緊開(相應(yīng)地, 閉)值集值映射是轉(zhuǎn)移緊開(相應(yīng)地, 閉)值的, 但反之不然.
3主要結(jié)果
參考文獻
[1]Xianzhi YUAN. The characterization of generalized metric KKM mappings with open values in hyperconvex metric spaces and some applications[J]. J Math Anal Appl, 1999, 235(1): 315-325.
[2]S PARK. Fixed point theorems in hyperconvex metric spaces[J]. Nonlinear Anal, 1999, 37(4): 467-472.
[3]文開庭. A Ky Fan matching theorem for transfer compactly open covers and the application to the fixed point[J]. 數(shù)學(xué)物理學(xué)報,2006, 26(A)(7): 1159-1165.
[4]文開庭. A new Ky Fan type matching theorem for compactly open covers and its applications[J]. 數(shù)學(xué)進展, 2007,36(4):407-414.
[5]文開庭. Ky Fan matching theorems for transfer compactly open covers and its application to the equilibrium for abstract economies[J]. 工程數(shù)學(xué)學(xué)報, 2008,25(1):149-154.
[6]文開庭. A Ky Fan matching theorem in complete Lconvex metric spaces and its application to abstract economies[J]. 應(yīng)用數(shù)學(xué), 2007,20(3):593-597.
[7]文開庭. A new Ky Fan matching theorem for transfer open covers with some applications in Lconvex metric spaces[J]. 應(yīng)用泛函分析學(xué)報,2008,10(4):305-312.[8]文開庭,李和睿,曾凡培. MLC映射的Ky Fan匹配定理及其對極大極小不等式和鞍點的應(yīng)用[J]. 數(shù)學(xué)物理學(xué)報,2011, 31 (A) (4): 1077-1082.
[9]文開庭. FC度量空間中的RKKM定理及其對抽象經(jīng)濟的應(yīng)用[J]. 西南師范大學(xué)學(xué)報:自然科學(xué)版, 2010,35(1):45-49.
[10]文開庭. FC度量空間中的RKKM定理及其對變分不等式和不動點的應(yīng)用[J]. 應(yīng)用泛函分析學(xué)報, 2010, 12(3): 266-273.
[11]文開庭. 有限度量緊開值映射的RKKM定理及其對不動點的應(yīng)用[J]. 西南大學(xué)學(xué)報,2011,33(10):110-113.
[12]Xianzhi YUAN. KKM theory and applications in nonlinear analysis[M]. New York: Marcel Dekker Inc, 1999.
[13]Huili ZHANG. Some nonlinear problem in hyperconvex metric spaces[J]. J Appl Anal, 2003, 9(2): 225-235.
[14]W A KIRK, B SIMS, Xianzhi YUAN. The KnasterKuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications[J]. Nonlinear Anal., 2000, 39(5): 611-627.
[15]陳鳳娟,沈自飛. Continuous selection theorem and coincidence theorem on hyperconvex spaces[J]. 數(shù)學(xué)進展, 2005, 34(5): 614-618.
[16]S PARK. Fixed point theorems in locally Gconvex spaces[J]. Nonlinear Anal., 2002, 48(6): 869-879.