陳丹,許宗文,張樹文
(1.閩南理工學院信管系,福建石獅 362700;2.集美大學理學院,福建廈門 361021)
具有線性脈沖的周期捕食系統的持久性
陳丹1,許宗文1,張樹文2
(1.閩南理工學院信管系,福建石獅 362700;2.集美大學理學院,福建廈門 361021)
研究具有Holling IV功能性反應和脈沖的周期捕食食餌系統.找到了影響該系統動力學行為的閾值R0.證明了當R0<1時,該系統的食餌滅絕周期解是局部漸近穩(wěn)定的;當R0>1時,該系統的食餌滅絕周期解變得不穩(wěn)定且食餌將一致持久.
捕食食餌系統;脈沖;Holling IV功能性反應;持續(xù)生存;局部漸近穩(wěn)定
脈沖微分方程是20世紀末發(fā)展非常迅速的一個數學分支,這是因為它比普通微分方程具有更加能貼合實際.許多學者對此進行了深入研究,得到許多結論[13].但現有成果多見于具有Holling I,Holling II,Holling III功能性反應的脈沖捕食-食餌系統[45],具有Holling IV功能性反應的脈沖捕食-捕食模型至今研究較少.因此,本文建立了在固定時刻具有脈沖效應和Holling IV功能性反應的周期捕食食餌系統:
這里r(t),a(t),c1(t),c2(t),d(t)都是以T為周期的,并且存在整數q使得τk+q=τk+T.x(t) 與y(t)分別表示食餌與捕食者的種群密度,r(t)代表內稟增長率,a(t)表示密度制約率,d(t)是捕食者的死亡率.
利用文獻[6]中的方法,容易得到y?(t)是全局穩(wěn)定的.
引理2.1當t充分大時,存在一個常數M>0,使得系統(1.1)的解X(t)=(x(t),y(t))滿足x(t)≤M,y(t)≤M.
證明定義函數V(t,X(t)),使得
令m2=y?(t)-ε1,ε1>0,由比較定理和系統(2.1)的結論,有當t充分大時,y(t)>m2.下面要找到一個m1>0使得當t充分大時,x(t)≥m1.將分為兩步來做.
1.因為R0>1,可以選擇足夠小的m3>0,ε2>0,ε3>0,ε=ε2+ε3,使得
[1]Hui Jing,Chen Lansun.Extinction and permanence of a predator-prey system with impulsive effect[J]. Mathemarlca Applicata,2005,18(1):1-7.
[2]張樹文,張耘嘉,譚德君.具脈沖效應和Beddington-DeAnglis功能反應時滯周期捕食系統[J].純粹數學與應用數學,2010,4:534-540.
[3]Zhang Shuwen,Tan Dejun.Permanence in a food chain system with impulsive perturbations[J].Chaos, Solitions and Fractals,2009,40:392-406.
[4]Xu Rui,Chen Lansun.Persistence and global stability for three-species ratio-dependent predator-prey system with time delays[J].Journal System Science&Mathematics Science,2001,21(2):204-212.
[5]許斌,陳狄嵐,孫繼濤.一類具有功能反應的生物捕食系統的脈沖控制[J].生物數學學報,2004,19(1):77-81.
[6]Liu Xianning,Chen Lansun.Complex dynamics of Holling type Lotka-volterra predator-prey system with impulsive pertubations on the predator[J].Chaos,Solitons and Fractals.2003,16:311-320.
Permanence in a periodic predator-prey system with linear impulsive perturbations
Chen Dan1,Xu Zongwen1,Zhang Shuwen2
(1.Information Management Department,Minnan University of Science and Technology, Shishi362700,China; 2.College of Science,Jimei University,Xiamen361021,China)
In this paper,a non-autonomous periodic predator-prey system with Holling IV functional response and impulsive perturbation is considered.The threshold value R0which determines the dynamical behavior of the model is provided.Furthermore,we prove that the prey-eradication periodic solution is locally asymptotically stable provided R0<1,the prey-eradication periodic solution is unstable and the pest will be uniform persistent when R0>1.
predator-prey system,impulsive perturbation,Holling IV functional response,permanence, locally asymptotically stable
O175.12
A
1008-5513(2013)02-0208-06
10.3969/j.issn.1008-5513.2013.02.015
2012-09-12.
福建省教育廳科技項目(JB12252).
陳丹(1986-),碩士生,研究方向:生物數學.
2010 MSC:34D05