朱 琳, 劉青娟, 徐 寧, 要紅葉, 邢玲玲, 李 凡, 劉淑霞, 郝 軍△
(1河北醫(yī)科大學(xué)第三醫(yī)院肌電圖室,河北 石家莊 050051; 2河北醫(yī)科大學(xué)病理學(xué)教研室,河北 石家莊 050017)
磷酸化FOXO1對高糖刺激的人腎小管上皮細(xì)胞脂質(zhì)沉積的影響*
朱 琳1, 劉青娟2, 徐 寧2, 要紅葉2, 邢玲玲2, 李 凡2, 劉淑霞2, 郝 軍2△
(1河北醫(yī)科大學(xué)第三醫(yī)院肌電圖室,河北 石家莊 050051;2河北醫(yī)科大學(xué)病理學(xué)教研室,河北 石家莊 050017)
目的研究叉頭框蛋白O1(FOXO1)表達(dá)和磷酸化過程對高糖刺激下人腎小管上皮細(xì)胞脂質(zhì)沉積的影響。方法體外培養(yǎng)人腎小管上皮細(xì)胞株HKC,給予高糖刺激后免疫熒光及Western blotting檢測總FOXO1、磷酸化FOXO1和固醇調(diào)節(jié)元件結(jié)合蛋白1(SREBP1)的表達(dá),油紅O染色測定細(xì)胞內(nèi)脂質(zhì)沉積;構(gòu)建野生型和磷酸化位點(diǎn)突變型FOXO1質(zhì)粒,轉(zhuǎn)染入HKC細(xì)胞后給予高糖刺激,采用免疫熒光、Western blotting和油紅O染色確定FOXO1磷酸化位點(diǎn)突變對腎小管上皮細(xì)胞脂質(zhì)代謝的影響。結(jié)果高糖刺激HKC細(xì)胞48 h后,總FOXO1在正常糖組和高糖組的表達(dá)未見差異,而磷酸化FOXO1及SREBP-1表達(dá)明顯上調(diào),細(xì)胞內(nèi)脂滴顯著增加。將構(gòu)建的野生型FOXO1質(zhì)粒轉(zhuǎn)染人細(xì)胞后,上調(diào)了總FOXO1和磷酸化FOXO1的表達(dá),增加了SREBP-1表達(dá)和細(xì)胞內(nèi)脂滴含量;而磷酸化位點(diǎn)突變的FOXO1質(zhì)粒避免了高糖誘導(dǎo)引起的SREBP-1上調(diào)和細(xì)胞內(nèi)脂質(zhì)沉積。結(jié)論磷酸化FOXO1參與了高糖誘導(dǎo)的腎小管上皮細(xì)胞SREBP-1上調(diào)和細(xì)胞內(nèi)脂質(zhì)聚集;磷酸化位點(diǎn)的突變可避免高糖引起的腎小管上皮細(xì)胞SREBP-1上調(diào)和脂質(zhì)沉積。
糖尿病腎病; 高糖; HKC細(xì)胞; FOXO1蛋白; 脂質(zhì)沉積
細(xì)胞內(nèi)脂質(zhì)代謝異??捎绊懠?xì)胞的生長、腫瘤形成、凋亡、應(yīng)激和能量代謝等[1]。糖尿病模型動物及病人腎臟均可見到脂質(zhì)沉積,與腎小球系膜細(xì)胞肥大、腎小管上皮細(xì)胞轉(zhuǎn)分化密切相關(guān)。而有關(guān)引起腎臟脂質(zhì)沉積的機(jī)制研究也證實(shí)多種因素參與了細(xì)胞內(nèi)的脂滴形成,包括有血脂、胰島素、血糖和糖基化終末產(chǎn)物等[2]。其中,血糖升高的影響最明顯,體外細(xì)胞實(shí)驗(yàn)揭示在高糖刺激下,腎臟固有系膜細(xì)胞和腎小管上皮細(xì)胞均可出現(xiàn)脂肪酸合成增加,相關(guān)蛋白固醇調(diào)節(jié)元件結(jié)合蛋白1(sterol-regulatory element-binding protein 1, SREBP-1)、過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor, PPAR)、脂肪酸合成酶(fatty acid synthase, FASN)和乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)上調(diào),細(xì)胞內(nèi)可見到清楚的微小脂滴[3]。然而,確切的機(jī)制還有待深入研究。
磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B, PI3K/Akt)通路被證實(shí)在高糖誘導(dǎo)的細(xì)胞生長代謝中發(fā)揮作用,激活的Akt可上調(diào)增殖相關(guān)基因,抑制凋亡基因表達(dá)[4]。有學(xué)者報道,高糖通過PI3K/Akt通路的激活影響SREBP-1的轉(zhuǎn)錄和翻譯,最終通過上調(diào)FASN和ACC,增加細(xì)胞內(nèi)脂肪酸的合成從而出現(xiàn)脂滴沉積[5]。最近也有研究揭示,肝臟PI3K/Akt通路的激活參與了細(xì)胞的脂質(zhì)代謝[6]。然而,具體的機(jī)制還未完全闡明。作為磷酸化Akt的下游靶向基因之一,F(xiàn)OXO1參與了細(xì)胞的生長、凋亡、應(yīng)激、糖脂代謝等功能[7]。目前,在高糖誘導(dǎo)的腎小管上皮細(xì)胞脂肪酸合成中,F(xiàn)OXO1是否參與及確切的機(jī)制研究還未見報道。因此,本研究在高糖刺激的人腎小管上皮細(xì)胞株HKC中檢測了磷酸化FOXO1及SREBP-1的表達(dá)和細(xì)胞內(nèi)甘油三酯含量。構(gòu)建FOXO1野生型質(zhì)粒及突變型質(zhì)粒,轉(zhuǎn)染入HKC細(xì)胞后給予高糖刺激,檢測磷酸化位點(diǎn)突變對SREBP-1表達(dá)及細(xì)胞內(nèi)脂質(zhì)含量的影響。為糖尿病腎臟脂質(zhì)代謝異常的機(jī)制研究提供新的方向和研究靶點(diǎn)。
1材料
1.1主要試劑 磷酸化FOXO1(Ser256)抗體購自Cell Signal。總FOXO1抗體購自Epitomics。SREBP-1抗體購自Santa Cruz。胎牛血清及DMEM培養(yǎng)基購自Gibco。油紅O染料購自Sigma。FITC標(biāo)記的熒光Ⅱ抗和DAB購自北京中杉金橋試劑公司。脂質(zhì)體2000購自Invitrogen。野生型及磷酸化位點(diǎn)256突變型FOXO1質(zhì)粒為本室構(gòu)建保存,256突變型FOXO1質(zhì)粒是將256位的絲氨酸(TCC)突變?yōu)楸彼?GCC),成為非磷酸化突變株。
1.2細(xì)胞 應(yīng)用DMEM培養(yǎng)基培養(yǎng)(含10%血清、1%青-鏈霉素)人腎小管上皮細(xì)胞株HKC。檢測高糖對FOXO1表達(dá)及磷酸化影響時,將細(xì)胞隨機(jī)分為正常糖組(5.5 mmol/L)和高糖組(30 mmol/L),培養(yǎng)48 h后做相關(guān)檢測;進(jìn)行FOXO1相關(guān)質(zhì)粒轉(zhuǎn)染時,細(xì)胞分為正常糖組、高糖組和高糖+pcDNA3.1空質(zhì)粒組、高糖+野生型FOXO1質(zhì)粒組、高糖+磷酸化位點(diǎn)突變型FOXO1質(zhì)粒組。
2方法
2.1細(xì)胞轉(zhuǎn)染 細(xì)胞培養(yǎng)于6孔板中,待生長至約90%時,將4 μg質(zhì)粒和10 μL脂質(zhì)體2000分別用 250 μL無血清 DMEM培養(yǎng)基稀釋后混合,20 min后將混合物加入6孔板內(nèi),5 h后換含 10%胎牛血清的高糖DMEM培養(yǎng)液,培養(yǎng)48 h后進(jìn)行蛋白提取和相關(guān)檢測。
2.2免疫熒光 細(xì)胞終止培養(yǎng)后75%乙醇固定30 min,PBS洗滌5 min 3次,山羊血清室溫封閉30 min,滴加兔抗總FOXO1抗體及抗磷酸化FOXO1抗體,4 ℃孵育過夜, PBS 洗滌5 min 3次,F(xiàn)ITC標(biāo)記羊抗兔Ⅱ抗37 ℃孵育60 min, PBS 洗滌3次后熒光顯微鏡下觀察拍照。
2.3Western blotting 將細(xì)胞用冰冷的生理鹽水洗滌2次,加入冰冷的裂解液冰上靜置30 min,4 ℃、 14 000 r/min離心 20 min,吸取上清,采用BCA法測定上清液蛋白濃度。每孔加入 40 μg蛋白樣品進(jìn)行PAGE-SDS凝膠電泳,Bio-Rad干轉(zhuǎn)儀10 min將蛋白轉(zhuǎn)至PVDF膜。5% BSA 37 ℃ 封閉1 h,Ⅰ抗4 ℃過夜。辣根過氧化物酶標(biāo)記的Ⅱ抗室溫孵育 2 h,TBST洗膜3次后滴加 ECL發(fā)光試劑,Odyssey圖像采集系統(tǒng)掃描成像。LabWorks 4.5軟件對條帶進(jìn)行半定量分析,以目的條帶和β-actin條帶灰度比值作為最終結(jié)果。
2.4油紅O染色 采用 6孔板進(jìn)行細(xì)胞爬片,終止培養(yǎng)后4%鈣-甲醛中固定 30 min,PBS沖洗后油紅 O染色 15 min,異丙醇分化數(shù)秒,蘇木精復(fù)染 5 min,沖凈晾干后甘油明膠封片。在光鏡下對染色后的細(xì)胞進(jìn)行拍照,應(yīng)用Image-Pro Plus圖像分析軟件測定細(xì)胞中脂肪顆粒的積分吸光度(integrated absorbance,IA)。
3統(tǒng)計學(xué)處理
數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析,兩兩比較采用SNK檢驗(yàn),以P<0.05為差異有統(tǒng)計學(xué)意義。
1高糖上調(diào)人腎小管上皮細(xì)胞磷酸化FOXO1的表達(dá)
Western blotting結(jié)果顯示,高糖刺激HKC細(xì)胞48 h后,磷酸化FOXO1明顯升高,是正常糖組的1.77倍,差異有統(tǒng)計學(xué)意義(P<0.05)。而總FOXO1在正常糖組和高糖組細(xì)胞的表達(dá)未見差異,見圖1。免疫熒光實(shí)驗(yàn)結(jié)果和Western blotting結(jié)果相似,總FOXO1和磷酸化FOXO1均表達(dá)于胞核和胞漿,正常糖組和高糖組細(xì)胞總FOXO1的熒光表達(dá)未見差異,磷酸化FOXO1在高糖組的表達(dá)強(qiáng)于正常糖組,差異有統(tǒng)計學(xué)意義,見圖2。
Figure 1. The expression of total FOXO1 and phospho-FOXO1 in HKC cells treated with normal glucose or high glucose detected by Western blotting.Mean±SD.n=6.**P<0.01vsnormal glucose.
圖1Westernbloting檢測高糖組和正常糖組HKC細(xì)胞總FOXO1和磷酸化FOXO1的表達(dá)
2高糖上調(diào)SREBP-1表達(dá)及細(xì)胞內(nèi)甘油三酯含量
給予HKC細(xì)胞高糖刺激48 h后,脂質(zhì)代謝轉(zhuǎn)錄因子SREBP-1的前體片段和成熟片段均被顯著提高,大約為正常對照組細(xì)胞的1.65倍和1.70倍,見圖3。油紅O染色揭示高糖刺激的HKC細(xì)胞內(nèi)紅染脂滴顆粒清晰可見,而正常培養(yǎng)基培養(yǎng)的細(xì)胞胞漿內(nèi)未見明顯紅染顆粒,見圖4。正常糖組細(xì)胞脂肪顆粒的IA值為504 256.67±106 036.98,而高糖組細(xì)胞脂肪顆粒的IA值為1 222 293.83±127 523.74,差異有統(tǒng)計學(xué)意義(P<0.01)。
Figure 2. Immunofluorescence detection of total FOXO1 (C,D) and phospho-FOXO1 (A,B) in HKC cells with normal glucose(A,C) or high glucose (B,D) treatment (×200).
圖2免疫熒光檢測正常糖和高糖處理對HKC細(xì)胞總FOXO1和磷酸化FOXO1表達(dá)的影響
Figure 3. The expression of precursor and mature segments of SREBP-1 in normal glucose or high glucose-treated HKC cells.Mean±SD.n=6.**P<0.01vsnormal glucose.
圖3正常糖組和高糖組HKC細(xì)胞SREBP-1前體片段和成熟片段的表達(dá)
Figure 4. Oil red O staining of HKC cells treated with normal glucose or high glucose (×400).A: normal glucose group; B: high glucose group
圖4油紅O染色檢測正常糖組和高糖組HKC細(xì)胞的脂質(zhì)沉積
3野生型FOXO1質(zhì)粒及突變型FOXO1質(zhì)粒對高糖刺激人腎小管上皮細(xì)胞SREBP-1表達(dá)和脂質(zhì)代謝的影響
Western blotting結(jié)果顯示,轉(zhuǎn)染野生型FOXO1質(zhì)粒的HKC細(xì)胞,相比于高糖刺激的未轉(zhuǎn)染細(xì)胞,磷酸化FOXO1明顯升高。相似地,SREBP-1前體片段和成熟片段被分別上調(diào)了1.68倍和1.81倍,細(xì)胞內(nèi)脂滴也明顯增多。轉(zhuǎn)染突變型FOXO1質(zhì)粒的HKC細(xì)胞再給予高糖刺激后,與高糖刺激的未轉(zhuǎn)染細(xì)胞相比,磷酸化FOXO1下降,SREBP-1前體和成熟片段及細(xì)胞內(nèi)脂滴也明顯減少,提示磷酸化位點(diǎn)突變避免了高糖刺激腎小管上皮細(xì)胞引起的SREBP-1上調(diào)和脂質(zhì)沉積,見圖5、6和表1。
Figure 5. The expression of phospho-FOXO1, FOXO1, and precursor and mature segments of SREBP-1 in HKC cells transfected with wild-typeFOXO1 vector or mutantFOXO1 vector.1: high glucose plus pcDNA3.1 group; 2: high glucose plus wild-typeFOXO1 vector group; 3: high glucose plus mutantFOXO1 vector group.Mean±SD.n=6.**P<0.01vshigh glucose plus pcDNA3.1 group;##P<0.01vshigh glucose plus wild-typeFOXO1 vector group.
圖5野生型和突變型FOXO1質(zhì)粒對HKC細(xì)胞總FOXO1、磷酸化FOXO1和SREBP-1表達(dá)的影響
Figure 6. Oil red O staining of HKC cells transfected with wild-typeFOXO1 vector or mutantFOXO1 vector (×400).A: high glucose group; B: high glucose plus pcDNA3.1 group;C: high glucose plus wild-typeFOXO1 vector group; D: high glucose plus mutantFOXO1 vector group.
圖6油紅O染色檢測野生型和突變型FOXO1質(zhì)粒對HKC細(xì)胞脂質(zhì)沉積的影響
表1腎小管上皮細(xì)胞內(nèi)脂滴的積分吸光度分析
Table 1. TheIAvalues of lipid droplets in HKC cells(Mean±SD.n=6)
GroupIAHighglucose1271828.17±113608.66HighglucosepluspcDNA3.11280979.33±139213.27Highglucosepluswild-typeFOXO1vector2086364.67±141637.54**HighglucoseplusmutantFOXO1vector993489.83±115984.05##
**P<0.01vshigh glucose plus pcDNA3.1 group;##P<0.01vshigh glucose plus wild-typeFOXO1 vector group.
FOXO1屬于FOX家族,在人類組織有4個同源蛋白,分別是FOXO1、FOXO2、FOXO3a和FOXO4。其中FOXO1 共有 655 個氨基酸,包括核定位信號肽、核輸出序列、SH3的結(jié)合域、forkhead 區(qū)域 、富含脯氨酸和酸性的絲/蘇氨酸轉(zhuǎn)錄激活域和富含丙氨酸的轉(zhuǎn)錄抑制域。參與調(diào)控細(xì)胞周期阻斷、凋亡、DNA損傷修復(fù)和糖脂代謝調(diào)節(jié)等[8]。
有研究報道在糖尿病腎組織中磷酸化FOXO1的表達(dá)被升高[9],然而哪些因素是引起FOXO1升高的原因還未完全闡明。Armoni等[10]提出胰島素可調(diào)控FOXO1的表達(dá)和磷酸化,我們在體外培養(yǎng)的腎小管上皮細(xì)胞檢測了高糖對FOXO1的影響,證實(shí)了高糖增加FOXO1的256位點(diǎn)的磷酸化,提示256位點(diǎn)的磷酸化可能參與了高糖引起的腎臟病變。
近年來,不斷有研究揭示FOXO1參與細(xì)胞的脂質(zhì)代謝,Liu等[11]給大鼠和小鼠的卵泡顆粒細(xì)胞轉(zhuǎn)染FOXO1突變型質(zhì)粒(FOXOA3,呈持續(xù)激活狀態(tài)),后給予卵泡刺激素作用12和24 h。Affymetrix芯片和實(shí)時定量PCR 證實(shí):和脂肪、固醇生成有關(guān)的基因 (Hmgcs1、Hmgcr、Mvk、Sqle、Lss、Cyp51、Tm7sf2、Dhcr24、Star、Cyp11a1和Cyp19),也包括轉(zhuǎn)錄調(diào)節(jié)因子Srebf1和Srebf2 在卵泡刺激素作用下明顯升高,F(xiàn)OXOA3質(zhì)粒轉(zhuǎn)染抑制了這些基因的升高。提示FOXO1在卵泡顆粒細(xì)胞脂質(zhì)和固醇生物合成中起著重要的作用,在早期生長卵泡避免了類固醇合成過度 。Matsumoto等[12]在肝臟的研究提示胰島素耐受影響糖脂代謝,F(xiàn)OXO1轉(zhuǎn)錄因子除了能調(diào)控肝臟糖原生成外,還可以調(diào)控肝臟脂質(zhì)代謝。經(jīng)腺病毒載體介導(dǎo)轉(zhuǎn)染FOXO1到小鼠肝臟可引起肝細(xì)胞脂肪變性,甘油三酯積聚、脂肪酸氧化減少。Tao等[13]在肝臟特異性敲除FOXO1、FOXO3和FOXO4的裸鼠,即LTKO鼠,發(fā)現(xiàn)給予正常飲食喂養(yǎng)后,肝臟甘油三酯含量增加。在給予高脂飲食喂養(yǎng)后,小鼠肝臟出現(xiàn)更嚴(yán)重的脂肪變性。進(jìn)一步的機(jī)制研究揭示LTKO鼠與正常對照小鼠相比,肝臟NAD+水平和Sirt1活性均顯著降低,其中NAD+生物合成中的限速酶尼克酰胺磷酸核糖轉(zhuǎn)移酶(nicotinamide phosphoribosyltransferase, Nampt)明顯下降。雙螢光素酶實(shí)驗(yàn)和染色體免疫沉淀研究證實(shí)Nampt是FOXO家族的靶向因子,過度表達(dá)Nampt基因可減少肝臟甘油三酯水平。這些研究結(jié)果提示FOXOs通過調(diào)控Nampt基因表達(dá)和NAD+代謝通路影響肝臟甘油三酯代謝平衡。Ido-Kitamura 等[14]研究了FOXO1在肝臟糖代謝和脂質(zhì)生成中的交互作用,發(fā)現(xiàn)肝細(xì)胞FOXO1過度表達(dá)可通過抑制O-糖基化和減少蛋白質(zhì)穩(wěn)定性,而降低脂質(zhì)合成的關(guān)鍵因子碳水化合物反應(yīng)元件結(jié)合蛋白(carbohydrate response element-binding protein, Chrebp)的活性。進(jìn)一步發(fā)現(xiàn)FOXO1可影響Chrebp與L-PK啟動子的結(jié)合,而抑制高糖或者O-GlcNAc糖基轉(zhuǎn)移酶誘導(dǎo)的L-PK啟動子活性。相反地,在肝臟敲除FOXO1,可通過減少泛素化而升高O-糖基化和Chrebp的水平。提示FOXO1可能通過對ChrebpO-糖基化的調(diào)節(jié)將肝臟糖代謝和脂肪合成聯(lián)系在一起。
我們的研究在高糖刺激的腎小管上皮細(xì)胞中發(fā)現(xiàn)FOXO1磷酸化及SREBP-1表達(dá)均被升高,提示FOXO1磷酸化很可能參與了高糖誘導(dǎo)的SREBP-1升高和細(xì)胞內(nèi)脂質(zhì)沉積。為了進(jìn)一步證實(shí)這一推測,我們構(gòu)建了FOXO1野生型和突變型質(zhì)粒,結(jié)果證實(shí)野生型FOXO1的增多在高糖刺激下使磷酸化FOXO1升高,相應(yīng)地SREBP-1及細(xì)胞內(nèi)脂滴均增多。突變了磷酸化位點(diǎn)的質(zhì)粒避免了高糖對野生型FOXO1質(zhì)粒轉(zhuǎn)染細(xì)胞SREBP-1及脂質(zhì)合成的影響。進(jìn)一步發(fā)現(xiàn),相比于高糖刺激的未轉(zhuǎn)染細(xì)胞,突變型FOXO1質(zhì)粒轉(zhuǎn)染細(xì)胞后使細(xì)胞內(nèi)脂滴含量更低,推測外源性突變型質(zhì)??赡芨蓴_了內(nèi)源性FOXO1基因的活性和脂質(zhì)代謝,這和Eldar-Finkelman等[15]的研究相似,S9A突變型GSK-3質(zhì)粒轉(zhuǎn)染293細(xì)胞引起了內(nèi)源性GSK-3活性下降了大約50%,但確切機(jī)制有待進(jìn)一步研究。以上研究數(shù)據(jù)提示FOXO1磷酸化參與了高糖對腎小管上皮細(xì)胞脂質(zhì)沉積的調(diào)控,可作為潛在的干預(yù)靶點(diǎn)為糖尿病腎小管上皮細(xì)胞脂質(zhì)沉積的防治提供新的研究思路,然而,F(xiàn)OXO1磷酸化參與高糖刺激腎小管上皮細(xì)胞脂質(zhì)沉積的具體機(jī)制還有待深入研究。
[1] 郝 軍, 王 晨, 吳海江, 等. SREBP-1和SREBP-2在Ⅰ型糖尿病大鼠腎臟中的表達(dá)[J]. 中國病理生理雜志, 2009, 25(3): 566-571.
[2] 郝 軍, 劉青娟, 鄭書深, 等. 不同濃度胰島素對人腎小管上皮細(xì)胞SREBP-1、FAS表達(dá)及脂質(zhì)形成的影響[J]. 中國病理生理雜志, 2010, 26(7): 1275-1279.
[3] Jun H, Song Z, Chen W, et al.Invivoandinvitroeffects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study[J]. Histochem Cell Biol, 2009, 131(3):327-345.
[4] Dey N, Ghosh-Choudhury N, Kasinath BS, et al. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion[J]. PLoS One, 2012, 7(8):e42316.
[5] Hao J, Liu S, Zhao S, et al. PI3K/Akt pathway mediates high glucose-induced lipogenesis and extracellular matrix accumulation in HKC cells through regulation of SREBP-1 and TGF-β1[J]. Histochem Cell Biol, 2011, 135(2):173-181.
[6] Matsuda S, Kobayashi M, Kitagishi Y. Roles for PI3K/AKT/PTEN pathway in cell signaling of nonalcoholic fatty liver disease[J]. ISRN Endocrinol, 2013, 2013:472432.
[7] Kamagate A, Dong HH. FoxO1 integrates insulin signaling to VLDL production[J]. Cell Cycle, 2008, 7(20):3162-3170.
[8] Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors[J]. Oncogene, 2008, 27(16):2263-2275.
[9] Wu L, Zhang Y, Ma X, et al. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats[J]. Mol Biol Rep, 2012, 39(9):9085-9093.
[10] Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity[J]. J Biol Chem, 2006, 281(29):19881-19891.
[11] Liu Z, Rudd MD, Hernandez-Gonzalez I, et al. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells[J]. Mol Endocrinol, 2009, 23(5):649-661.
[12] Matsumoto M, Han S, Kitamura T, et al. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism[J]. J Clin Invest, 2006, 116(9):2464-2472.
[13] Tao R, Wei D, Gao H, et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene[J]. J Biol Chem, 2011, 286(16):14681-14690.
[14] Ido-Kitamura Y, Sasaki T, Kobayashi M, et al. Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of Chrebp O-glycosylation[J]. PLoS One, 2012, 7(10):e47231.
[15] Eldar-Finkelman H, Argast GM, Foord O, et al. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells[J]. Proc Natl Acad Sci U S A, 1996, 93(19):10228-10233.
Effectofphospho-FOXO1onlipiddepositinhighglucose-stimulatedhumanrenaltubularcells
ZHU Lin1, LIU Qing-juan2, XU Ning2, YAO Hong-ye2, XING Ling-ling2, LI Fan2, LIU Shu-xia2, HAO Jun2
(1DepartmentofElectromyography,theThirdAffiliatedHospitalofHebeiMedicalUniversity,Shijiazhuang050051,China;2DepartmentofPathology,HebeiMedicalUniversity,Shijiazhuang050017,China.E-mail:haojun2004@hotmail.com)
AIM: To study the effect of forkhead box O1 (FOXO1) expression and phosphorylation on lipid accumulation in high glucose-stimulated human renal tubular cell line HKC.METHODSHKC cells were stimulated with high glucose. The total FOXO1, phospho-FOXO1 and sterol-regulatory element-binding protein 1 (SREBP-1) were detected by the methods of immunofluorescence and Western blotting. The cellular lipid deposit was measured by oil red O staining. Moreover, the wild-typeFOXO1 vector or mutantFOXO1 vector was transfected into HKC cells followed by the treatment with high glucose. Immunofluorescence, Western blotting and oil red O staining were used to determine the effect of the phosphorylation site mutation on the lipid metabolism in renal tubular cells.RESULTSNo difference in total FOXO1 expression between normal glucose group and high glucose group was observed 48 h after HKC cells were stimulated with high glucose. However, phospho-FOXO1 was significantly increased in high glucose-treated HKC cells. Subsequently, SREBP-1 and cellular lipid deposit were up-regulated. The wild-typeFOXO1 vector increased total FOXO1, phospho-FOXO1, SREBP-1 and cellular triglyceride in high glucose-treated HKC cells. However, mutantFOXO1 vector at the phosphorylation site attenuated the effect of high glucose on SREBP-1 and cellular lipid deposit.CONCLUSIONThe phosphorylation of FOXO1 is involved in high glucose-induced up-regulation of SREBP-1 and cellular lipid accumulation in renal tubular cells. In addition, the mutation at the phosphorylation site prevents high glucose-induced enhancement of SREBP-1 and lipid deposit.
Diabetic nephropathies; High glucose; HKC cells; FOXO1 protein; Lipid accumulation
R692.6
A
10.3969/j.issn.1000- 4718.2013.11.015
1000- 4718(2013)11- 2001- 05
2013- 03- 29
2013- 09- 17
國家自然科學(xué)基金資助項目(No.81100517);河北省自然科學(xué)基金資助項目(No.H2012206008)
△通訊作者Tel: 0311-86265734; E-mail: haojun2004@hotmail.com