• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      復(fù)域差分和差分方程的研究

      2013-10-28 03:54:32陳宗煊黃志波
      關(guān)鍵詞:亞純對(duì)數(shù)零點(diǎn)

      陳宗煊, 黃志波

      (華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州 510631)

      復(fù)域差分和差分方程的研究

      陳宗煊*, 黃志波

      (華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,廣東廣州 510631)

      介紹了近十年來復(fù)域差分、q-差分、差分方程及q-差分方程的主要研究成果,其中包括亞純函數(shù)對(duì)數(shù)導(dǎo)數(shù)引理的差分模擬;Clunie引理和Mohon′ko引理的差分模擬; 慢增長(zhǎng)亞純函數(shù)的差分、均差分的零點(diǎn)和不動(dòng)點(diǎn)的性質(zhì); 差分多項(xiàng)式的值分布性質(zhì);差分Riccati方程與差分Painlevé方程亞純解的性質(zhì);復(fù)域q-差分及q-差分方程的解析性質(zhì).

      復(fù)域差分; 差分方程; 復(fù)域q-差分;q-差分方程; 亞純函數(shù)值分布

      1925年,NEVANLINNA[1]發(fā)表了關(guān)于亞純函數(shù)理論的論文,后來發(fā)展為亞純函數(shù)Nevanlinna理論.隨后, 亞純函數(shù)Nevanlinna理論被運(yùn)用到線性和非線性微分方程亞純解的值分布、唯一性和存在性等問題的討論, 獲得豐富的成果[2-8].

      然而,利用亞純函數(shù)Nevanlinna理論,對(duì)差分方程的研究可以追溯到二十世紀(jì)初期[9-10].由于缺乏有力的研究工具,復(fù)域差分方程理論的發(fā)展極其緩慢.雖然在20世紀(jì)七、八十年代,BANK和KAUFMAN[11], SHIMOMURA[12]和YANAGIHARA[13]獲得一些關(guān)于差分方程亞純解存在性的初始結(jié)果. 特別地,BANK和KAUFMAN[11]證明了, 對(duì)任意關(guān)于z的有理函數(shù)R(z),差分方程

      f(z+1)-f(z)=R(z)

      (1)

      總存在滿足條件T(r,f)=O(r)的亞純解f(z). YANAGIHARA[13]證明了, 對(duì)任意關(guān)于f(z)的有理函數(shù)R(f(z)),差分方程

      f(z+1)=R(f(z))

      (2)

      有非平凡的亞純解.

      2000年, ABLOWITZ等[14]利用亞純函數(shù)Nevanlinna 理論研究二階非線性差分方程的可積性問題, 標(biāo)志著亞純函數(shù)Nevanlinna 理論作用到復(fù)域差分方程研究的真正實(shí)現(xiàn). 隨后,經(jīng)過許多復(fù)分析和數(shù)學(xué)物理領(lǐng)域的專家和學(xué)者近十幾年的努力, 亞純函數(shù)Nevanlinna 理論的差分模擬的研究取得重大突破,從而為復(fù)域差分方程的研究提供了有力的理論工具. 由此,復(fù)域差分、q-差分、復(fù)域差分方程及q-差分方程的研究,以及與之對(duì)應(yīng)的唯一性理論的差分模擬的研究,逐漸成為熱門研究課題.

      近十年來,亞純函數(shù)Nevanlinna理論為復(fù)域差分、q-差分、復(fù)域差分方程及q-差分方程的研究和發(fā)展提供了一個(gè)有力的工具,主要體現(xiàn)在亞純函數(shù)的對(duì)數(shù)導(dǎo)數(shù)引理的差分模擬和Clunie-Mohon′ko引理的差分模擬. 下面將介紹其差分形式和q-差分形式.

      有限級(jí)亞純函數(shù)的對(duì)數(shù)導(dǎo)數(shù)引理的差分模擬, 是由CHIANG和FENG[15]、HALBURD和KORHONEN[16-17]分別建立的. 這里, 我們給出它的最終形式.

      對(duì)所有的r成立,至多除去一個(gè)對(duì)數(shù)測(cè)度為有限的集合.

      對(duì)于有限級(jí)亞純函數(shù)f(z)的差分算子, HALBURD和KORHONEN[17]得到如下的對(duì)數(shù)導(dǎo)數(shù)引理.

      對(duì)所有的r成立, 至多除去一個(gè)對(duì)數(shù)測(cè)度為有限的集合.

      如果f(z)為無窮級(jí)的亞純函數(shù), HALBURD等[18]和KORHONEN[19]獲得對(duì)數(shù)導(dǎo)數(shù)引理的差分模擬的更一般的形式.

      對(duì)所有的r成立,至多除去一個(gè)集合E滿足

      如果f(z)的超級(jí)σ2(f)<1和ε>0,那么

      對(duì)所有的r成立, 至多除去一個(gè)對(duì)數(shù)測(cè)度為有限的集合.

      定理4[19]設(shè)f(z)為非常數(shù)亞純函數(shù),ω(z)=czn+pn-1zn-1+…+p0和φ(z)=czn+qn-1zn-1+…+q0是2個(gè)非常數(shù)多項(xiàng)式. 如果

      那么

      對(duì)所有的r成立,至多除去一個(gè)對(duì)數(shù)測(cè)度為有限的集合.

      Clunie引理和Mohon′ko引理在微分多項(xiàng)式的值分布和微分方程亞純解的增長(zhǎng)級(jí)估計(jì)方面具有重要的作用.Clunie 引理的差分模擬最初形式可以參考文獻(xiàn)[16]的定理3.1和文獻(xiàn)[20]的定理2.3,對(duì)于更進(jìn)一步的結(jié)果, 可以參考文獻(xiàn)[21]-[23]. 下面給出其最初結(jié)論.

      定理5 設(shè)f(z)是增長(zhǎng)級(jí)為σ(<∞)的亞純函數(shù),且滿足方程

      U(z,f)P(z,f)=Q(z,f),

      其中U(z,f),P(z,f)和Q(z,f)是差分多項(xiàng)式滿足degfQ(z,f)≤degfU(z,f)=n. 更進(jìn)一步地,U(z,f)僅含一項(xiàng)次數(shù)最大的項(xiàng). 那么,對(duì)任意ε>0,

      m(P(z,f))=O(rσ-1+ε)+S(r,f)

      對(duì)所有的r成立, 至多除去一個(gè)對(duì)數(shù)測(cè)度為有限的集合.

      下面給出Mohon′ko引理的差分模擬.

      定理6[16,20]設(shè)f(z)是有限級(jí)亞純函數(shù),且滿足方程P(z,f)=0,其中P(z,f)是差分多項(xiàng)式.對(duì)給定的小函數(shù)a(z),如果P(z,a(z))?0, 那么

      下面將給出對(duì)數(shù)導(dǎo)數(shù)引理、Clunie引理和Mohon′ko引理的q-差分模擬.

      在一對(duì)數(shù)密度為1的集合上成立.

      定理8[24]設(shè)f(z)是非常數(shù)零級(jí)亞純函數(shù)且滿足fn(z)P(z,f)=Q(z,f),其中P(z,f)和Q(z,f)是關(guān)于f(z)的q-差分多項(xiàng)式且degfQ(z,f)≤n,那么

      m(r,P(z,f))=o(T(r,f))

      在一對(duì)數(shù)密度為1的集合上成立.

      定理9[24]設(shè)f(z)是非常數(shù)零級(jí)亞純函數(shù)且滿足P(z,f)=0,其中P(z,f)是關(guān)于f(z)的q-差分多項(xiàng)式.對(duì)給定的小函數(shù)a(z),如果P(z,a(z))?0, 那么

      在一對(duì)數(shù)密度為1的集合上成立.

      對(duì)于亞純函數(shù)f(z),其位移f(z+c)和q-位移f(qz)的特征函數(shù)等的估計(jì)[15,25]、Nevanlinna第二基本定理[17,24]、Wiman-Valiron方法的差分模擬[26]等,這里不再闡述. 基于上述理論的建立,復(fù)域差分、q-差分、差分方程及q-差分方程和唯一性理論的差分模擬取得豐富的研究成果.

      1 復(fù)域差分多項(xiàng)式

      鑒于對(duì)數(shù)導(dǎo)數(shù)引理和Clunie-Mohon′ko引理等差分模擬的建立,對(duì)復(fù)域差分多項(xiàng)式的解析性質(zhì)的研究,主要體現(xiàn)在差分多項(xiàng)式的值分布和唯一性兩方面.

      1.1復(fù)域差分多項(xiàng)式的值分布

      具有無窮多個(gè)零點(diǎn).

      同時(shí)提出了如下猜想:

      猜想1[27]假設(shè)f(z)是超越整函數(shù)且滿足σ(f)<1,那么G(z)有無窮多個(gè)零點(diǎn).

      若所考慮的函數(shù)f(z)為亞純函數(shù),BERGWEILER和LANGLEY還證明了:

      隨后,LANGLEY[28]、CHEN和SHON[29]推廣了上述結(jié)果,并給出很多新穎的證明方法.特別地,CHEN和SHON[29]首次研究了具有慢增長(zhǎng)性級(jí)的亞純函數(shù)的差分和均差分的不動(dòng)點(diǎn)問題, 從而部分地證明了上述猜想.

      具有無窮多個(gè)零點(diǎn)和無窮多個(gè)不動(dòng)點(diǎn).

      (i)至多有有限個(gè)極點(diǎn)zj,zk滿足zj-zk=c;

      那么

      具有無窮多個(gè)零點(diǎn)和無窮多個(gè)不動(dòng)點(diǎn).

      對(duì)于差分多項(xiàng)式的值分布的研究, 要?dú)w結(jié)于對(duì)HAYMAN[30]所探究的微分多項(xiàng)式值分布的差分模擬[31-33]. 隨后, 亞純函數(shù)的差分多項(xiàng)式的值分布獲得一系列有趣的結(jié)果[23,33-42]. 下面介紹HAYMAN關(guān)于微分多項(xiàng)式的幾個(gè)經(jīng)典結(jié)果的差分模擬.

      例1[32]設(shè)f(z)=ez+1,則

      H(z)=f(z)f(z+iπ)-1=(1+ez)(1-ez)-1=-e2z.

      這個(gè)例子說明,定理14和定理15中的條件n≥2不能省略. 因此,CHEN等進(jìn)一步獲得如下結(jié)果.

      1.2復(fù)域差分多項(xiàng)式的唯一性

      設(shè)f(z)和g(z)為2個(gè)非常數(shù)的亞純函數(shù),a為任意復(fù)數(shù). 如果f(z)-a和g(z)-a具有相同的零點(diǎn)(計(jì)算重?cái)?shù)), 則稱f(z)和g(z)具有CM分擔(dān)a. 如果f(z)-a和g(z)-a具有相同的零點(diǎn)(不計(jì)算重?cái)?shù)),則稱f(z)和g(z)具有IM分擔(dān)a. 亞純函數(shù)唯一性理論的典型結(jié)果是Nevanlinna五值定理和四值定理[8]. 亞純函數(shù)唯一性理論的已有文獻(xiàn)指出,對(duì)于任意2個(gè)亞純函數(shù), 如果其分擔(dān)值的個(gè)數(shù)減少, 需要增加額外的假設(shè).基于這一事實(shí),HEITTOKANGAS等[43-44]首先研究了亞純函數(shù)f(z)和它的位移算子f(z+c)的唯一性,后來進(jìn)一步提升已有的結(jié)果, 得到

      近幾年來, 很多學(xué)者在這一方面做出很多有意義的結(jié)果[42,45-54].

      關(guān)于亞純函數(shù)唯一性理論的差分模擬, Brück猜想[55]的差分模擬具有重要的地位. 下面介紹幾個(gè)經(jīng)典的結(jié)果,更多的結(jié)果可參考文獻(xiàn)[33]、[44]、[48]-[49]、[56].

      其中A為一非零常數(shù).

      2 復(fù)域差分方程

      復(fù)域微分方程的復(fù)振蕩理論在過去30多年發(fā)展迅速, 獲得一系列的成果[2,5-6].這些成果揭示了微分方程亞純解的增長(zhǎng)級(jí)和其系數(shù)增長(zhǎng)級(jí)之間的關(guān)系,刻畫了微分方程亞純解的零點(diǎn)、 極點(diǎn)和不動(dòng)點(diǎn)等性質(zhì). 近十年來,隨著亞純函數(shù)Nevanlinna理論的差分模擬的建立,對(duì)函數(shù)差分方程亞純解性質(zhì)的研究, 也進(jìn)入一個(gè)繁榮時(shí)期.

      2.1復(fù)域差分方程

      ABLOWITZ等[14]考慮復(fù)域離散方程作為復(fù)域時(shí)滯方程,運(yùn)用亞純函數(shù)Nevanlinna理論對(duì)其研究,為復(fù)域差分方程的研究提供了有力的工具.隨后,HALBURD和KORHONEN[57]利用奇異測(cè)試的方法證明了:如果二階差分方程

      f(z+1)+f(z-1)=R(z,f)

      (3)

      存在有限級(jí)亞純解f(z),那么f(z)或者滿足差分Riccati方程

      或者可經(jīng)過一線性變換,將方程(3)轉(zhuǎn)化為一些典型的線性差分方程和差分Painlevé方程.

      2.1.1 復(fù)域差分方程亞純解的存在性 對(duì)復(fù)域差分方程亞純解存在性的研究,主要體現(xiàn)在有理解的存在性及其表示[58-61]、漸近解的存在性[57,61-62]和亞純解的表示[15,63-66]. 下面列出一些典型結(jié)果.

      定理21[58]設(shè)a,b,c是常數(shù)且a,b不全為零.

      (i)如果a≠0,那么差分Painlevé I方程

      (4)

      沒有有理解;

      (ii)如果a=0和b≠0,那么差分Painlevé I方程(4)有一個(gè)非零常數(shù)解f(z)=A滿足

      2A2-cA-b=0,

      其他有理解具有形式f(z)=P(z)/Q(z),其中P(z)和Q(z)是互素的多項(xiàng)式且其次數(shù)滿足degP

      定理22[59]設(shè)δ=±1,A(z)=m(z)/n(z)是不可約的有理函數(shù),其中m(z)和n(z)是多項(xiàng)式,其次數(shù)分別為degm(z)=m和degn(z)=n.

      (i)假設(shè)m≥n且m-n是偶數(shù)或零.如果差分Riccati方程

      (5)

      有一個(gè)不可約的有理解f(z)=P(z)/Q(z),其中P(z)和Q(z)是多項(xiàng)式且其系數(shù)分別為degP(z)=p和degQ(z)=q, 那么p-q=(m-n)/2;

      (ii)假設(shè)m≤n且m-n=k(≥2)是一正整數(shù).如果差分Riccati方程(5)有一個(gè)不可約的有理解f(z)=P(z)/Q(z),那么q-p=k-1或q-p=1;

      (iii)假設(shè)m>n且m-n是奇數(shù),或m

      SHIMOMURA[61]考慮差分Painlevé方程

      (6)

      (7)

      (8)

      (9)

      定理23[61]如果α≠0,那么差分方程(6)~(8)沒有有理解.

      對(duì)于一階非線性差分方程

      f(z+1)=R(f(z)),

      (10)

      其中R(f(z))是關(guān)于f(z)的常系數(shù)有理函數(shù),HALBURD和KORHONEN[62]獲得方程(10)非平凡亞純解滿足一定的漸近性質(zhì).

      (f(z)-γ)λ-z→α, Rez→-∞.

      對(duì)于差分方程亞純解的表示形式,ISHIZAKI[63]獲得差分Riccati方程亞純解的表示性質(zhì).

      定理26[63]設(shè)A(z)為一亞純函數(shù).如果差分Riccati方程

      (11)

      存在3個(gè)不同的亞純解f1(z)、f2(z)和f3(z), 那么方程(11)的任一亞純解f(z)可以表示為

      f(z)=

      (12)

      其中Q(z)是周期為1的亞純函數(shù). 反之,對(duì)于任意周期為1的亞純函數(shù), 我們定義函數(shù)f(z)具有式(12)的形式,那么f(z)是方程(11)的亞純解.

      2.1.2 復(fù)域差分方程亞純解的值分布 對(duì)于差分方程(包括:一般的差分方程、差分Painlevé方程和差分Riccati方程)亞純解的值分布,主要體現(xiàn)在差分方程亞純解的增長(zhǎng)級(jí)、零點(diǎn)收斂指數(shù)、極點(diǎn)收斂指數(shù)、不動(dòng)點(diǎn)收斂指數(shù)和Borel例外值的存在性, 詳見文獻(xiàn)[11]、[15]、[20]、[57]-[60]、[62]、[64]-[71]等, 這里不再贅述.

      2.2復(fù)域函數(shù)方程

      復(fù)域q-差分方程(函數(shù)方程)的研究可追溯到RITT[72]研究的自治Schr?der方程f(qz)=R(f(z)),其中R(f(z))是關(guān)于f(z)的常系數(shù)有理函數(shù),和VALIRON[73]研究的非自治Schr?der方程f(qz)=R(z,f(z)),其中R(z,f(z))是關(guān)于z、f(z)的有理函數(shù),它們是與復(fù)動(dòng)力系統(tǒng)緊密聯(lián)系的方程[73-76].

      2.2.1 復(fù)域q-差分方程亞純解的存在性 具有有理系數(shù)的線性q-差分方程(函數(shù)方程), 其亞純解不一定存在. 近十年來,BEIGWEILER、GUNDERSEN和HEITTOKANGAS等[77-79]在一定的系數(shù)約束下,研究了q-差分方程亞純解的存在性.下面給出一些經(jīng)典結(jié)果.

      定理27[78]設(shè)f(z)是q-差分方程

      f(qz)=A(z)+γf(z)+δf(z)2,

      (13)

      (i)在方程(13)中,如果

      那么方程(13)有2個(gè)不同的亞純解;

      (ii)在方程(13)中, 如果(1-γ)2=4,那么方程(13)只有一個(gè)亞純解.

      定理28[79]設(shè)a0(z),a1(z),…,an(z)是復(fù)常數(shù)滿足

      和Q(z)=g1(z)是一整函數(shù).那么q-差分方程

      (14)

      只有唯一的整函數(shù)解.

      定理29[77]考慮q-差分方程

      f(q2z)+a(z)f(qz)+b(z)f(z)=0,

      (15)

      (i)如果不存在整數(shù)n滿足q2n+a0qn+b0=0, 那么方程(15)沒有任何超越亞純解;

      (ii)如果b0≠0且存在整數(shù)n滿足q2n+a0qn+b0=0,那么方程(15)存在一個(gè)超越亞純解;

      (iii)如果b0=0,那么方程(15)沒有任何超越亞純解.

      對(duì)于q-差分方程亞純解的表示形式,HUANG[80]獲得q-差分Riccati方程亞純解的表示性質(zhì):

      (16)

      存在3個(gè)不同的亞純解g1(z)、g2(z)和g3(z),那么方程(16)的任一亞純解f(z)可以表示為

      g(z)=

      (17)

      其中φ(z)是亞純函數(shù)且滿足φ(qz)=φ(z).反之,對(duì)于任意亞純函數(shù)φ(z)且滿足φ(qz)=φ(z),我們定義函數(shù)f(z)具有式(17)的形式,那么f(z)是方程(16)的亞純解.

      2.2.2 復(fù)域q-差分方程亞純解的值分布 隨著亞純函數(shù)q-差分模擬的建立,q-差分方程亞純解的值分布性質(zhì)也得到廣泛探討, 詳見文獻(xiàn)[47]、[77]-[86]等, 這里不再贅述.

      3 結(jié)束語

      亞純函數(shù)Nevanlinna理論差分模擬的建立,為復(fù)域(q-)差分多項(xiàng)式和復(fù)域(q-)差分方程的發(fā)展開辟了新天地.但由于對(duì)復(fù)域差分方程的研究,沒有普適的研究方法,針對(duì)不同形式的差分方程,我們需要尋求其特有的解法,特別是差分方程亞純解的存在性方面,還有大量的工作需要去探討.

      [1] NEVANLINNA R. Zur theorie der meromorphen funktionen (German)[J].Acta math,1925,46(1-2):1-99.

      [2] GAO S A,CHEN Z X,CHEN T W. Complex oscillation theory of linear differential equations[M].Wuhan: Huazhong Univ Sci Tech Press, 1998.

      [3] GROMAK V,LAINE I,SHIMOMURA S.Painlevé differential equations in the complex plane[M].Berlin-New York:Walter de Gruyter,2002.

      [4] HAYMAN W K. Meromorphic functions[M].Oxford:Clarendon Press,1964.

      [5] HILLE E.Ordinary differential equations in the complex domain[M].Mineola, NY:Dover Publications, Inc,1997.

      [6] LAINE I. Nevanlinna theory and complex differential equations[M].Berlin:Walter de Gruyter,1993.

      [7] YANG L.Value distribution theorem and new research[M]. Beijing: Science Press, 1982.

      [8] YANG C C,YI H X. Uniqueness theory of meromorphic functions[M]. Dordrecht: Kluwer Academic Publishers Group, 2003.

      [9] BIRKHOFF G D.General theory of linear difference equations[J].Trans Amer Math Soc,1911,12(2):243-283.

      [10] CARMICHAEL R D.Linear difference equations and their anaytic solutions[J].Trans Amer Math Soc,1911,12(1):99-134.

      [11] BANK S B,KAUFMAN R P. An extension of H?lder′s theorem concerning the gamma function[J]. Funkcial Ekvac, 1976,19(1):53-63.

      [12] SHIMOMURA S. Entire solutions of a polynomial difference equation[J].J Fac Sci Uni Tokyo Sect IA Math,1981,28(2):253-266.

      [13] YANAGIHARA N. Meromorphic solutions of some difference equations[J].Funkcial Ekvac,1980,23(2):309-326.

      [14] ABLOWITZ M J,HALBURD R,HERBST B. On the extension of the Painlevé property to difference equations[J]. Nonlinearity, 2000, 13(3):889-905.

      [15] CHIANG Y M,FENG S J. On the Nevanlinna characteristic of and difference equations in the complex plane[J]. Ramanujan J,2008,16(1):105-129.

      [16] HALBURD R G,KORHONEN R J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J].J Math Anal Appl,2006,314(2):477-487.

      [17] HALBURD R G,KORHONEN R J. Nevanlinna theory for the difference operator[J]. Ann Acad Sci Fenn Math,2006,31(2):463-478.

      [18] HALBURD R G,KORHONEN R J,TOGHN K.Holomorphic curves with shift invariant hyperplane preimages[J].arXiv:0903.3236.

      [19] KORHONEN R.An extension of Picard′s theorem for meromorphic functions of small hyper order[J].J Math Anal Appl,2009,357(1):244-253.

      [20] LAINE I,YANG C C. Clunie theorems for difference and q-difference equations[J].J London Math Soc,2007,76(3):556-566.

      [21] HUANG Z B,CHEN Z X. A Clunie lemma for difference and q-difference polynomials[J].Bull Aust Math Soc,2010,81(1):23-32.

      [22] KORHONEN R. A new Clunie type theorem for difference polynomials[J].J Difference Equ Appl,2011,17(3):387-400.

      [23] ZHANG R R,CHEN Z X. Value distribution of difference polynomials of meromorphic functions[J]. Sci China:Ser A,2012, 42(11):1115-1130.

      [24] BARNETT D C,HALBURD R G,MORGAN W,et al. Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations[J].Proc Roy Soc Edinburgh:Sec A,2007,137(3):457-474.

      [25] ZHANG J L,KORHONEN R. On the Nevanlinna characteristic off(qz) and its applications[J].J Math Anal Appl,2010,369(2):537-544.

      [26] ISHIZAKI K,YANAGIIHARA N.Wiman-Valiron method for difference equations[J].Nagoya Math J,2004,175:75-102.

      [27] BERGWEILER W,LANGLEY J K.Zeros of meromorphic functions[J].Math Proc Camb Phil Soc,2007,142(1):133-147.

      [28] LANGLEY J K. Value distribution of difference of meromorphic functions[J].Rocky Mountain J Math,2011,41(1):275-291.

      [29] CHEN Z X,SHON K H. On zeros and fixed points of differences of meromorphic functions[J]. J Math Anal Appl, 2008, 344(1):373-383.

      [30] HAYMAN W K.Picard values of meromorphic functions and their derivatives[J].Ann Math,1959,70(2):9-42.

      [31] CHEN Z X,HUANG Z B,ZHENG X M. On properties of difference polynomials[J].Acta Math Sci:Ser B,2011,31(2):627-633.

      [32] LAINE I,YANG C C.Value distribution of difference polynomials[J].Proc Japan Acad:Ser A,2007,83(8):148-151.

      [33] LIU K,YANG L Z. Value distribution of their difference operator[J].Arch Math,2009,92(3):270-278.

      [34] CHEN Z X. On value distribution of difference polynomials of meromorphic functions[J]. Abstr Appl Anal,2011,Art.ID 239853, 9pp.

      [35] CHEN Z X,SHON K H.Properties of differences of meromorphic functions[J].Czechoslovak Math J,2011,61(1):213-224.

      [36] CHEN Z X. Value distribution of products of meromorphic functions and their differences[J]. Taiwanese J Math,2011,15(4):1411-1421.

      [37] CHEN Z X,SHON K H. Estimates for the zeros of difference of meromorphic functions[J]. Sci China:Ser A, 2009, 52(11):2447-2458.

      [38] LIU K,LAINE I. A note on value distribution of difference polynomials[J]. Bull Aust Math Soc,2010,81(3):353-360.

      [39] LIU Y,YI H X. On zeros of differences of meromorphic functions[J]. Ann Polon Math,2011,100(2):167-178.

      [40] LIU Y,YI H X. On growth and zeros of difference of some meromorphic funtions[J].Ann Polon Math,2013,108(3):305-318.

      [41] ZHANG R R,CHEN Z X.Value distribution of meromorphic functions and their differences[J].Turkish J Math,2012,36(2):395-406.

      [42] ZHANG J L.Value distribution and shared set of differences of meromorphic functions[J].J Math Anal Appl,2010,367(2):401-408.

      [43] HEITTOKANGAS J,KORHONEN R,LAINE I,et al.Uniqueness of meromorphic functions sharing values with their shifts[J]. Complex Var Elliptic Equ,2011,56(1-4):81-92.

      [44] HEITTOKANGAS J,KORHONEN R,LAINE I,et al.Value sharing results for shifts of meromorphic functions, and sufficient condition for periodicity[J].J Math Anal Appl,2009,355(1):352-363.

      [45] CHEN B Q,CHEN Z X.Meromorphic function sharing two sets with itts difference operator[J]. B Malays Math Sci So,2012,35(3):765-774.

      [46] CHEN B Q,CHEN Z X,LI S.Uniqueness of difference operators of meromorphic functions[J]. J Inequal Appl,2012,48:1-9.

      [47] HUANG Z B. Value distribution and uniqueness on q-differences of meromorphic functions[J].Bull Korean Math Soc,2013,50(4):1157-1171.

      [48] LI S,GAO Z S. A note on the Brück conjecture[J]. Arch Math,2010,95(3):257-268.

      [49] LI X M,KANG C Y,YI H X. Uniqueness theorems of entire functions sharing a nonzero complex number with their difference operators[J]. Arch Math,2011,96(6):577-587.

      [50] LI X M,YI H X,KANG C Y. Notes on entire functions sharing an entire function of a small order with their difference operators[J]. Arch Math,2012,99(3):261-270.

      [51] LUO X D,LIN W C.Value sharing results for shifts of meromorphic functions[J]. J Math Anal Appl,2011,377(2):441-449.

      [52] QI X G,YANG L Z,LIU K. Uniqueness and periodicity of meromorphic functions concerning the difference operator[J].Computers and Math Appl,2010,60(6):1739-1746.

      [53] QI X G,LIU K,YANG L Z. Value sharing results of a meromorphic functionf(z) andf(qz)[J]. Bull Korean Math Soc,2011,48(6):1235-1243.

      [54] QI X G,LIU K.Uniqueness and value distribution of differences of entire funtions[J]. J Math Anal Appl,2011,379(1):180-187.

      [55] BRüCK R. On entire functions which share one value CM with their first derivate[J]. Results Math,1996,30(1-2):21-24.

      [56] CHEN Z X,YI H X. On sharing values of meromorphic functions and their differences[J].Results Math,2013,63(1-2):557-565.

      [57] HALBURD R G,KORHONEN R J. Finite-order meromorphic solutions and the discrete Painlevé equations[J].Proc Lond Math Soc,2007,94(2):443-474.

      [58] CHEN Z X,SHON K H.Value distribution of meromorphic solutions of certain difference Painlevé equations[J].J Math Anal Appl,2010,364(2):556-566.

      [59] CHEN Z X,SHON K H.Some results on difference Riccati equations[J]. Acta Math Sin,2011, 27(6):1091-1100.

      [60] CHEN Z X,HUANG Z B,ZHANG R R. On difference equations relating to gamma function[J]. Acta Math Sci:Ser B, 2011,31(4):1377-1382.

      [61] SHIMOMURA S. Rational solutions of difference Painleve equations[J]. Tokyo J Math,2012,35(1):85-95.

      [62] HALBURD R G,KORHONEN R J. Existence of finite order meromorphic solutions as a detector of integrability in difference equations[J]. Phys D,2006,218(2):191-203.

      [63] ISHIZAKI K. On difference Riccati equations and second order linear difference equations[J]. Aequationes Math,2011,81(1-2):185-198.

      [64] PANG C W,CHEN Z X. On a conjecture concernng some nonlinear difference equations[J].Bull Malays Math Sci Soc,2013,35(2):765-774.

      [65] YANG C C,LAINE I. On analogies between nonlinear difference and differential equations[J]. Proc Japan Acad:Ser A,2010,86(1):10-14.

      [66] ZHANG J,LIAO L W. On entire solutions of a certain type of nonlinear differential and difference equations[J]. Taiwanese J Math,2011,15(5):2145-2157.

      [67] CHEN Z X.Growth and zeros of meromorphic solution of some linear difference equations[J]. J Math Anal Appl, 2011,373(1):235-241.

      [68] HEITTOKANGAS J,KORHONEN R,LAINE I,et al.Complex difference equations of Malmquist type[J].Comput Methods Funct Theory,2001,1(1):27-39.

      [69] LAINE I,RIEPPO J,SILVENNOINEN H. Remarks on complex difference equations[J].Comput Methods Funct Theory,2005, 5(1):77-88.

      [70] WANG J. Growth and poles of meromorphic solutions of some difference equations[J].J Math Anal Appl,2011,379(1):367-377.

      [71] ZHENG X M,CHEN Z X,TU J. Growth of meromorphic solutions of some difference equations[J]. Appl Anal Discrete Math,2010,4(2):309-321.

      [72] RITT J F.Transcendental transcendency of certain functions of Poincaré[J].Math Ann,1926,95(1):671-682.

      [73] VALIRON G. Fonctons analytiques[M]. Paris:Univ de France, 1954.

      [74] ISHIZAKI K,YANAGIIHARA N. Borel and Julia directions of meromorphic Schr?der functions[J]. Math Proc Combridge Philos Soc,2005,139(1):139-147.

      [75] ISHIZAKI K,YANAGIIHARA N.Deficiency for meromorphic solutions of Schr?der equations[J]. Complex Var Theory Appl,2004,49(7-9):539-548.

      [76] ISHIZAKI K,YANAGIIHARA N. Singular directions of meromorphic solutions of some non-autonomous Schr?der equations[J].Adv Stu Pure Math, 2006,44:155-166.

      [77] BERGWEILER W,ISHIZAKI K,YANAGIHARA N. Meromorphic solutions of some functional equations[J]. Methods Appl Anal,1998,5(3):248-258.Erratum: Methods Appl Anal,1999, 6(4): 617-618.

      [78] GUNDERSEN G G,HEITTOKANGAS J,LAINE I,et al.Meromorphic solutions of generalized Schr?der equations[J].Aequationes Math,2002,63(1-2):110-135.

      [79] HEITTOKANGAS J,LAINE I,RIEPPO J,et al.Meromorphic solutions of some linear functional equations[J]. Aequationes Math,2000,60(1-2):148-166.

      [80] HUANG Z B. On q-difference Riccati equations and second-order linear q-difference equations[J].J Complex Anal, 2013: Art 938579, 10 pp.

      [81] BERGWEILER W,ISHIZAKI K,YANAGIHARA N.Growth of meromorphic solutions of some functional equations I[J]. Aequationes Math, 2002,63(1-2):140-151.

      [82] CHEN B Q,CHEN Z X,LI S. Properties on solutions of some q-difference equations[J]. Acta Math Sin, 2010, 26(10):1877-1886.

      [83] CHEN B Q,CHEN Z X.Meromorphic solutions of some q-difference equations[J]. Bull Korean Math,2011,48(6):1303-1314.

      [84] LIU K,QI X G. Meromorphic solutions of q-shift difference equations[J]. Ann Polon Math,2011,101(3):215-225.

      [85] ZHENG X M,CHEN Z X. Some properties of meromorphic solutions of q-difference equations[J].J Math Anal Appl,2010,361(2):472-480.

      [86] ZHENG X M,CHEN Z X. Value distribution of meromorphic solutions of some q-difference equations[J]. J Math Res Exposition, 2011,31(4):698-704.

      Keywords: complex difference; difference equations; complexq-difference;q-difference equations; value distribution of meromorphic functions

      StudyonComplexDifferencesandDifferenceEquations

      CHEN Zongxuan*, HUANG Zhibo

      (School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China)

      The researches on the complex difference, complexq-difference, difference equations andq-difference equations in recent decades are mainly introduced. These results include the difference analogue of the logarithmic derivative; the difference analogue of Clunie lemma; the difference counterpart of Mohon′ko lemma; the properties on the zeros, fixed-points on complex differences and divided difference of meromorphic functions with small order; the properties on the value distribution of difference polynomials, the properties on the meromorphic solutions of difference Riccati and Painlevé equations; the results onq-differences and meromorphic solutions ofq-difference equations.

      2013-07-04

      國(guó)家自然科學(xué)基金項(xiàng)目(11171119)

      *通訊作者:陳宗煊,教授,Email:chzx@vip.sina.com.

      1000-5463(2013)06-0026-08

      O174.5

      A

      10.6054/j.jscnun.2013.09.004

      【中文責(zé)編:莊曉瓊 英文責(zé)編:肖菁】

      猜你喜歡
      亞純對(duì)數(shù)零點(diǎn)
      含有對(duì)數(shù)非線性項(xiàng)Kirchhoff方程多解的存在性
      指數(shù)與對(duì)數(shù)
      指數(shù)與對(duì)數(shù)
      2019年高考全國(guó)卷Ⅱ文科數(shù)學(xué)第21題的五種解法
      一類Hamiltonian系統(tǒng)的Abelian積分的零點(diǎn)
      亞純函數(shù)的差分多項(xiàng)式
      亞純函數(shù)與其差分的唯一性
      對(duì)數(shù)簡(jiǎn)史
      一道高考函數(shù)零點(diǎn)題的四變式
      亞純函數(shù)差分多項(xiàng)式的值分布和唯一性
      昆山市| 仙游县| 岳阳市| 武穴市| 安平县| 松江区| 榕江县| 大渡口区| 西宁市| 敖汉旗| 宁德市| 聊城市| 子长县| 玛曲县| 凉山| 永靖县| 长武县| 大厂| 尖扎县| 昂仁县| 崇左市| 黄陵县| 师宗县| 大英县| 驻马店市| 上林县| 来凤县| 邵阳市| 安仁县| 尼木县| 汉川市| 井研县| 岳普湖县| 新平| 乳山市| 新宾| 大宁县| 南陵县| 普宁市| 乌拉特中旗| 兴义市|