薛建福, 趙 鑫, Shadrack Batsile Dikgwatlhe, 陳 阜, 張海林
(中國農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院,農(nóng)業(yè)部農(nóng)作制度重點(diǎn)開放實(shí)驗(yàn)室,北京 100193)
保護(hù)性耕作對(duì)農(nóng)田碳、氮效應(yīng)的影響研究進(jìn)展
薛建福, 趙 鑫, Shadrack Batsile Dikgwatlhe, 陳 阜, 張海林*
(中國農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院,農(nóng)業(yè)部農(nóng)作制度重點(diǎn)開放實(shí)驗(yàn)室,北京 100193)
作物產(chǎn)量的高低主要取決于土壤肥力,如何保持并提高土壤肥力是確保我國糧食安全和農(nóng)業(yè)可持續(xù)發(fā)展的重要任務(wù),也是眾多學(xué)者關(guān)注的焦點(diǎn)。土壤有機(jī)碳和氮素是評(píng)價(jià)土壤質(zhì)量的重要指標(biāo),其動(dòng)態(tài)平衡直接影響土壤肥力和作物產(chǎn)量。隨著全球氣候變化及環(huán)境污染問題的愈加突出,農(nóng)田土壤固碳及提高氮效率成為各界科學(xué)家研究的熱點(diǎn)。目前,保護(hù)性耕作已成為發(fā)展可持續(xù)農(nóng)業(yè)的重要技術(shù)之一,對(duì)土壤固碳及氮素的利用具有很大的影響。深入了解保護(hù)性耕作對(duì)土壤有機(jī)碳固持與氮素利用效率提高的影響機(jī)制,對(duì)于正確評(píng)價(jià)土壤肥力有著重要意義。但由于氣候、土壤及種植制度等條件不一致,關(guān)于保護(hù)性耕作對(duì)農(nóng)田碳、氮效應(yīng)結(jié)論不一。闡述了國際上保護(hù)性耕作對(duì)農(nóng)田系統(tǒng)土壤有機(jī)碳含量變化及其分解排放(如CO2和CH4)、氮素變化及其礦化損失(如NH3揮發(fā)、N2O排放與氮淋失)和碳氮素相互關(guān)系(如C/N層化率)影響的研究進(jìn)展,并分析了其影響因素和相關(guān)機(jī)理。盡管國內(nèi)保護(hù)性耕作的研究已進(jìn)行30 多年,但在土壤有機(jī)碳與氮素方面與國外相比依然有較大的差距。保護(hù)性耕作對(duì)土壤固碳與氮素利用的影響機(jī)制,碳素和氮素在土壤-植株-大氣系統(tǒng)中的轉(zhuǎn)移變化,及結(jié)合農(nóng)事管理等綜合評(píng)價(jià)其生態(tài)效應(yīng)的研究很少。在此基礎(chǔ)上,提出未來我國保護(hù)性耕作在土壤有機(jī)碳固定和氮素利用方面的重點(diǎn)研究方向:(1)在定位試驗(yàn)基礎(chǔ)上進(jìn)一步探討保護(hù)性耕作對(duì)土壤有機(jī)碳及氮素利用的影響機(jī)制;(2)深入研究土壤有機(jī)碳和氮素的相互關(guān)系及其對(duì)土壤肥力的影響;(3)結(jié)合環(huán)境保護(hù)與土壤可持續(xù)管理對(duì)保護(hù)性耕作農(nóng)田土壤固碳及氮素高效利用的系統(tǒng)評(píng)價(jià)研究;(4)加強(qiáng)保護(hù)性耕作對(duì)農(nóng)田碳、氮效應(yīng)的宏觀研究,合理評(píng)價(jià)保護(hù)性耕措施下對(duì)農(nóng)田碳、氮綜合效應(yīng)。
保護(hù)性耕作; 土壤肥力; 土壤質(zhì)量; 土壤有機(jī)碳; 氮利用
土壤肥力是土壤的基本屬性和本質(zhì)特征,對(duì)作物生長(zhǎng)及產(chǎn)量有重要的影響。目前,我國耕地的平均有機(jī)質(zhì)含量嚴(yán)重下降[1],成為我國農(nóng)業(yè)可持續(xù)發(fā)展的限制因素。土壤有機(jī)質(zhì)礦化分解產(chǎn)生CO2和CH4等釋放到大氣中影響全球氣候變化;而我國氮肥過量施用且利用率較低,約有52%的活性氮流入生態(tài)系統(tǒng)[2],造成嚴(yán)重的環(huán)境問題。在人類活動(dòng)的強(qiáng)烈干擾下,碳循環(huán)與氮循環(huán)間的直接或間接作用變得更加復(fù)雜[3]。保護(hù)性耕作已成為發(fā)展可持續(xù)農(nóng)業(yè)的主要技術(shù)之一[4],綜合研究此措施下農(nóng)田碳、氮效應(yīng)對(duì)于深入了解土壤肥力變化及其生態(tài)效應(yīng)具有重要意義。
保護(hù)性耕作改變了農(nóng)田地表微環(huán)境,影響土壤有機(jī)碳含量及其礦化損失[5]。保護(hù)性耕作對(duì)土壤有機(jī)碳、農(nóng)田碳排放損失的影響機(jī)制、土壤碳組分的變化及其與土壤質(zhì)量的關(guān)系是目前的研究熱點(diǎn)。
1.1 保護(hù)性耕作對(duì)農(nóng)田土壤有機(jī)碳含量的影響
一般認(rèn)為保護(hù)性耕作能夠增加土壤表層有機(jī)碳含量,但對(duì)深層土壤有機(jī)碳含量是否增加及其是否隨耕作年限的增加而持續(xù)變化結(jié)論不一致[4]。Kahlon等[6]對(duì)22 a的耕作試驗(yàn)研究得出,0—20 cm免耕土壤全碳含量較翻耕增加約30%,且隨著秸稈覆蓋量的增加而增加。Ussiri和Lal通過43a長(zhǎng)期定位試驗(yàn)研究認(rèn)為[7],免耕由于減少了對(duì)土壤的擾動(dòng)而降低了土壤有機(jī)碳的礦化率,顯著增加0—15 cm土層有機(jī)碳含量;但不同的耕作措施15—30 cm土層有機(jī)碳含量差別不大。關(guān)于較深土壤剖面有機(jī)碳含量的研究很少,且大多結(jié)果表明不同耕作間深層土壤有機(jī)碳含量差異不大[8],同時(shí)由于土壤類型、種植作物等試驗(yàn)條件不一致,導(dǎo)致分析結(jié)果的誤差較大。Blanco-Canqui和Lal等[9]研究認(rèn)為,保護(hù)性耕作能夠提高表層(0—10 cm)土壤有機(jī)碳含量,但對(duì)深層土壤碳含量的影響不大,甚至有降低的趨勢(shì)。VandenBygaart等[10]研究認(rèn)為大多取樣深度超過30 cm的試驗(yàn)中,與翻耕相比,免耕深層土壤有機(jī)碳含量較低。West和Post對(duì)全球67 個(gè)長(zhǎng)期定位耕作試驗(yàn)點(diǎn)的276 對(duì)結(jié)果進(jìn)行分析[11],其中絕大多數(shù)研究測(cè)定的土壤有機(jī)碳取樣深度較淺(小于30 cm),而種植作物的根系大多超過30 cm,且植株地下根系對(duì)土壤固碳的貢獻(xiàn)較地上秸稈更大[12],進(jìn)一步研究深層土壤有機(jī)碳對(duì)于正確評(píng)價(jià)土壤固碳非常必要。
1.2 保護(hù)性耕作對(duì)農(nóng)田碳排放的影響
傳統(tǒng)翻耕措施破壞土壤結(jié)構(gòu),增加土壤有機(jī)碳暴露而加快土壤有機(jī)碳分解[13],而保護(hù)性耕作措施減少對(duì)土壤的擾動(dòng),降低了部分農(nóng)資投入,從而直接或間接降低農(nóng)田碳排放[4]。
一般認(rèn)為保護(hù)性耕作能夠減少農(nóng)田土壤CO2排放量。Ussiri和Lal研究認(rèn)為[7],免耕由于作物殘茬覆蓋在地表,減少與土壤接觸而分解較慢,并減弱了土壤向大氣排放CO2,降低了土壤CO2排放量。Franzluebbers等[14]研究認(rèn)為,免耕能夠保持表層土壤較高的水分和有機(jī)碳含量而有利于微生物分解活動(dòng),較翻耕有等量或者更大的CO2排放量。Li等[15]在華中稻田研究認(rèn)為,當(dāng)氣溫和土壤溫度較高且沒有差異時(shí),耕作對(duì)土壤CO2排放沒有影響;但在正常氣候條件下,免耕增加土壤CO2排放,這可能與不同耕作條件下土壤微生物活性和碳素礦化等有關(guān)。田慎重等[16]在華北平原研究認(rèn)為,CO2日均排放通量為翻耕秸稈還田gt;翻耕秸稈不還田gt;免耕,土壤地表和5 cm溫度顯著影響CO2排放。耕作方式對(duì)土壤CO2排放的影響復(fù)雜[17],短期耕作與長(zhǎng)期耕作對(duì)土壤產(chǎn)生不同的效應(yīng),進(jìn)一步加強(qiáng)分析試驗(yàn)?zāi)晗迣?duì)土壤CO2排放的影響十分必要。
許多研究表明旱地生態(tài)系統(tǒng)CH4排放損失很少,甚至為弱CH4吸收匯[16,18- 19],而淹水稻田則為CH4的主要排放源。這可能由于耕作改變土壤性質(zhì)、植株特性和微生物活性,引起土壤氧化還原電勢(shì)與土壤水分發(fā)生變化而導(dǎo)致土壤CH4排放不同。Hanaki等[20]研究得出,與翻耕相比,免耕稻田土壤電子受體濃度較低而抑制CH4排放。Pandey等[21]研究認(rèn)為減少耕作可以顯著降低CH4排放量。Ahmad等[22]研究認(rèn)為,免耕土壤容重較高而降低土壤大孔隙度,從而減少CH4排放;而在施肥條件下,與Hanaki和Harada等[20,23]的研究結(jié)果相似,但由于土壤特性等條件不一致,CH4排放量降低的程度稍有不同。魏海蘋等[24]分析認(rèn)為,中國稻田單位面積CH4排放量總體為單季稻gt;雙季晚稻gt;雙季早稻,單季稻與晚稻的CH4排放無顯著差異。Li等[25]研究江西雙季稻田認(rèn)為,免耕土壤較低的可溶性有機(jī)碳含量和較高的土壤容重是CH4排放降低的原因。張海林等[26- 27]在湖南雙季稻田的研究認(rèn)為,不同耕作條件下雙季稻生長(zhǎng)季為CH4的主要排放期,而冬閑季節(jié)所占比重不到全年的1%,早稻和晚稻生長(zhǎng)季CH4排放量均以保護(hù)性耕作最低,且認(rèn)為土壤含水量變化、曬田和間歇灌溉等影響稻田CH4排放。
關(guān)于保護(hù)性耕作對(duì)碳排放的研究主要集中在農(nóng)田土壤排放,而農(nóng)田各項(xiàng)投入的碳排放損失考慮較少。國外學(xué)者認(rèn)為,在評(píng)價(jià)農(nóng)田碳排放時(shí)應(yīng)當(dāng)考慮能耗引起的CO2排放量[28- 29]。West與Marland認(rèn)為[28]農(nóng)業(yè)投入部分應(yīng)當(dāng)考慮到農(nóng)田碳效應(yīng)研究中,他們基于美國平均農(nóng)資投入數(shù)據(jù),在宏觀尺度下比較不同耕作方式下農(nóng)資投入對(duì)碳排放的貢獻(xiàn),結(jié)果表明傳統(tǒng)耕作轉(zhuǎn)換為免耕可以減少化石燃料使用而降低碳排放。Lal認(rèn)為[29],不同的耕作措施間消耗的能源有很大差異,傳統(tǒng)翻耕產(chǎn)生的碳排放約為35.3 kg/hm2,而免耕僅為5.8 kg/hm2。伍芬琳等[30]對(duì)我國華北平原的研究認(rèn)為,與翻耕相比,少免耕明顯降低了農(nóng)田碳排放量。但由于國內(nèi)相關(guān)研究大多基于國外的碳排放系數(shù),未能真實(shí)體現(xiàn)國內(nèi)相關(guān)的碳排放量,進(jìn)一步研究國內(nèi)農(nóng)田各項(xiàng)投入的相關(guān)參數(shù)對(duì)于準(zhǔn)確評(píng)價(jià)農(nóng)田碳效應(yīng)很有必要。近年來,眾多學(xué)者通過農(nóng)業(yè)碳足跡評(píng)價(jià)方法系統(tǒng)定量計(jì)算人類在一定時(shí)間和空間邊界內(nèi),從事農(nóng)業(yè)生產(chǎn)過程中的溫室氣體排放總量以及各生產(chǎn)環(huán)節(jié)的分量,這對(duì)于明確農(nóng)業(yè)生產(chǎn)系統(tǒng)是碳源還是碳匯具有重要意義[31]。
1.3 保護(hù)性耕作對(duì)土壤有機(jī)碳組分與土壤質(zhì)量關(guān)系的影響
一般認(rèn)為保護(hù)性耕作措施有利于土壤團(tuán)聚體形成,并能夠提高表層土壤大團(tuán)聚體的有機(jī)碳含量[32- 33]。Zhang等[34]對(duì)土壤團(tuán)聚體中有機(jī)碳研究表明,較傳統(tǒng)翻耕而言,壟作增加了所有粒級(jí)團(tuán)聚體中的有機(jī)碳含量,免耕則增加了微粒團(tuán)聚體中的有機(jī)碳含量。Zhao等[35]進(jìn)行26a試驗(yàn)研究認(rèn)為,與免耕、深松等保護(hù)性措施相比,翻耕土壤500—1000 μm粒級(jí)團(tuán)聚體中活性碳含量分別降低53.03%與72.72%,慢性有機(jī)碳分別增加18.77%與24.86%,惰性有機(jī)碳含量沒有顯著不同;而耕作措施對(duì)50—500 μm粒徑團(tuán)聚體中各有機(jī)碳組分的含量沒有顯著影響。Zhao等[35]利用CPMAS13C NMR技術(shù)分析不同耕作措施下土壤有機(jī)碳化學(xué)結(jié)構(gòu)認(rèn)為,免耕提高烷基碳含量,深松增加烷氧基碳的含量,而翻耕則羰基碳含量較高;因此,保護(hù)性耕作土壤有機(jī)碳化學(xué)結(jié)構(gòu)組成較翻耕復(fù)雜,土壤有機(jī)碳更加穩(wěn)定。
關(guān)于保護(hù)性耕作對(duì)氮素利用率的研究主要集中在土壤氮素含量的變化,NH3揮發(fā)、N2O排放與氮淋失等損失及其影響機(jī)制方面。
2.1 保護(hù)性耕作對(duì)土壤氮素含量的影響
一般實(shí)施保護(hù)性耕作能夠提高表層土壤的全氮含量。許多研究表明,大多干旱半干旱區(qū)種植系統(tǒng)中,相對(duì)翻耕措施,免耕可以保持甚至提高土壤全氮含量[36- 37]。Sainju認(rèn)為[38]免耕通過降低氮素侵蝕等損失而增加全氮含量。目前,對(duì)于深層土壤全氮含量是否增加的看法并不一致。López-Fando和Pardo研究認(rèn)為[39],免耕顯著提高表層0—5 cm的全氮含量,但對(duì)5—30 cm土壤全氮含量影響較小。Varvel等[40]則認(rèn)為,相比較翻耕,免耕等保護(hù)性耕作措施提高0—150 cm土壤全氮含量。對(duì)于不同的結(jié)果可能與試驗(yàn)區(qū)域條件、作物種類與種植制度等因素有關(guān),需要進(jìn)一步探討分析。另外,耕作試驗(yàn)?zāi)晗抟鄬?duì)土壤全氮含量有一定影響。Dalal等[37,41]比較22 a與40a的耕作試驗(yàn)認(rèn)為,長(zhǎng)期實(shí)施保護(hù)性耕作對(duì)0—150 cm土層全氮含量的影響較小,土壤全氮含量并不隨著耕作年限的增加而持續(xù)增加。Lou等[42]在我國東北地區(qū)進(jìn)行不同年限的多點(diǎn)耕作試驗(yàn)認(rèn)為,與翻耕相比,免耕秸稈還田措施均顯著提高0—5 cm土層全氮含量,而對(duì)5—100 cm土層影響不大。羅珠珠等[43]在我國西北對(duì)不同輪作系統(tǒng)研究認(rèn)為,免耕秸稈還田顯著提高0—10 cm土層全氮含量,對(duì)10—30 cm土層全氮含量影響不大,并認(rèn)為脲酶活性與全氮含量呈顯著正相關(guān)。與國外相比,國內(nèi)相關(guān)的試驗(yàn)設(shè)計(jì)考慮的因素相對(duì)較少,且年限較短,由于我國不同地區(qū)氣候、土壤及種植制度等差異較大,關(guān)于保護(hù)性耕作對(duì)土壤全氮的影響機(jī)制需要進(jìn)一步深入研究。
2.2 保護(hù)性耕作對(duì)農(nóng)田氮素?fù)p失的影響
目前,關(guān)于保護(hù)性耕作對(duì)農(nóng)田NH3揮發(fā)、N2O排放及氮淋失等損失的影響是此領(lǐng)域的研究熱點(diǎn),而氮素通過農(nóng)田徑流損失的研究很少。
很多研究表明保護(hù)性耕作能夠增加農(nóng)田NH3揮發(fā)。Rochette等[44]研究認(rèn)為,免耕能夠提高表層土壤脲酶活性,施入農(nóng)田的肥料更容易水解為銨態(tài)氮,同時(shí),免耕土壤表面秸稈覆蓋度增加而減少了肥料和土壤顆粒的接觸,降低了土壤顆粒對(duì)銨態(tài)氮吸附;而土壤pH升高導(dǎo)致免耕措施NH3揮發(fā)顯著增加;此外,翻耕肥料易進(jìn)入到土壤孔隙中,也導(dǎo)致土壤NH3揮發(fā)降低。Mkhabela等[45]研究認(rèn)為,相對(duì)免耕,翻耕措施能夠?qū)⑹┤朕r(nóng)田的肥料摻混到土壤而降低NH3揮發(fā)。曹湊貴等[46]研究認(rèn)為,免耕可以顯著增加稻田土壤NH3揮發(fā)。眾多結(jié)果表明,免耕增加了施入農(nóng)田有機(jī)肥[45]、尿素[47]和復(fù)合肥[48]等肥料的NH3揮發(fā)損失;但不施肥情況下,免耕與翻耕土壤NH3揮發(fā)差異不顯著[47,49]。Griggs等[50]進(jìn)行水稻旱播與推遲灌溉試驗(yàn)認(rèn)為,耕作措施對(duì)NH3揮發(fā)沒有影響,但砂粘壤土比粘土NH3揮發(fā)更快。一般農(nóng)田土壤NH3揮發(fā)的高峰主要發(fā)生在施肥后的1—3 d,但由于土壤類型、氣候條件、種植模式及施肥位置等條件不同,NH3揮發(fā)日峰值與年揮發(fā)量在不同的試驗(yàn)中結(jié)果不一致。
一般認(rèn)為保護(hù)性耕作能夠增加農(nóng)田土壤N2O排放。保護(hù)性耕作通過提高土壤表面微生物活性而改變硝化和反硝化過程,從而影響土壤N2O排放[51]。Mutegi等[52]研究認(rèn)為,在地表秸稈覆蓋條件下,翻耕N2O排放量較深松或旋耕顯著提高,而地表無覆蓋條件下不同耕作間N2O排放量差別不大。免耕土壤容重和土壤含水量較高,較低的通氣性產(chǎn)生厭氧環(huán)境導(dǎo)致土壤反硝化作用增強(qiáng)[53- 54]。Rochette[55]按作物生長(zhǎng)季土壤排水和降水將土壤劃分為通氣性良好、中等和不良3 個(gè)等級(jí)分析加拿大25 個(gè)試驗(yàn)點(diǎn)數(shù)據(jù)認(rèn)為,相比較翻耕,免耕對(duì)通氣性良好及中等的土壤N2O排放影響不大;但在通氣不良的土壤上免耕能夠增加土壤N2O排放,這可能與通氣不良的免耕土壤充水孔隙度更容易達(dá)到反硝化作用的臨界值有關(guān),同時(shí),土壤質(zhì)地與氣候條件也可能與免耕土壤N2O排放有關(guān)[55- 57]。Sheehy等[57]認(rèn)為土壤質(zhì)地對(duì)N2O排放有一定影響,在粘質(zhì)土壤免耕N2O的累計(jì)排放量高于翻耕,而在粗質(zhì)土壤則相反。Elder和Lal則認(rèn)為[58],與翻耕相比,免耕土壤容重較大、充氣孔隙度/總孔隙度之比較小,導(dǎo)致土壤通氣性差,限制土壤N2O向大氣排放,導(dǎo)致免耕土壤較低的N2O排放;同時(shí),翻耕后土壤有機(jī)物質(zhì)的暴露有利于有機(jī)氮的礦化分解,產(chǎn)生較多的硝態(tài)氮有利于反硝化作用而釋放更多的N2O[58- 59],這可能與耕作年限較短有關(guān)。Gregorich等[60]研究認(rèn)為,免耕土壤連續(xù)3a的總N2O排放量較翻耕降低,但由于年際間施肥時(shí)間、施肥位置及氣候條件等因素不同,年際間不同耕作措施土壤N2O排放情況不同。Choudhary等[61]研究認(rèn)為,免耕與翻耕土壤N2O排放差異不大,這可能由于土壤差異性和測(cè)量方法有關(guān)。Zhang等[48]研究認(rèn)為,不施肥條件下免耕與翻耕稻田N2O排放量差別不大,而施用復(fù)合肥條件下免耕較翻耕N2O排放量顯著增加,這可能與免耕+復(fù)合肥措施下土壤較大的團(tuán)聚體和較高的反硝化率有關(guān)。相比較國外,國內(nèi)的相關(guān)農(nóng)田土壤N2O排放的研究較少且對(duì)于影響因素及其機(jī)制不夠深入。
保護(hù)性耕作能夠降低滲漏水中的硝態(tài)氮含量,但增加滲漏水量而導(dǎo)致硝態(tài)氮淋失量增加。大量研究表明[62- 63],相比翻耕,免耕土壤反硝化率更大而消耗較多的硝態(tài)氮,導(dǎo)致土壤滲漏水中硝態(tài)氮含量降低。Zhang等[48]則認(rèn)為,由于免耕土壤更高的N2O排放與NH3揮發(fā),而導(dǎo)致其滲漏液中硝態(tài)氮和銨態(tài)氮含量高于翻耕土壤。一般施行免耕容易使土壤形成連續(xù)的大孔隙而造成滲漏水量顯著增加[64- 65],而Mkhabela等[45]認(rèn)為耕作對(duì)滲漏水的影響不顯著,這可能與不同的作物種類、耕作年限、土壤類型與種植制度等有關(guān)。大多學(xué)者認(rèn)為,免耕土壤滲漏水量高是導(dǎo)致滲漏液中氮淋失量增加的主要原因[66],但部分學(xué)者認(rèn)為,翻耕能夠增加土壤氮素礦化,同時(shí),免耕土壤的厭氧環(huán)境促進(jìn)反硝化作用,導(dǎo)致翻耕土壤更高的淋失量[63,66]。時(shí)秀煥等[67]在我國東北黑土區(qū)進(jìn)行玉米→大豆輪作研究認(rèn)為,試驗(yàn)期間耕作對(duì)玉米小區(qū)土壤硝態(tài)氮淋失影響不大,而與翻耕相比,免耕實(shí)施4 年后對(duì)大豆小區(qū)土壤硝態(tài)氮淋失的影響開始顯現(xiàn),這主要是根系生長(zhǎng)造成土壤孔隙大小的差異而導(dǎo)致硝態(tài)氮淋失發(fā)生變化。崔思遠(yuǎn)等[68]在湖南雙季稻區(qū)研究表明,由于免耕秸稈還田明顯提高土壤飽和導(dǎo)水率,導(dǎo)致硝態(tài)氮和銨態(tài)氮的淋失量增加,且銨態(tài)氮滲漏量高于硝態(tài)氮。由于在大多文獻(xiàn)試驗(yàn)中,農(nóng)田水分滲漏量主要通過滲漏儀測(cè)定或水平衡法等估算得出,利用水平衡法估算受很多農(nóng)田試驗(yàn)不可預(yù)測(cè)的因素影響(如風(fēng)對(duì)蒸散的影響),導(dǎo)致估算的滲漏液淋失量與儀器測(cè)量結(jié)果不一致。
人類活動(dòng)強(qiáng)烈干擾地球碳循環(huán)和氮循環(huán)而加劇溫室效應(yīng),而溫室效應(yīng)間接影響植株初級(jí)生產(chǎn)力、生物固氮、土壤硝化反硝化作用及C/N變化等生物化學(xué)循環(huán)過程,但影響機(jī)制卻還不十分清楚[69]。保護(hù)性耕作增加表層土壤有機(jī)碳和全氮含量,在土壤剖面出現(xiàn)層化現(xiàn)象[70- 71],了解土壤C/N層化現(xiàn)象對(duì)理解土壤碳氮關(guān)系有著重要意義。
土壤層化率通常被用來作為評(píng)價(jià)土壤質(zhì)量或土壤生態(tài)功能的一個(gè)指標(biāo)[70],特別是有由于耕作所造成的土壤理化性狀的變化,如土壤有機(jī)碳[11]、孔隙度[72]和團(tuán)聚體穩(wěn)定性[73]等,通過分析保護(hù)性耕作對(duì)各土壤性質(zhì)層化率的影響,能夠有助于理解保護(hù)性耕作對(duì)生態(tài)效應(yīng)的影響。一般認(rèn)為翻耕擾動(dòng)土壤而使養(yǎng)分在耕層分布均勻[74],而免耕秸稈殘留在土壤表面而使養(yǎng)分在表層富集。Franzluebbers認(rèn)為[70],退化的土壤有機(jī)質(zhì)層化比率很少大于2,高層化率表示土壤質(zhì)量較好,通常免耕土壤有機(jī)碳和全氮的層化率大于2,而翻耕土壤則小于2。有研究表明,短期耕作(lt; 9a)對(duì)土壤氮庫的層化率沒有顯著影響,而此后隨著年限的增加,免耕土壤氮庫層化率顯著高于翻耕,且免耕19a后其比率大于2[41]。Corral-Fernández等[71]對(duì)85 個(gè)土壤剖面分析得出,長(zhǎng)期少免耕能夠提高土壤有機(jī)碳、全氮及C/N的層化率,其認(rèn)為由于作物秸稈殘茬比根系更有利于增加土壤C/N率[75];免耕措施秸稈主要覆蓋在土壤表面,因此,隨著土壤深度的增加土壤C/N呈降低趨勢(shì)。Lou等[42]認(rèn)為免耕表層土壤有機(jī)碳腐解力較翻耕有所降低,而相對(duì)提高土壤有機(jī)碳、全氮及C/N層化率。孫國峰等[76]研究南方雙季稻田認(rèn)為,長(zhǎng)期免耕后,實(shí)施翻耕、旋耕降低表層(0—5 cm)土壤有機(jī)碳含量,提高了5—20 cm層次土壤有機(jī)碳含量,進(jìn)而降低耕層土壤有機(jī)碳層化率。相比較國外,國內(nèi)關(guān)于土壤有機(jī)碳、全氮及C/N的層化率的研究較少,由于土壤C/N受多種因素的影響(如氣候、土壤條件、植被種類、農(nóng)田管理措施等),分析不同環(huán)境條件下保護(hù)性耕作土壤C/N層化率對(duì)于正確評(píng)價(jià)土壤質(zhì)量有重要作用。
多年來有關(guān)土壤碳、氮素肥力的研究一直是國內(nèi)外學(xué)者探討的熱點(diǎn)。保護(hù)性耕作作為生態(tài)友好型技術(shù),對(duì)于農(nóng)田土壤碳、氮素肥力的維持和改善起著重要的作用。目前,我國保護(hù)性耕作對(duì)土壤碳素與氮素肥力效應(yīng)的研究與國外依然有一定的差距。綜上分析認(rèn)為,未來我國在相關(guān)領(lǐng)域的研究應(yīng)重點(diǎn)集中在以下幾個(gè)方面:
(1)加強(qiáng)保護(hù)性耕作對(duì)農(nóng)田土壤碳、氮素肥力影響及其機(jī)制的研究。由于我國幅員遼闊,氣候條件復(fù)雜與種植制度多樣化等因素不同,導(dǎo)致不同區(qū)域農(nóng)田土壤碳、氮素含量變化及其轉(zhuǎn)化損失的主導(dǎo)影響因素有所差異。加強(qiáng)不同區(qū)域相關(guān)的研究,了解各區(qū)域農(nóng)田土壤肥力保持與損失機(jī)制,對(duì)于正確評(píng)價(jià)保護(hù)性耕作對(duì)我國農(nóng)田碳、氮素相關(guān)肥力的影響有重要的意義。同時(shí),隨著我國栽培技術(shù)水平的提高和區(qū)域農(nóng)業(yè)結(jié)構(gòu)的調(diào)整,應(yīng)考慮在不同層次生產(chǎn)力水平上的研究,以適應(yīng)未來農(nóng)業(yè)的發(fā)展。由于實(shí)施保護(hù)性耕作年限的長(zhǎng)短對(duì)土壤性質(zhì)的影響程度不同,短期與長(zhǎng)期定位試驗(yàn)相結(jié)合進(jìn)行對(duì)比研究,對(duì)于揭示保護(hù)性耕作對(duì)土壤肥力的影響有重要的意義。
(2)結(jié)合土壤肥力以及碳素和氮素在作物體內(nèi)和大氣中轉(zhuǎn)移變化及其相互影響機(jī)理,系統(tǒng)研究保護(hù)性耕作對(duì)土壤肥力的影響及利用效率。目前,保護(hù)性耕作對(duì)土壤肥力的研究主要集中在土壤碳、氮含量的變化與損失方面,而關(guān)于地上部分作物對(duì)養(yǎng)分吸收及其利用效率的研究較少。結(jié)合作物種類、土壤類型、氣候條件和種植制度等因素,綜合考慮多元條件分析“土壤-植物-大氣”系統(tǒng)保護(hù)性耕作對(duì)碳、氮素肥力變化的影響機(jī)理,才能正確理解保護(hù)性耕作對(duì)作物碳、氮素等養(yǎng)分利用機(jī)制。同時(shí),土壤碳素和氮素在土壤中主要是以腐殖質(zhì)的形式存在,耕作能夠影響土壤理化特性,影響土壤碳、氮素的礦化分解、轉(zhuǎn)化引起土壤肥力發(fā)生變化,但保護(hù)性耕作對(duì)農(nóng)田系統(tǒng)碳素和氮素的相互關(guān)系尚不明確。關(guān)于保護(hù)性耕作對(duì)農(nóng)田碳、氮素相互關(guān)系的研究主要集中于土壤C/N及其層化率分布,探索新的評(píng)價(jià)指標(biāo)及研究方法,對(duì)分析農(nóng)田土壤肥力變化有著重要作用。
(3)綜合環(huán)境效應(yīng)進(jìn)行保護(hù)性耕作對(duì)農(nóng)田碳素和氮素影響的綜合研究。目前大多研究只注重農(nóng)田的排放部分,很少考慮各項(xiàng)農(nóng)資投入消耗能源產(chǎn)生的碳、氮排放;同時(shí),由于過量施肥造成大量的氮素通過揮發(fā)、硝化反硝化過程等損失,并造成了地下水體污染、富營養(yǎng)化、臭氧層破壞等嚴(yán)重的環(huán)境問題,耕作能夠改變土壤理化特性而影響各環(huán)節(jié)的損失量。因此,在加強(qiáng)保護(hù)性耕作對(duì)農(nóng)田土壤肥力研究的同時(shí),結(jié)合其生態(tài)效應(yīng)進(jìn)行綜合分析對(duì)于系統(tǒng)評(píng)價(jià)農(nóng)業(yè)可持續(xù)發(fā)展有著更加重要的意義。
(4)加強(qiáng)關(guān)于保護(hù)性耕作對(duì)農(nóng)田碳素和氮素效應(yīng)的宏觀研究。目前,大多關(guān)于耕作對(duì)農(nóng)田碳、氮效應(yīng)影響的研究多從微觀農(nóng)田尺度比較分析,進(jìn)行全國或區(qū)域尺度的研究對(duì)于準(zhǔn)確評(píng)估實(shí)施保護(hù)性耕作對(duì)農(nóng)田碳、氮素綜合效應(yīng)及環(huán)境保護(hù)政策的制定與發(fā)展有重要意義。由于缺乏全國或區(qū)域尺度的土壤參數(shù)數(shù)據(jù)及適當(dāng)?shù)哪M模型或評(píng)估方法,對(duì)我國農(nóng)田碳、氮效應(yīng)宏觀尺度的研究主要利用已有文獻(xiàn)中的數(shù)據(jù)來進(jìn)行分析。利用模型進(jìn)行區(qū)域模擬與評(píng)估發(fā)展相對(duì)滯后,相關(guān)的模型及模擬的指標(biāo)較少,且模型需要的參數(shù)不易獲得,其結(jié)果缺乏一定的綜合性、系統(tǒng)性及可靠性,因此探索適合我國種植制度的模型參數(shù),對(duì)于正確評(píng)價(jià)保護(hù)性耕作對(duì)土壤碳、氮效應(yīng)具有重要的意義。
[1] Wang W, Li X B. Study on the marginal productivity of cultivated land with change of soil organic matter in China. Scientia Geographica Sinica, 2002, 22(1): 24- 28.
[2] Zhu Z L. Research on soil nitrogen in China. Acta Pedologica Sinica, 2008, 45(5): 778- 783.
[3] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293- 296.
[4] Zhang H L, Sun G F, Chen J K, Chen F. Advances in research on effects of conservation tillage on soil carbon. Scientia Agricultura Sinica, 2009, 42(12): 4275- 4281.
[5] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(11): 1623- 1627.
[6] Kahlon M S, Lal R, Ann-Varughese M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research, 2013, 126: 151- 158.
[7] Ussiri D A N, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 2009, 104(1): 39- 47.
[8] Baker J M, Ochsner T E, Venterea R T, Griffs T J. Tillage and soil carbon sequestration-What do we really know? Agriculture Ecosystems Environment, 2007, 118(1/4): 1- 5.
[9] Blanco-Canqui H, Lal R. No-tillage and soil-profile carbon sequestration: an on-farm assessment. Soil Science Society of America Journal, 2008, 72(3): 693- 701.
[10] VandenBygaart A J, Gregorich E G, Angers D A. Influence of agricultural management on soil organic carbon: a compendium and assessment of Canadian studies. Canadian Journal of Soil Science, 2003, 83(4): 363- 380.
[11] West T O, Post W M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 2002, 66(6): 1930- 1946.
[12] Wilts A R, Reicosky D C, Allmaras R R, Clapp C E. Long-term corn residue effects. Soil Science Society of America Journal, 2004, 68(4): 1342- 1351.
[13] Song M W, Li A Z, Cai L Q, Zhang R Z. Effects of different tillage methods on soil organic carbon pool. Journal of Agro-Environment Science, 2008, 27(2): 622- 626.
[14] Franzluebbers A J, Hons F M, Zuberer D A. Tillage and crop effects on seasonal dynamics of soil CO2evolution, water content, temperature, and bulk density. Applied Soil Ecology, 1995, 2(2): 95- 109.
[15] Li C F, Kou Z K, Yang J H, Cai M L, Wang J P, Cao C G. Soil CO2fluxes from direct seeding rice fields under two tillage practices in central China. Atmospheric Environment, 2010, 44(23): 2696- 2704.
[16] Tian S Z, Ning T Y, Chi S Y, Wang Y, Wang B W, Han H F, Li C Q, Li Z J. Diurnal variations of the greenhouse gases emission and their optimal observation duration under different tillage systems. Acta Ecologica Sinica, 2012, 32(3): 879- 888.
[17] Kessavalou A, Mosier A R, Doran J W, Drijber R A, Lyon D J, Heinemeyer O. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. Journal Environmental Quality, 1998, 27(5): 1094- 1104.
[18] Tian S Z, Ning T Y, Li Z J, Wang Y, Li H J, Zhong W L. Effect of CH4uptake flux under different tillage systems in wheat field in the North China Plain. Acta Ecologica Sinica, 2010, 30(2): 541- 548.
[19] Smith K, Watts D, Way T, Torbert H, Prior S. Impact of tillage and fertilizer application method on gas emissions in a corn cropping system. Pedosphere, 2012, 22(5): 604- 615.
[20] Hanaki M, Ito T, Saigusa M. Effect of no-tillage rice (OryzasativaL.) cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Journal of Soil Science and Plant Nutrition, 2002, 73(2): 135- 143.
[21] Pandey D, Agrawal M, Bohra J S. Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system. Agriculture, Ecosystems and Environment, 2012, 159: 133- 144.
[22] Ahmad S, Li C F, Dai G Z, Zhan M, Wang J P, Pan S G, Cao C G. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil and Tillage Research, 2009, 106(1): 54- 61.
[23] Harada H, Kobayashi H, Shindo H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Science and Plant Nutrition, 2007, 53(5): 668- 677.
[24] Wei H P, Sun W J, Huang Y. Statistical analysis of methane emission from rice fields in China and the driving factors. Scientia Agricultura Sinica, 2012, 45(17): 3531- 3540.
[25] Li D M, Liu M Q, Cheng Y H, Wang D, Qin J T, Jiao J G, Li H X, Hu F. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil and Tillage Research, 2011, 113(2): 77- 81.
[26] Wu F L, Zhang H L, Li L, Chen F, Huang F Q, Xiao X P. Characteristics of CH4emission and greenhouse effects in double paddy soil with conservation tillage. Scientia Agricultura Sinica, 2008, 41(9): 2703- 2709.
[27] Bai X L, Zhang H L, Chen F, Sun G F, Hu Q, Li Y. Tillage effects on CH4and N2O emission from double cropping paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 282- 289.
[28] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 2002, 91(1/3): 217- 232.
[29] Lal R. Carbon emission from farm operations. Environment International,2004,30(7): 981- 990.
[30] Wu F L, Li L, Zhang H L, Chan F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chinese Journal of Ecology, 2007, 26(12): 2035- 2039.
[31] Shi L G, Fan S C, Kong F L, Chen F. Preliminary study on the carbon efficiency of main crops production in north China plain. Acta Agronomica Sinica, 2011, 37(8): 1485- 1490.
[32] Liang A Z, Yang X M, Zhang X P, Shen Y, Shi X H, Fan R Q, Fang H J. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of northeast China. Scientia Agricultura Sinica, 2009, 42(8): 2801- 2808.
[33] Wang Y, Xu J, Shen J H, Luo Y M, Scheu S, Ke X. Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil and Tillage Research, 2010, 107(2): 71- 79.
[34] Zhang S X, Li Q, Zhang X P, Wei K, Chen L J, Liang W J. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research, 2012, 124: 196- 202.
[35] Zhao H, Lü Y Z, Wang X K, Zhang H L, Yang X M. Tillage impacts on the fractions and compositions of soil organic carbon. Geoderma, 2012, 189- 190: 397- 403.
[36] Franzluebbers A J, Hons F M, Zuberer D A. Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Science Society of America Journal, 1994, 58(6): 1639- 1645.
[37] Dalal R C. Long-term trends in total nitrogen of a Vertisol subjected to zero-tillage, nitrogen application and stubble retention. Australian Journal of Soil Research, 1992, 30(2): 223- 231.
[38] Sainju U M, Singh B P, Whitehead W F. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil and Tillage Research, 2002, 63(3/4): 167- 179.
[39] López-Fando C, Pardo M T. Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen. Soil and Tillage Research, 2012, 118: 32- 39.
[40] Varvel G E, Wilhelm W W. No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems. Soil and Tillage Research, 2011, 114(1): 28- 36.
[41] Dalal R C, Allen D E, Wang W J, Reeves S, Gibson I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil and Tillage Research, 2011, 112(2): 133- 139.
[42] Lou Y L, Xu M G, Chen X N, He X H, Kai Z. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. Catena, 2012, 95: 124- 130.
[43] Luo Z Z, Huang G B, Li G D, Zhang R Z, Cai L Q. Effects of conservation tillage on soil nutrients and enzyme activities in rainfed area. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1085- 1092.
[44] Rochette P, Angers D A, Chantigny M H, MacDonald J D, Bissonnette N, Bertrand N. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil and Tillage Research, 2009, 103(2): 310- 315.
[45] Mkhabela M S, Madani A, Gordon R, Burton D, Cudmore D, Elrni A, Hart W. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure. Soil and Tillage Research, 2008, 98(2): 187- 199.
[46] Cao C G, Li C F, Kou Z K, Yang J H, Wang J P. Effects of N Source and Tillage on NH3Volatilization from Paddy Soils. Acta Agriculturae Universitatis Jiangxiensis: Natural Sciences Edition, 2010, 32(5): 881- 886.
[47] Palma R M, Saubidet M I, Rímolo M, Utsumi J. Nitrogen losses by volatilization in a corn crop with two tillage systems in the Argentina Pampa. Communications in Soil Science Plant Analysis, 1998, 29(19/20): 2865- 2879.
[48] Zhang J S, Zhang F P, Yang J H, Wang J P, Cai M L, Li C F, Cao C G. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agriculture, Ecosystems and Environment, 2011, 140(1/2): 164- 173.
[49] Al-Kanani T, MacKenzie A F. Effect of tillage practices and hay straw on ammonia volatilization from nitrogen fertilizer solutions. Canadian Journal of Soil Science, 1992, 72(2): 145- 157.
[50] Griggs B R, Norman R J, Wilson C E, Slaton N A. Ammonia volatilization and nitrogen uptake for conventional and conservation tilled dry-seeded, delayed-flood rice. Soil Science Society of America Journal, 2007, 71(3): 745- 751.
[51] Granli T, B?ckman O C. Nitrogen oxide from agriculture. Norwegian Journal of Agricultural Sciences, 1994, 12(Supplement): 18- 19.
[52] Mutegi J K, Munkholm L J, Petersen B M, Hansen E M, Petersen S O. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biology and Biochemistry, 2010, 42(10): 1701- 1711.
[53] Doran J W. Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal, 1980, 44(4): 765- 771.
[54] Arah J R M, Smith K A, Crichton I J, Li H S. Nitrous oxide production and denitrification in Scottish arable soils. Journal of Soil Science, 1991, 42(3): 351- 367.
[55] Rochette P. No-till only increases N2O emissions in poorly-aerated soils. Soil and Tillage Research, 2008, 101(1/2): 97- 100.
[56] Rochette P, Angers D A, Chantigny M H, Bertrand N. Nitrous oxide emissions respond differently to no-till in a loam and a heavy clay soil. Soil Science Society of America Journal, 2008, 72(5): 1363- 1369.
[57] Sheehy J, Six J, Alakukku L, Regina K. Fluxes of nitrous oxide in tilled and no-tilled boreal arable soils. Agriculture, Ecosystems and Environment, 2013, 164: 190- 199.
[58] Elder J W, Lal R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil and Tillage Research, 2008, 98(1): 45- 55.
[59] Kristensen H L, Debosz K, McCarty G W. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biology and Biochemistry, 2003, 35(7): 979- 986.
[60] Gregorich E G, Rochette P, St-Georges P, Mckim U F, Chan C. Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Canadian Journal of Soil Science, 2008, 88(2): 153- 161.
[61] Choudhary M A, Akramkhanov A, Saggar S. Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agriculture, Ecosystems and Environment, 2002, 93(1/3): 33- 43.
[62] Thiagarajan A. Effect of Zero Tillage on Drainage Water Quality Following Manure Application in Nova Scotia[D]. Canada: Dalhousie University, 2005.
[63] Patni N K, Masse L, Jui P Y. Groundwater quality under conventional and no-tillage: Ⅰ. Nitrate, electrical conductivity, and pH. Journal of Environmental Quality, 1998, 27(4): 869- 877.
[64] Endale D M, Radcliffe D E, Steiner J L, Cabrera M L. Drainage characteristics of a southern piedmont soil following six years of conventionally tilled or no-till cropping systems. Transactions of the American Society of Agricultural Engineers, 2002, 45(5): 1423- 1432.
[65] Paul E A, Clark F E. Reduction and transport of nitrate // Paul E A, Clark F E, eds. Soil Microbiology and Biochemistry. New York: Academic Press, 1989: 147- 162.
[66] Angle J S, Gross C M, Hill R L, McIntosh M S. Soil nitrate concentrations under corn as affected by tillage, manure, and fertiliser application. Journal of Environmental Quality, 1993, 31(1): 141- 147.
[67] Shi X H, Zhang X P, Liang A Z, Shen Y, Yang X M. Effect of short-term no-tillage on nitrate leaching for a black soil in northeast China. System Science and Comprehensive Studies in Agriculture, 2010, 26(3): 344- 348.
[68] Cui S Y, Yin X G, Chen F, Tang H M, Li F, Zhang H L. Effects of tillage and straw returning on nitrogen leakage in double rice cropping field. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 174- 179.
[69] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289- 292.
[70] Franzluebbers AJ. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research,2002,66(2): 95- 106.
[71] Corral-Fernández R,Parras-Alcántara L,Lozano-García B. Stratification ratio of soil organic C,N and C: N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agriculture Ecosystems and Environment,2013,164: 252- 259.
[72] Kay B D, van den Bygaart A J. Conservation tillage and depth stratification of porosity and soil organic matter. Soil and Tillage Research, 2002, 66(2): 107- 118.
[73] Mrabet R. Stratification of soil aggregation and organic matter under conservation tillage systems in Africa. Soil and Tillage Research, 2002, 66(2): 119- 128.
[74] de Moraes Sá J C, Lal R. Stratification ratio of soil organic matter pools as a indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 2009, 103(1): 46- 56.
[75] Pguet P, Lal R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 2005, 80(1/2): 201- 213.
[76] Sun G F, Xu S Q, Zhang H L, Chen F, Xiao X P. Effects of rotational tillage in double rice cropping region on organic carbon storage of the arable paddy soil. Scientia Agricultura Sinica, 2010, 43(18): 3776- 3783.
參考文獻(xiàn):
[1] 王衛(wèi), 李秀彬. 中國耕地有機(jī)質(zhì)含量變化對(duì)土地生產(chǎn)力影響的定量研究. 地理科學(xué), 2002, 22(1): 24- 28.
[2] 朱兆良. 中國土壤氮素研究. 土壤學(xué)報(bào), 2008, 45(5): 778- 783.
[4] 張海林, 孫國峰, 陳繼康, 陳阜. 保護(hù)性耕作對(duì)農(nóng)田碳效應(yīng)影響研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2009, 42(12): 4275- 4281.
[13] 宋明偉, 李愛宗, 蔡立群, 張仁陟. 耕作方式對(duì)土壤有機(jī)碳庫的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2008, 27(2): 622- 626.
[16] 田慎重, 寧堂原, 遲淑筠, 王瑜, 王丙文, 韓惠芳, 李成慶, 李增嘉. 不同耕作措施的溫室氣體排放日變化及最佳觀測(cè)時(shí)間. 生態(tài)學(xué)報(bào), 2012, 32(3): 879- 888.
[18] 田慎重, 寧堂原, 李增嘉, 王瑜, 李洪杰, 仲惟磊. 不同耕作措施對(duì)華北地區(qū)麥田CH4吸收通量的影響. 生態(tài)學(xué)報(bào), 2010, 30(2): 541- 548.
[24] 魏海蘋, 孫文娟, 黃耀. 中國稻田甲烷排放及其影響因素的統(tǒng)計(jì)分析. 中國農(nóng)業(yè)科學(xué), 2012, 45(17): 3531- 3540.
[26] 伍芬琳, 張海林, 李琳, 陳阜, 黃鳳球, 肖小平. 保護(hù)性耕作下雙季稻農(nóng)田甲烷排放特征及溫室效應(yīng). 中國農(nóng)業(yè)科學(xué), 2008, 41(9): 2703- 2709.
[27] 白小琳, 張海林, 陳阜, 孫國鋒, 胡清, 李永. 耕作措施對(duì)雙季稻田CH4與N2O排放的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(1): 282- 289.
[30] 伍芬琳, 李琳, 張海林, 陳阜. 保護(hù)性耕作對(duì)農(nóng)田生態(tài)系統(tǒng)凈碳釋放量的影響. 生態(tài)學(xué)雜志, 2007, 26(12): 2035- 2039.
[31] 史磊剛, 范士超, 孔凡磊, 陳阜. 華北平原主要作物生產(chǎn)的碳效率研究初報(bào). 作物學(xué)報(bào), 2011, 37(8): 1485- 1490.
[32] 梁愛珍, 楊學(xué)明, 張曉平, 申艷, 時(shí)秀煥, 范如芹, 方華軍. 免耕對(duì)東北黑土水穩(wěn)性團(tuán)聚體中有機(jī)碳分配的短期效應(yīng). 中國農(nóng)業(yè)科學(xué), 2009, 42(8): 2801- 2808.
[43] 羅珠珠, 黃高寶, Li G D, 張仁陟, 蔡立群. 保護(hù)性耕作對(duì)旱作農(nóng)田耕層土壤肥力及酶活性的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2009, 15(5): 1085- 1092.
[46] 曹湊貴, 李成芳, 寇志奎, 楊金花, 汪金平. 不同類型氮肥和耕作方式對(duì)稻田土壤氨揮發(fā)的影響. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 32(5): 881- 886.
[67] 時(shí)秀煥, 張曉平, 梁愛珍, 申艷, 楊學(xué)明. 短期免耕對(duì)東北黑土硝態(tài)氮淋失的影響. 農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究, 2010, 26(3): 344- 348.
[68] 崔思遠(yuǎn), 尹小剛, 陳阜, 唐海明, 李鋒, 張海林. 耕作措施和秸稈還田對(duì)雙季稻田土壤氮滲漏的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(10): 174- 179.
[76] 孫國峰,徐尚起,張海林,陳阜,肖小平. 輪耕對(duì)雙季稻田耕層土壤有機(jī)碳儲(chǔ)量的影響. 中國農(nóng)業(yè)科學(xué),2010,43(18): 3776- 3783.
Advancesineffectsofconservationtillageonsoilorganiccarbonandnitrogen
XUE Jianfu, ZHAO Xin, Shadrack Batsile Dikgwatlhe, CHEN Fu, ZHANG Hailin*
CollegeofAgronomyandBiotechnology,ChinaAgriculturalUniversity,KeyLaboratoryofFarmingSystem,MinistryofAgricultureofthePeople′sRepublicofChina,Beijing100193,China
conservation tillage; soil fertility; soil quality; soil organic carbon; nitrogen use
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201103001)
2013- 05- 12;
2013- 07- 23
*通訊作者Corresponding author.E-mail: hailin@cau.edu.cn
10.5846/stxb201305121021
薛建福, 趙鑫, Shadrack Batsile Dikgwatlhe, 陳阜, 張海林.保護(hù)性耕作對(duì)農(nóng)田碳、氮效應(yīng)的影響研究進(jìn)展.生態(tài)學(xué)報(bào),2013,33(19):6006- 6013.
Xue J F, Zhao X, Dikgwatlhe S B, Chen F, Zhang H L.Advances in effects of conservation tillage on soil organic carbon and nitrogen.Acta Ecologica Sinica,2013,33(19):6006- 6013.