• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響

      2013-12-09 06:30:38楊志宏吳慶明董海燕鄒紅菲
      生態(tài)學(xué)報(bào) 2013年19期
      關(guān)鍵詞:熱能收支持續(xù)時(shí)間

      楊志宏,吳慶明, 董海燕, 鄒紅菲

      (東北林業(yè)大學(xué)野生動(dòng)物資源學(xué)院, 哈爾濱 150040)

      風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響

      楊志宏,吳慶明, 董海燕, 鄒紅菲*

      (東北林業(yè)大學(xué)野生動(dòng)物資源學(xué)院, 哈爾濱 150040)

      風(fēng)是自然環(huán)境中常見的因子之一,會(huì)對(duì)動(dòng)物的行為以及能量收支產(chǎn)生不同程度的影響。為探討不同風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響,以3種風(fēng)速(0.2—0.4、1.2—1.4、3.2—3.6 m/s)和3種持續(xù)時(shí)間(1、2、4 h)的9組樹麻雀進(jìn)行為期1周的不同風(fēng)環(huán)境馴化,測(cè)定其體重、體溫和攝食量、攝水量、排泄糞量、排泄次數(shù)、攝入能、排泄糞能、排出水熱能散失、消化能、同化能并計(jì)算消化率和同化率。去除初體重影響和雙因素分析的結(jié)果發(fā)現(xiàn),攝水量(排出水量)和排出水熱能散失隨著風(fēng)速增大而顯著減少(P﹤0.001);持續(xù)時(shí)間與樹麻雀的攝入能、糞能和散熱調(diào)節(jié)的次數(shù)顯著相關(guān)(P﹤0.01),其能量收支最高和散熱調(diào)節(jié)次數(shù)最多為2 h,最低(少)為4 h;雙因素交互作用對(duì)樹麻雀能量收支的影響不顯著。3級(jí)風(fēng)速(4 m/s)和持續(xù)時(shí)間4 h以內(nèi)的風(fēng)環(huán)境不會(huì)對(duì)樹麻雀的能量收支產(chǎn)生顯著影響。

      能量收支;樹麻雀;風(fēng)

      地球的轉(zhuǎn)動(dòng)和地球表面受太陽加熱程度的差異形成風(fēng)。風(fēng)是重要的生態(tài)因子之一,會(huì)對(duì)動(dòng)物的生存、繁殖、分布和種群數(shù)量變動(dòng)產(chǎn)生直接或間接的影響。風(fēng)與鳥類密切相關(guān)[1- 3],如遷徙鳥類會(huì)對(duì)不同風(fēng)速及風(fēng)向選擇不同的遷徙對(duì)策[4- 5]、冬季寒冷季節(jié)中的鳥多選擇迎風(fēng)覓食和大風(fēng)可造成鳥的“迷飛”等。風(fēng)速大小會(huì)對(duì)鳥的飛行產(chǎn)生影響[6- 7],善飛鳥類如軍艦鳥、信天翁和風(fēng)雨鳥等通常會(huì)借助風(fēng)力來減少飛行能耗。不同種類的鳥對(duì)風(fēng)速大小的適應(yīng)能力和適應(yīng)對(duì)策也不同,并直接影響其能量收支。鳥類行為譜及其時(shí)間分配會(huì)因風(fēng)持續(xù)時(shí)間不同而發(fā)生改變或調(diào)整[8],其不同的能量預(yù)算對(duì)策也會(huì)產(chǎn)生不同的收益。物種的分布、豐富度和適合度往往取決于該物種的能量代謝水平[9]。保持最適的能量收支平衡是鳥類重要的生存對(duì)策,其生理和行為的適應(yīng)性調(diào)節(jié)變化與其能量收支、分配和利用以及個(gè)體的能量預(yù)算對(duì)策密切相關(guān)[10- 12]。鳥類能量生態(tài)學(xué)研究有助于揭示其生物學(xué)特征和探索它們應(yīng)對(duì)不同環(huán)境的適應(yīng)策略。許多研究表明環(huán)境因子與鳥類的能量收支密切相關(guān),如溫度[13- 14]、光周期[15- 16]和食物質(zhì)量差異[17- 18]等。其中,有關(guān)風(fēng)環(huán)境與鳥類能量收支的研究相對(duì)較少,而報(bào)道又多是針對(duì)鳥類體內(nèi)能量?jī)?chǔ)備和器官可塑性變化[6,8],所以這方面的研究對(duì)進(jìn)一步了解鳥類的環(huán)境適應(yīng)及能量預(yù)算對(duì)策有著重要的意義。

      樹麻雀(Passermontanus)為古北型留鳥,屬雀形目(Passeriformes)雀科(Fringillidae)。世界分布從澳大利亞向北沿海至歐洲東部鄂霍次克海地區(qū),向西遍及整個(gè)歐洲,在亞洲北起俄羅斯,南到馬來西亞半島和印度尼西亞,東自日本,經(jīng)朝鮮、中國向西,通過南亞、西南亞,一直到大西洋沿海岸諸國及其附近島嶼。在我國,遍布全國各地包括海南島及臺(tái)灣,高可至中等海拔區(qū)[19]。樹麻雀食性很雜,隨著季節(jié)的變化而不同,春夏季多食昆蟲,秋冬兩季則以植物性食物為主。樹麻雀分布范圍廣,數(shù)量大,是具有代表性和容易獲得的研究材料。已發(fā)現(xiàn)樹麻雀具有較高的基礎(chǔ)代謝率(BMR)和熱傳導(dǎo),相對(duì)較寬的熱中性區(qū)(TNZ)和較低的下臨界溫度[20]。相對(duì)于善飛鳥類,樹麻雀的兩翅與其身體的比例相對(duì)較小,故不能遠(yuǎn)飛。飛行高度一般在10—20 m,飛行時(shí)間通常不會(huì)超過4min和時(shí)速不會(huì)超過8—10 m/s,但其高超的飛行技巧可使其能在短程和有障礙的空間穿梭自如。通常樹麻雀會(huì)選擇適應(yīng)或躲避的對(duì)策來應(yīng)對(duì)不同風(fēng)速,即風(fēng)速較小時(shí)適應(yīng)和風(fēng)速增大至一定限度時(shí)會(huì)選擇躲避。風(fēng)的大小與多數(shù)哺乳動(dòng)物的汗液蒸發(fā)速度密切相關(guān),從而會(huì)對(duì)其熱調(diào)節(jié)產(chǎn)生影響。鳥類體表無汗腺,因此無法通過汗液蒸發(fā)的方式進(jìn)行散熱調(diào)節(jié)。

      中國東北地區(qū)46年的平均風(fēng)速為3.0 m/s,平均風(fēng)速明顯的年特征變化為3—5月、10—11月風(fēng)速最大,7—9月風(fēng)速較小處于波谷,其中平均風(fēng)速4月最大達(dá)4.1 m/s,8月最小僅為2.4 m/s,比4月份低41%。東北地區(qū)春夏秋冬四季季節(jié)平均風(fēng)速分別為:3.8、2.7、2.9和2.9 m/s[21]。鳥類的任何行為都會(huì)有能耗發(fā)生。相對(duì)無風(fēng)天氣,不同風(fēng)速和持續(xù)時(shí)間必然會(huì)引起樹麻雀行為譜和時(shí)間分配發(fā)生變化。不同風(fēng)速和持續(xù)時(shí)間是否會(huì)對(duì)樹麻雀的能量收支產(chǎn)生影響?尚未見報(bào)道。所以,本文通過對(duì)9組(選擇鳥類能夠適應(yīng)的3種風(fēng)速和設(shè)定3種持續(xù)時(shí)間)樹麻雀(當(dāng)?shù)亓豇B)7 d的馴養(yǎng)、比較和分析,探討風(fēng)速和持續(xù)時(shí)間對(duì)小型鳥類能量收支的影響。

      1 材料與方法

      1.1 實(shí)驗(yàn)動(dòng)物

      90只樹麻雀于2012年12月捕自黑龍江省齊齊哈爾地區(qū)(47°29′N, 124°02′E)。該地區(qū)年平均氣溫為3.4 ℃,變化范圍從-32.2到35.7 ℃,其中最冷月(1月)和最熱月(7月)的平均氣溫分別為-20.6 ℃和22.9 ℃。冬季自然生境中樹麻雀主要攝食帶殼的草籽種子。東北林業(yè)大學(xué)野生動(dòng)物保護(hù)醫(yī)學(xué)與生態(tài)安全研究中心飼養(yǎng)和適應(yīng)7 d后,逐一稱重、標(biāo)記和分組。不同風(fēng)速和持續(xù)時(shí)間分別為:0.2—0.4、1.2—1.4、3.2—3.6 m/s和1、2、4 h,共設(shè)9個(gè)實(shí)驗(yàn)組和10只/組。分組方法,A代表風(fēng)速和由小到大分別記為A1、A2、A3,B代表持續(xù)時(shí)間和由短到長(zhǎng)分別記為B1、B2和B4,Ⅰ、Ⅱ至Ⅸ(9)組依次為A1B1、A1B2、A1B4、A2B1、A2B2、A2B4、A3B1、A3B2和A3B4。實(shí)驗(yàn)環(huán)境相同(長(zhǎng)90 cm×寬50 cm×高60 cm的內(nèi)置棲架、食盒(每組或籠×2)和飲水器的鐵絲籠;環(huán)境溫度為(21.0±1.0) ℃)。適應(yīng)和實(shí)驗(yàn)期間,食物相同(帶殼谷子)和保證每日各食盒于光照時(shí)段內(nèi)始終存有食物(少量和多次添加);飲水器內(nèi)的水每日定時(shí)更換1次。

      通過相同的風(fēng)扇獲取風(fēng)源,風(fēng)由鳥籠食盒端定向吹入。通過手持式風(fēng)速儀測(cè)定風(fēng)速,風(fēng)扇與鳥籠同高,以風(fēng)扇不同檔位和風(fēng)扇與鳥籠重心的直線距離差異獲得各組目標(biāo)風(fēng)速,并將風(fēng)扇與鳥籠的位置固定。同時(shí),保證各組鳥籠的組間距離和風(fēng)速儀檢測(cè)無相互的風(fēng)影響,實(shí)驗(yàn)開始。每日風(fēng)實(shí)驗(yàn)時(shí)間段為10: 00至14: 00。實(shí)驗(yàn)于2011年12月13日開始至20日結(jié)束。

      1.2 體重和體溫的測(cè)定

      體重用電子天平(BS210型,深圳)測(cè)量(測(cè)量時(shí)軟網(wǎng)束縛和讀數(shù)精確到0.01 g)。用電子體溫計(jì)(北京師范大學(xué),司南儀器廠)插入泄殖腔約1 cm測(cè)量體核溫度,每次測(cè)溫探頭在泄殖腔內(nèi)靜置約20 s和數(shù)值穩(wěn)定時(shí)讀數(shù)并記錄(精確到0.10 ℃),體溫測(cè)定各組均在無風(fēng)時(shí)段進(jìn)行。

      1.3 能量收支的測(cè)定

      每日分別于9: 00—10: 00和15: 00—16: 00兩次投喂食物(帶殼谷子),飲水器換水和稱重于9: 00—10: 00(次/日)。計(jì)數(shù)糞便混合物痕跡并記為排泄次數(shù)。為計(jì)數(shù)準(zhǔn)確,每日換取糞盒和墊紙3次,時(shí)間間隔設(shè)定分別為:10:00、13:00和16:00。手工分離剩余谷子、谷殼和糞便。累計(jì)計(jì)數(shù)結(jié)束,將糞便連同墊紙一同置于60 ℃干燥箱干燥至恒重,以其干重減去墊紙初重值記為糞便干重(精確到0.01 g)。測(cè)定和記錄上述數(shù)據(jù)24 h/次,共計(jì)7次。用氧弾熱量計(jì)(GR- 3500型,廣東)測(cè)定熱值。能量收支[16,17, 22- 24]和排出水熱能散失計(jì)算公式調(diào)整如下:

      干物質(zhì)(g)=物質(zhì)質(zhì)量(g)-物質(zhì)中水質(zhì)量(g)

      攝食量(g/d)=投食量(g/d)-剩余食物量(g/d)

      攝入能(kJ/d)=攝入干谷子質(zhì)量(g/d)×谷子熱值(kJ/g)-谷殼(干)質(zhì)量(g/d) ×谷殼熱值(kJ/g)

      糞能(kJ/d) =糞便干質(zhì)量(g/d) ×糞便熱值(kJ/g)

      攝水量(g/d)≈排出水量(g/d)=飲水器和水(初重-末重)(g/d)+攝入食物中的水(g/d)

      排出水散失熱能(J/d)=水的比熱值(J/g℃) ×攝水量(g/d)×(鳥的體溫-環(huán)境水溫)(℃)

      消化能(kJ/d)=攝入能(kJ/d)-糞能(kJ/d)

      同化能(kJ/d)=消化能(kJ/d)-排出水熱能散失(kJ/d)

      消化率(%)=消化能(kJ/d) /攝入能(kJ/d) ×100%

      同化率(%)=同化能(kJ/d) /攝入能(kJ/d) ×100%

      1.4 統(tǒng)計(jì)分析

      利用SPSS軟件包進(jìn)行相關(guān)統(tǒng)計(jì)分析。組內(nèi)實(shí)驗(yàn)前后體重和體溫的比較采用雙尾t檢驗(yàn)分析。組間能量收支各參數(shù)實(shí)測(cè)值的比較采用方差分析(One-Way ANOVA);為消除初體重組間差異對(duì)能量收支各參數(shù)的影響,并以初體重為協(xié)變量進(jìn)行雙因素協(xié)方差分析(Univariate ANOVA)。文中數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)誤(Mean ±SE)表示,P﹤0.05即認(rèn)為差異顯著。

      2 結(jié)果

      2.1 樹麻雀的體重變化

      7 d實(shí)驗(yàn)結(jié)束,樹麻雀Ⅰ至Ⅸ各組組內(nèi)初終體重變化均不顯著(t=0.403, df=18,P=0.694;t=-0.209, df=18,P=0.841;t=-0.184, df=18,P=0.857;t=0.900, df=18,P=0.389;t=-0.684, df=18,P=0.506;t= 0.806, df=18,P=0.436;t=0.394, df=18,P=0.417;t=0.461, df=18,P=0.765和t=0.742, df=18,P=0.470)(圖1)。

      2.2 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀體溫的影響

      結(jié)果表明,風(fēng)速和持續(xù)時(shí)間及風(fēng)速-持續(xù)時(shí)間的交互作用對(duì)樹麻雀體溫影響均不顯著(F(2, 89)=0.043,P=0.837;F(2, 89)=0.070,P=0.932;F(4, 89)=0.360,P=0.700)。終體溫組間比較差異不顯著(F(8, 89)=0.043,P=0.837)。各組(同上)組內(nèi)初終體溫變化均不顯著(t=-0.438, df=18,P=0.670;t=-1.019, df=18,P=0.342;t=-0.395, df=18,P=0.701;t=0.151, df=18,P=0.883;t=1.697, df=18,P=0.073;t=-2.137, df=18,P=0.066;t=0.127, df=18,P=0.901;t=-0.174, df=18,P=0.864和t=0.718, df=18,P=0.484)(圖2)。

      2.3 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響

      2.3.1 組間能量收支各參數(shù)實(shí)測(cè)值比較

      攝食量、攝入(排出)水量、攝入能、排出水熱能散失、消化能和同化能組間差異極顯著(F(8, 62)=5.149,P=0.002;F(8, 62)=7.995,P=0.000;F(8, 62)=4.904,P=0.002;F(8, 62)=9.270,P=0.000;F(8, 62)=5.469,P=0.001和F(8, 62)=5.483,P=0.001),排泄的次數(shù)、糞量和糞能組間差異顯著(F(8, 62)=2.613,P=0.046;F(8, 62)=3.318,P=0.018和F(8, 62)=3.315,P=0.019),排泄單位水熱能量散失、消化率和同化率組間差異不顯著(F(8, 62)=1.495,P=0.223;F(8, 62)=1.196,P=0.337和F(8, 62)=1.328,P=0.281)(圖3和圖4)。

      圖1 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀體重的影響 Fig.1 Effects of wind different speed and duration on body mass in Tree sparrow數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤

      圖2 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀體溫的影響 Fig. 2 Effects of wind different speed and duration on body temperature in Tree sparrow數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤

      圖3 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響Fig.3 Effects of wind different speed and duration on energy budget in Tree sparrow 圖中能量收支各參數(shù)的結(jié)果為組間方差分析(One-Way ANOVA)的實(shí)測(cè)值;數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤

      圖4 風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀排泄次數(shù)及單位水熱散失的影響Fig.4 Effects of wind different speed and duration on discharge frequency and cooling heat energy of every unit water in Tree sparrow 數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤

      2.3.2 雙因素協(xié)方差分析結(jié)果

      當(dāng)體重校正至17.65 g時(shí)數(shù)據(jù)顯示,風(fēng)速對(duì)攝水量(排出水量)和排出水熱能散失的影響顯著(F(2, 62)=14.693,P=0.000;F(2, 62)=16.451,P=0.000),風(fēng)速增大時(shí)攝水量和排出水熱能散失減少;對(duì)攝食量、排泄糞量、排泄次數(shù)、排出單位水熱能散失、攝入能、糞能、消化能、同化能、消化率和同化率的影響不顯著(F(2, 62)=0.156,P=0.857;F(2, 62)=2.066,P=0.146;F(2, 62)=1.221,P=0.310;F(2, 62)=2.962,P=0.068;F(2, 62)=0.110,P=0.896;F(2, 62)=2.066,P=0.148;F(2, 62)=0.191,P=0.827;F(2, 62)=0.220,P=0.804;F(2, 62)=0.280,P=0.758;F(2, 62)=0.294,P=0.748)。

      持續(xù)時(shí)間對(duì)攝食量、排泄糞量、排泄次數(shù)、攝入能、排泄糞能、消化能和同化能的影響顯著(F(2, 62)=11.726,P=0.000;F(2, 62)=7.677,P=0.002;F(2, 62)=5.531,P=0.009;F(2, 62)=10.577,P=0.000;F(2, 62)=7.676,P=0.002;F(2, 62)=11.630,P=0.000;F(2, 62)=11.214,P=0.000),隨著風(fēng)持續(xù)時(shí)間的不同,出現(xiàn)攝食量、排泄糞量和攝入能2 h時(shí)最大和4 h時(shí)最小,排泄次數(shù)和糞能2 h最大,消化能和同化能4 h最小的變化趨勢(shì);對(duì)攝水量、排出水熱能散失、排出單位水熱能散失、消化率和同化率的影響不顯著(F(2, 62)=1.492,P=0.242;F(2, 62)=2.489,P=0.101;F(2, 62)=0.221,P=0.803;F(2, 62)=1.453,P=0.251;F(2, 62)=1.547,P=0.231)。

      風(fēng)速-持續(xù)時(shí)間交互作用對(duì)攝食量、排泄糞量、攝水量、排泄次數(shù)、攝入能、排泄糞能、排出水熱能散失、排出單位水熱能散失、消化能、同化能、消化率和同化率的影響均不顯著(F(4, 62)=0.247,P=0.623;F(4, 62)=0.406,P=0.529;F(4, 62)=0.819,P=0.373;F(4, 62)=0.840,P=0.367;F(4, 62)=0.652,P=0.426;F(4, 62)=0.408,P=0.528;F(4, 62)=1.577,P=0.220;F(4, 62)=0.806,P=0.377;F(4, 62)=0.869,P=0.359;F(4, 62)=1.223,P=0.278;F(4, 62)=0.556,P=0.462;F(4, 62)=0.891,P=0.353)。

      總之,風(fēng)速大小與樹麻雀攝水量(排出水量)及排出水熱能散失顯著相關(guān),攝水量和排出水熱能散失隨著風(fēng)速增大而減少。風(fēng)持續(xù)時(shí)間(1、2或4 h)與樹麻雀的能量收支(不含排出水熱能散失)和散熱調(diào)節(jié)的次數(shù)顯著相關(guān),2 h時(shí)其能量收支最高和散熱調(diào)節(jié)的次數(shù)最多,4 h時(shí)其能量收支最低和散熱調(diào)節(jié)的次數(shù)最少。然而,風(fēng)速和持續(xù)時(shí)間的交互作用對(duì)樹麻雀能量收支的影響不顯著。3級(jí)風(fēng)(4 m/s)和持續(xù)時(shí)間4 h以內(nèi)的風(fēng)環(huán)境不會(huì)對(duì)樹麻雀的能量收支產(chǎn)生顯著影響,即樹麻雀能夠適應(yīng)當(dāng)?shù)氐钠骄L(fēng)速環(huán)境。

      3 討論

      恒溫動(dòng)物排出水的途徑有呼吸、糞和尿,多數(shù)哺乳動(dòng)物還可以通過汗液蒸發(fā)失水。體表覆羽、皮膚薄、松和缺乏腺體是鳥類進(jìn)化的特點(diǎn),鳥類唯一的皮脂腺稱尾脂腺,故鳥類不會(huì)通過汗液蒸發(fā)的方式排出水和散熱調(diào)節(jié)。鳥類的排泄物是以糞尿混合物的方式排出,排泄次數(shù)較多,糞尿無法分離。傳統(tǒng)鳥類能量學(xué)研究中,通常是以糞尿干物質(zhì)的能值記為排泄能,進(jìn)而忽略了排泄物中水的能量散失。鳥類呼吸所排出的水分和散失的熱能也未被考慮。實(shí)驗(yàn)過程中,同時(shí)準(zhǔn)確獲得恒溫動(dòng)物各種途徑的排出水量比較困難。本文以樹麻雀?jìng)€(gè)體水分含量保持相對(duì)恒定和每日攝入水約等于排出水為前提,以其體溫與環(huán)境溫度之差來計(jì)算排出水(包含呼吸和糞尿混合物中的水)中的熱能量散失,而這部分水中的能量來源于樹麻雀體內(nèi)的能量代謝。鳥類攝入食物(攝入能)、排出糞(糞能)和排出水(熱能散失)后,所獲得的能量(同化能)可以進(jìn)行體內(nèi)能量的轉(zhuǎn)化、儲(chǔ)存、分配和利用。因此,本文對(duì)能量收支的公式進(jìn)行了部分調(diào)整。

      鳥類高體溫取決于產(chǎn)熱[25]、保溫和快速有效的散熱調(diào)節(jié),其中產(chǎn)熱是獲得高體溫的生理基礎(chǔ),保溫是維持高體溫的關(guān)鍵,精確散熱是保持體溫恒定的必要條件。水是鳥類乃至生物體體內(nèi)儲(chǔ)存或進(jìn)行能量轉(zhuǎn)換的重要介質(zhì),也是鳥類和多數(shù)哺乳類動(dòng)物體溫維持的關(guān)鍵。鳥類每日可利用水的來源包括攝入的水、食物中的水和體內(nèi)能量物質(zhì)分解生成的代謝水。攝入低于體溫的水或排出等于體溫的水,都可以使其單位體重的熱量保持不變。環(huán)境溫度高于動(dòng)物體溫的特殊環(huán)境存在時(shí),排出水仍然可以使動(dòng)物單位體重的熱容量保持不變,但暫時(shí)的體溫調(diào)節(jié)和體內(nèi)含水量減少將會(huì)使之很快面臨失水(脫水)的生存脅迫。所以,鳥類體內(nèi)的水是其散熱調(diào)節(jié)的關(guān)鍵。攝水降溫往往會(huì)受到客觀因素的限制。與多數(shù)哺乳動(dòng)物可以通過汗液蒸發(fā)散熱不同,鳥類只能通過呼吸(少量水分)和以糞尿混合物的方式進(jìn)行散熱調(diào)節(jié)。需要散熱的鳥類更多是因?yàn)閯×疫\(yùn)動(dòng)。深、急呼吸雖然可以帶走相對(duì)多的熱量,但其散熱也是有限的。鳥類排泄糞尿混合物中的水是其散熱調(diào)節(jié)的關(guān)鍵,通過排泄次數(shù)和每次不同的水量實(shí)現(xiàn)精確、迅速和有效的散熱,及時(shí)排出能使體溫升高的多余熱量,維持體溫恒定。排泄次數(shù)能夠間接反映出散熱調(diào)節(jié)的次數(shù)。

      散熱調(diào)節(jié)意味著釋放體內(nèi)高于體溫的多余熱量。本研究發(fā)現(xiàn),風(fēng)速增大時(shí)排出水熱能散失顯著減少(P﹤0.001)。不同持續(xù)時(shí)間,攝入能、排泄的糞能和散熱調(diào)節(jié)的次數(shù)(排泄次數(shù))出現(xiàn)顯著變化。這些結(jié)果很可能與樹麻雀的散熱調(diào)節(jié)有關(guān)。首先,排出水的熱能散失總量?jī)H占攝入能中很少的比例,并遠(yuǎn)遠(yuǎn)小于排泄的糞能(圖3)。其次,樹麻雀體溫均測(cè)定于無風(fēng)時(shí)段(圖2),因此散熱調(diào)節(jié)時(shí)的體溫很可能高于測(cè)定的體溫,即單位水熱能量散失高于圖4中的結(jié)果。而且,實(shí)際的散熱調(diào)節(jié)中每次或每單位水散失的熱量都應(yīng)該是不同的。散熱調(diào)節(jié)次數(shù)顯著的增減變化表明,排出水熱能量散失總量的真實(shí)值很可能已經(jīng)遠(yuǎn)遠(yuǎn)大于或小于測(cè)定值。最后,散熱調(diào)節(jié)次數(shù)的增減變化很可能與其行為能耗有關(guān),即行為能耗與排出水熱能散失共同影響樹麻雀?jìng)€(gè)體的能量收支??傊懦鏊疅崮苌⑹У闹匾韺W(xué)意義在于通過每次不同的排泄水量,實(shí)現(xiàn)了精確、快速和有效的散熱調(diào)節(jié),防止體溫升高和維持體溫相對(duì)恒定。

      風(fēng)速和持續(xù)時(shí)間交互作用及消除初體重影響的結(jié)果顯示,樹麻雀的能量收支包括攝入能、排泄糞能和排出水熱能量散失總量沒有顯著差異。同時(shí),各組組內(nèi)初終體重變化不顯著(圖1)。體重是能量攝入和能量消耗最終平衡的結(jié)果[16]。因此本文認(rèn)為,風(fēng)速(3.6 m/s)和持續(xù)時(shí)間4 h以內(nèi)的風(fēng)環(huán)境不會(huì)對(duì)樹麻雀的能量收支產(chǎn)生顯著影響,即樹麻雀能夠適應(yīng)當(dāng)?shù)氐钠骄L(fēng)速環(huán)境。自然環(huán)境中同時(shí)存在極端大風(fēng)天氣。樹麻雀不同的行為發(fā)生也就意味著它們選擇了不同的能量預(yù)算對(duì)策。當(dāng)風(fēng)速超過一定限度時(shí),減少行為能耗同樣有可能使樹麻雀能量收支的收益相對(duì)增加。然而,樹麻雀能夠適應(yīng)的風(fēng)速上限、大風(fēng)天氣采用何種能量預(yù)算對(duì)策、是否同時(shí)與環(huán)境溫度、光周期和食物可獲得性等其它環(huán)境因子相關(guān)都需要進(jìn)一步的驗(yàn)證。

      [1] Liechti F. Birds: blowin′ by the wind?. Journal of Ornithology, 2006, 147(2): 202- 211.

      [2] McLaren J D, Shamoun-Baranes J, Bouten W. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines. Behavioral Ecology, 2012, 23(5): 1089- 1101.

      [3] Shamoun-Baranes J, van Loon E, Liechti F, Bouten W. Analyzing the effect of wind on flight: pitfalls and solutions. Journal of Experimental Biology, 2007, 210(1): 82- 90.

      [4] Erni B, Liechti F, Bruderer B. The role of wind in passerine autumn migration between Europe and Africa. Behavioral Ecology, 2005, 16(4): 732- 740.

      [5] Liechti F, Bruderer B. The relevance of wind for optimal migration theory. Journal of Avian Biology, 1998, 29(4): 561- 568.

      [6] Weber T P, Hedenstr?m A. Optimal stopover decisions under wind influence: the effects of correlated winds. Journal of Theoretical Biology, 2000, 205(1): 95- 104.

      [7] Weber T P, Alerstam T, Hedenstr?m A. Stopover decisions under wind influence. Journal of Avian Biology, 1998, 29(4): 552- 560.

      [8] Ma Z J, Hua N, Zhang X, Guo H Q, Zhao B, Ma Q, Xue W J, Tang C D. Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis, 2011, 153(4): 755- 767.

      [9] Alexander R M. Energy for Animal Life. Oxford: Oxford University Press, 1999: 63- 68.

      [10] Johnson M S, Thomson S C, Speakman J R. Limits to sustained energy intake Ⅰ. Lactation in the laboratory mouseMusmusculus. Journal of Experimental Biology, 2001, 204(11): 1925- 1935.

      [11] Speakman J R, Król E. Limits to sustained energy intake Ⅸ: a review of hypotheses. Journal of Comparative Physiology B, 2005, 175(6): 375- 394.

      [12] Klaasen M, Oltrogge M, Trost L. Basal metabolic rate, food intake, and body mass in cold-and warm-acclimated Garden Warblers. Comparative Biochemistry and Physiology A, 2004, 137(4): 639- 647.

      [13] Mujahid A. Acute cold-induced thermogenesis in neonatal chicks (Gallusgallus). Comparative Biochemistry and Physiology A, 2010, 156(1): 34- 41.

      [14] Collin A, Buyse J, van As P, Darras V M, Malheiros R D, Moraes V M B, Reyns G E, Taouis M, Decuypere E. Cold-induced enhancement of avian uncoupling protein expression, heat production, and triiodothyronine concentrations in broiler chicks. General and Comparative Endocrinology, 2003, 130(1): 70- 77.

      [15] Saarela S, Heldmaier G. Effect of photoperiod and melatonin on cold resistance, thermoregulation and shivering/nonshivering thermogenesis in Japanese quail. Journal of Comparative Physiology B, 1987, 157(5): 625- 633.

      [16] Ni X Y, Lin L, Zhou F F, Wang X H, Liu J S. Effects of photoperiod on body mass, organ masses and energy metabolism in Chinese bulbul (Pycnonotussinensis). Acta Ecologica Sinica, 2011, 31(6): 1703- 1713.

      [17] Yang Z H, Shao S L. The influence of different food qualities on the energy budget and digestive tract morphology of Tree SparrowsPassermontanus. Acta Ecologica Sinica, 2011, 31(14): 3937- 3946.

      [18] NcNab B K. Food habits and the evolution of energetics in birds of paradise (Paradisaeidae). Journal of Comparative Physiology B, 2005, 175(2): 117- 132.

      [19] Mackinnon J, Phillipps K. A Field Guide to the Birds of China. London: Oxford University Press, 2000: 312- 340.

      [20] Deng H L, Zhang X A. Standard metabolic rate in several species of passerine birds in alpine meadow. Acta Zoologica Sinica, 1990, 36(4): 377- 384.

      [21] Yang X Y. Studies on Windy Climatic Change and the Formative Causes of Strong Wind in Northeast China [D]. Lanzhou: Lanzhou University, 2008.

      [22] Drozdz A. Metabolic cages for small rodents // Grodzinski W, Klekowski R Z, Duncan A, eds. Methods for Ecological Bioenergetics. Oxford: Blackwell Scientific Press, 1975: 346- 351.

      [23] Grodzinski W, Wunder B A. Ecological energetics of small mammals // Golley F B, Petrusewicz K, Ryszkowski L, eds. Small Mammals: Their Productivity and Population Dynamics. Cambridge: Cambridge University Press, 1975: 173- 204.

      [24] Wang J M, Zhang Y M, Wang D H. Photoperiodic regulation in energy intake, thermogenesis and body mass in root voles (Microtusoeconomus). Comparative Biochemistry and Physiology A, 2006, 145(4): 546- 553.

      [25] Zheng W H, Li M, Liu J S, Shao S L. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passermontanus). Comparative Biochemistry and Physiology A, 2008, 151(4): 519- 525.

      參考文獻(xiàn):

      [16] 倪小英, 林琳, 周菲菲, 王小華, 柳勁松. 光周期對(duì)白頭鵯體重、器官重量和能量代謝的影響. 生態(tài)學(xué)報(bào), 2011, 31(6): 1703- 1713.

      [17] 楊志宏, 邵淑麗. 食物質(zhì)量差異對(duì)樹麻雀能量預(yù)算和消化道形態(tài)特征的影響. 生態(tài)學(xué)報(bào), 2011, 31(14): 3937- 3946.

      [20] 鄧合黎, 張曉愛. 高寒草甸幾種雀形目鳥類的標(biāo)準(zhǔn)代謝 (SMR). 動(dòng)物學(xué)報(bào), 1990, 36(4): 377- 384.

      [21] 楊雪艷. 中國東北地區(qū)風(fēng)的氣候變化特征及大風(fēng)的成因研究 [D]. 蘭州: 蘭州大學(xué), 2008.

      TheenergybudgetoftreesparrowsPassermontanusinwinddifferentspeedandduration

      YANG Zhihong, WU Qingming, DONG Haiyan,ZOU Hongfei*

      CollegeofWildlifeResources,NortheastForestryUniversity,Harbin150040,China

      Wind, a common factor in the natural environment, affects the behavior and energy budgets of different small bird species in various ways. The present study examines the correlation between wind speed and duration on the energy budgets of Eurasian tree sparrows (Passermontanus). Ninety adultP.montanuswere live-trapped by mist nets in Qiqihar, Heilongjiang Province, China (47° 29′ N, 124° 02′ E) from November to December 2012. After adapting to captivity for one week at Northeast Forestry University′s Wildlife Conservation Medicine and Ecological Security Research Center, they were randomly assigned to one of nine groups, which were exposed to winds of different speeds (0.2—0.4, 1.2—1.4, 3.2—3.6 m/s) and durations (1, 2, 4 h/d) for one week in otherwise constant laboratory conditions, such as available food, temperature ((21.0±1.0) ℃) and natural light cycle photoperiod. Each group of birds inhabited the same birdcage living space, including two feeders and a water source, which provided unlimited food and water. The wind direction was set to blow from the feeder location in the birdcage to ensure that the birds could forage while facing windward. Winds of different speeds were created by electric fans at varied distances from each birdcage; an anemometer and a timer were used to measure wind speed and duration, respectively. Isolation measures were taken to ensure the experiments for each group did not interfere with the effects of wind on other groups. The body mass of each bird (BS210S balance, Sartorius Instrument Co., Ltd., Shenzhen, China) was measured to 0.01 g immediately after grouping and measured again at weekly intervals over the period of wind acclimation and testing. Body temperature was measured every day to 0.10 ℃, during which there was no wind. Food, water intake and fecal discharge frequency were recorded once a day. Meanwhile, food residues and feces were collected on a daily basis during the experiment and their caloric content was determined using an oxygen bomb calorimeter (GR- 3500, Guangdong Instrument Corp., Guangdong, China).

      After acclimation, we found the body mass and body temperature ofP.montanusexhibited no significant changes with variations in wind speed and duration. The energy budgets were significantly different between the nine experimental groups, including significant differences in the mass of food and water intake, energy intake, cooling energy of water discharged, digestible energy and assimilation energy (Plt; 0.01), and the fecal discharge frequency, fecal mass and energy (Plt;0.05). Each unit of cooling energy of water discharge, digestion rate and assimilation rate showed no obvious change with different wind conditions (Pgt; 0.05). The energy budgets among groups were remarkably different without considering the effects of initial body weight. In this paper, as wind speed increased, water intake and cooling energy of water discharge in this species declined proportionally (Plt; 0.001). Variations in wind duration resulted in significant differences in energy intake, fecal energy and discharge frequency (Plt; 0.01) for wind durations of 2 or 4 h. However, the final consequence of wind speed and duration created no significant differences in the energy budgets ofP.montanusunder different experimental conditions, after the effects of initial body mass were eliminated, which was based on double-factorial analysis of variance on the combined action of wind speed and duration. To summarize, the wind environment of this study′s setting, which simulated common local conditions, had no significant effect on the energy budget inP.montanus.

      energy budget;Passermontanus; wind

      中央高?;究蒲袠I(yè)務(wù)費(fèi)支持項(xiàng)目(DL12EA04); 國家自然科學(xué)基金資助項(xiàng)目(31070345, 30670350)

      2013- 04- 22;

      2013- 07- 22

      *通訊作者Corresponding author.E-mail: hongfeizou@163.com

      10.5846/stxb201304220776

      楊志宏,吳慶明, 董海燕, 鄒紅菲.風(fēng)速和持續(xù)時(shí)間對(duì)樹麻雀能量收支的影響.生態(tài)學(xué)報(bào),2013,33(19):6028- 6034.

      Yang Z H, Wu Q M, Dong H Y,Zou H F.The energy budget of tree sparrowsPassermontanusin wind different speed and duration.Acta Ecologica Sinica,2013,33(19):6028- 6034.

      猜你喜歡
      熱能收支持續(xù)時(shí)間
      化學(xué)反應(yīng)與熱能思維導(dǎo)圖
      熱能來自何處
      關(guān)于未納入海關(guān)統(tǒng)計(jì)的貨物貿(mào)易收支統(tǒng)計(jì)研究
      中國外匯(2019年19期)2019-11-26 00:57:34
      2016年浙江省一般公共預(yù)算收支決算總表
      “收支兩條線”生與死
      曾被寄予厚望的“收支兩條線”
      The 15—minute reading challenge
      基于SVD的電壓跌落持續(xù)時(shí)間檢測(cè)新方法
      基于GE的熱能回收裝置
      北京市再生水熱能開發(fā)利用研究
      宁国市| 章丘市| 义乌市| 汽车| 黄浦区| 灵武市| 柳林县| 曲靖市| 灵石县| 金山区| 曲靖市| 盐源县| 凤庆县| 汉沽区| 鄱阳县| 子长县| 锡林浩特市| 平乡县| 寿宁县| 四平市| 义马市| 丰都县| 抚州市| 高州市| 宣化县| 思南县| 天镇县| 岚皋县| 九寨沟县| 乾安县| 凉城县| 枣庄市| 柳林县| 巴楚县| 洪江市| 博罗县| 汉中市| 墨江| 麻城市| 文成县| 南雄市|