肖以華,李 炯,曠遠文,*,佟富春,習 丹,陳步峰,史 欣,裴男才,黃俊彪,潘勇軍
(1.中國林業(yè)科學研究院熱帶林業(yè)研究所, 廣州 510520; 2. 中國科學院華南植物園, 廣州 510650;3. 華南農(nóng)業(yè)大學林學院, 廣州 510642)
廣州大夫山雨季林內(nèi)外空氣TSP和PM2.5濃度及水溶性離子特征
肖以華1,李 炯2,曠遠文2,*,佟富春3,習 丹2,陳步峰1,史 欣1,裴男才1,黃俊彪1,潘勇軍1
(1.中國林業(yè)科學研究院熱帶林業(yè)研究所, 廣州 510520; 2. 中國科學院華南植物園, 廣州 510650;3. 華南農(nóng)業(yè)大學林學院, 廣州 510642)
TSP;PM2.5;水溶性離子;空氣污染;林內(nèi)外;廣州市
我國城市化的迅速發(fā)展使城市的環(huán)境負荷日趨增重,空氣中粉塵、煙霧、有害氣體日趨增多,空氣中的懸浮顆粒污染物,如總懸浮顆粒物(Total suspended particulate,TSP)和細顆粒物(Particulate matter less than 2.5, PM2.5),已逐漸成為空氣污染的首要污染物[1- 2]。PM2.5指的是空氣中空氣動力學直徑小于等于2.5 μm的懸浮顆粒物,它是空氣中重要的污染物之一,其來源及化學組成均非常復(fù)雜,除了各種污染源的一次排放外,還包括氣態(tài)污染物經(jīng)由復(fù)雜的空氣光化學反應(yīng)而形成的二次污染物。PM2.5因其危害人體健康[3]、攜帶病菌和污染物[4]、降低能見度[5- 8]、引發(fā)灰霾[9]等原因,已經(jīng)成為國內(nèi)外公眾、政府和學者共同關(guān)注的重要問題。為了改善城市的空氣環(huán)境和提高人居環(huán)境質(zhì)量,各級政府大力營造城市森林,通過森林龐大的冠幅來阻塵、滯塵、吸塵和降解污染物的生態(tài)功能,發(fā)揮其生態(tài)效益。
森林對空氣顆粒物的影響已成為研究者的熱點[10- 12],Kourtchev在德國發(fā)現(xiàn)混交林能減少大氣PM2.5中約12%的有機碳含量[13];在日本中部針葉林和挪威云杉林研究發(fā)現(xiàn)森林林冠明顯改變了PM2.5中硫的質(zhì)量濃度和沉降速率[14- 15]。在國內(nèi),也有學者關(guān)注不同緯度森林區(qū)域PM2.5的濃度變化和離子組成[16],不同林分類型中總懸浮顆粒物、PM2.5和PM10的濃度季節(jié)、日變化規(guī)律等[17- 18],但不同地區(qū)由于污染源、氣候、地理位置等因素差異,TSP和PM2.5的質(zhì)量濃度和化學組成特征也有較大區(qū)別,森林對空氣TSP和PM2.5的質(zhì)量濃度和化學組成成分的影響相關(guān)研究也比較少。本研究采用平行同步采樣法(Real-time),對林內(nèi)、外進行24h收集TSP和PM2.5樣品,研究森林對空氣顆粒物的影響,旨在為計量城市森林生態(tài)效益及城市森林生態(tài)建設(shè)等提供參考。
1.1 研究地概況
大夫山森林公園位于珠三角腹地——廣州市南部的番禺區(qū),是典型的城鄉(xiāng)結(jié)合部,濱臨珠江入海口。地理位于北緯22°57′—22°59′,東經(jīng)113°17′—113°18′,以低山丘陵為主,最高海拔為226.6 m。森林公園總面積約1000 hm2,是廣州地區(qū)生態(tài)型森林公園。優(yōu)勢樹種主要是馬尾松(Pinusmassoniana)、馬占相思(Acaciamangium)、粉紫荊(Bauhiniavariegata)、紅花紫荊(Bauhiniablakeana)、大葉紫薇(Lagerstroemiaspeciosa)。大夫山森林公園地處南亞熱帶濕潤季風氣候區(qū),年平均氣溫為21.8 ℃,最冷的1月份平均氣溫仍達13.3 ℃,而7月份平均氣溫為29 ℃,年無霜期長達346 d。年平均降水量為1650 mm,降雨量的季節(jié)分配不均,旱季雨季分明。降雨集中在4—9月,占全年的81%;相對濕度一般是81%。年均日照時數(shù)2000 h。熱量充足,降水豐沛,雨熱同期,對區(qū)域內(nèi)植被繁衍、生長極為有利。
1.2 研究方法
1.2.1 采樣儀器、時間及方法
采用國產(chǎn)智能中流量采樣器(TH 150AO)采集大氣樣品,2臺采樣器設(shè)置于大夫山森林公園內(nèi)空曠草坪地,周邊無高大建筑和局地點源污染源,分別采集TSP和PM2.5;另2臺采樣器設(shè)置于距林外采樣點30 m的林內(nèi)——即在“廣州市森林生態(tài)效益監(jiān)測網(wǎng)絡(luò)”林內(nèi)氣象場分別采集TSP和PM2.5。圓形采樣器距地面高度為人體平均呼吸高度(1.5 m),采樣流量為100 L/min,每天9:00更換石英纖維濾膜(59 mm),每張濾膜對TSP和PM2.5的采集時間為24 h。濾膜在采樣前后均在干燥器中以平衡法干燥、稱重。采樣時間貫穿整個雨季(2012年4月至9月),逐月進行;由于空氣濕度影響儀器對PM2.5樣品的采集,扣除雨天等天氣影響,每個觀測點得到TSP和PM2.5有效樣品各18個,共收集樣品72個。
1.2.2 樣品分析
1.2.3 質(zhì)量控制與保證
石英纖維濾膜使用前在馬氟爐中灼燒3h以上,溫度為600—900 ℃,然后放入鋁箔包裝, 密封貯存。采樣前后將石英纖維濾膜放置于萬分之一分析天平平衡48 h后,進行稱重。樣品采集前對采樣器進行流量校準。樣品每采集1周再次校準流量,其相對偏差小于5%。
分析用的玻璃器皿于馬氟爐中450 ℃中加熱8 h,對不能用馬氟爐烘干的器皿用丙酮和光譜級正已烷進行溶劑清洗,干燥和清洗后的器皿封口貯存。每10個樣品中隨機抽取1個進行平行分析,測量全程空白并在結(jié)果中扣除[20]。
2.1林內(nèi)外TSP和PM2.5質(zhì)量濃度
研究期間,大夫山森林公園林內(nèi)外的PM2.5和TSP的質(zhì)量濃度值見表1。林內(nèi)外PM2.5的質(zhì)量濃度平均值分別為(40.18 ± 10.47)和(55.79 ± 13.01) g/cm3;林內(nèi)外TSP的質(zhì)量濃度分別為(101.32 ± 33.19)和(116.61 ± 35.36)g/cm3。經(jīng)方差分析表明,林內(nèi)外之間的PM2.5和TSP平均質(zhì)量濃度差異顯著(Plt;0.05),PM2.5和TSP的質(zhì)量濃度無論是最小值還是最大值,林外都要顯著高出林內(nèi)。林內(nèi)外PM2.5分別占TSP總質(zhì)量的(39.66 ± 4.16)%和(49.51 ± 4.72)%,林外PM2.5是TSP的一半,說明林外PM2.5是TSP的主要組成部分,而林內(nèi)的PM2.5濃度值比林外的要低。參照國家環(huán)境空氣質(zhì)量標準(GB3095—2012),林內(nèi)外PM2.5達到國家一級空氣質(zhì)量標準(≤35 μg/m3)的天數(shù)概率分別為44%和33%;林內(nèi)外TSP達到國家一級空氣質(zhì)量標準(≤120 μg/m3)的天數(shù)概率分別為72%和56%。從林內(nèi)外PM2.5與TSP的濃度間關(guān)系可知(圖1),PM2.5與TSP的濃度間存在明顯的相關(guān)性,且林內(nèi)的相關(guān)系數(shù)R2大于林外;林外的TSP與PM2.5為非線性關(guān)系,其方程式為:TSP= 90.59ln(PM2.5)-238.41 (R2= 0.885,Plt;0.01),林內(nèi)的TSP與PM2.5線性關(guān)系方程式為:TSP = 1.41PM2.5+ 20.36(R2= 0.943,Plt;0.01)。
表1 廣州大夫山森林公園林內(nèi)外空氣TSP和PM2.5濃度
不同字母表示兩兩間差異顯著(Plt;0.05)
圖1 林內(nèi)外TSP與PM2.5濃度關(guān)系Fig.1 Relationship between TSP and PM2.5 concentrations inside and outside forestTSP: 總懸浮顆粒物Total suspended particulate; PM2.5: 小于2.5 μm 細顆粒物 Particulate matter less than 2.5 μm
2.2林內(nèi)外TSP和PM2.5水溶性離子特征
表2 林內(nèi)TSP和PM2.5水溶性離子濃度
括號中為標準差
表3 林外TSP和PM2.5水溶性離子濃度
圖2 TSP和PM2.5中無機水溶性離子所占的比例Fig.2 The percentages of each water-soluble ion in the TSP and PM2.5
2.3 主要離子間的相關(guān)性與結(jié)合方式
離子間的相關(guān)性分析可以揭示氣溶膠中離子間的結(jié)合方式。為了解林內(nèi)外各離子的來源和相互結(jié)合情況,對研究期間的離子濃度進行了相關(guān)矩陣分析,主要離子間的相關(guān)系數(shù)如表4所示。
(1)
(2)
表4 林內(nèi)外TSP和PM2.5的離子間相關(guān)系數(shù)
續(xù)表
Na+NH+4K+Mg2+Ca2+Cl-SO2-4NO-30.020.92*0.87*0.210.310.180.87*林內(nèi)NH+40.33InsideTSPK+0.400.96Mg2+1.00**0.240.83*Ca2+0.100.150.130.12Cl-0.99**0.350.350.710.28SO2-40.51*0.95**0.92*0.310.170.38NO-30.210.84*0.80*0.260.110.230.62*林外NH+40.14OutsideTSPK+0.200.89*Mg2+0.86*0.110.91*Ca2+0.040.190.10-0.09Cl-0.96**0.360.89*0.270.69SO2-40.460.98**0.92*0.410.680.92*NO-30.300.88*0.69*0.49*0.310.79*0.83*
* 表示顯著水平為0.05,**表示顯著水平為0.01
圖3 計算所得濃度與實驗測得濃度相關(guān)性圖Fig.3 The correlation between calculated and measured ammonium concentration
2.4 離子成分的源解析
2.4.1 海洋源和陸地源的解析
表5 大夫山森林公園林內(nèi)外雨季TSP和PM2.5中離子成分的比值分析
2.4.2 移動源和固定源的解析
有研究表明,植物能通過冠幅降低樹冠內(nèi)風速,使得空氣顆粒物以滯留或停著、附著和粘附3種方式達到消減空氣顆粒物的生態(tài)效應(yīng)[23]。從本研究結(jié)果來看,林內(nèi)的PM2.5和TSP平均質(zhì)量濃度比林外顯著減少(Plt;0.05),與廣州市區(qū)雨季的PM2.5相比減少近50%[21],與城區(qū)相比,大夫山森林公園森林發(fā)揮了降塵、減塵的作用,為市民提供了一個相對潔凈的游憩空間。許多研究者也發(fā)現(xiàn)森林植被對空氣PM2.5能顯著的降低效應(yīng)。如任啟文等[24]對北京元大都遺址公園內(nèi)不同林地類型及其旁邊道路空氣顆粒物進行了研究,發(fā)現(xiàn)公園森林內(nèi)的空氣PM2.5值明顯低于林外道路上的空氣PM2.5。郭二果[2]研究了北京西山地區(qū)3種典型游憩林對空氣中顆粒物的阻滯和吸附效應(yīng),指出游憩林能有效降低空氣中顆粒物的質(zhì)量含量。但雨季中,森林對空氣PM2.5作用在不同地區(qū)、不同森林類型存在差異[2,24- 25],如吳志萍等[26]研究了6種城市綠地環(huán)境下空氣PM2.5濃度的變化規(guī)律,發(fā)現(xiàn)雨季林內(nèi)的空氣PM2.5濃度卻高于林外;但Cheng Manting和郭二果等研究發(fā)現(xiàn)林內(nèi)的空氣PM2.5濃度在雨季要低于林外[2,25],與本研究結(jié)果一致。
Mg2+、K+和Ca2+是空氣中典型的地殼元素,大多數(shù)是半自然或者人為活動造成的,對地表水體的硬度造成影響[30]。從研究結(jié)果看,Mg2+、K+和Ca2+在林內(nèi)外的TSP和PM2.5的質(zhì)量濃度呈降低的趨勢,其主要原因是空氣顆粒物通過林冠時被樹木葉面滯留,McPherson等和Freer Smith等在植物滯留空氣顆粒物的機理研究發(fā)現(xiàn)這一研究結(jié)果[23,31]。Mg2+、K+在空氣顆粒物中相關(guān)性顯著,主要由于附近餐飲燒烤的植物燃料釋放有關(guān)。而Ca2+與其它元素各離子的相關(guān)性均較弱,說明Ca2+有著不同于其他離子的來源,如土壤塵和建筑粉塵等[32]。
[1] Wang X H, Bi X H, Sheng G Y. Chemical composition and sources of PM10and PM2.5aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 2006, 119(1/3): 425- 439.
[2] Dai W, Gao J Q, Cao G, Ouyang F. Chemical composition and source identification of PM2.5in the suburb of Shenzhen, China. Atmospheric Research, 2013, 122: 391- 400.
[3] Poschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Atmospheric Chemistry, 2005, 44(46): 7520- 7540.
[4] Stracquadanio M, Apollo G, Trombini C. A study of PM2.5and PM2.5-associated polycyclic aromatic hydrocarbons at an urban site in the Po Valley (Bologna, Italy). Water, Air, and Soil Pollution, 2007, 179(1/4): 227- 237.
[5] Anderson T L, Carlson R J, Schwartz S E, Knutti R, Boucher O, Rodhe H, Heintzenberg J. Climate forcing by aerosols-a hazy picture. Science, 2003, 300(5622): 1103- 1104.
[6] Yan F Q, Hu H L, Yu T. Analysis of particulate mass concentration, aerosol number concentration and visibility in Beijing. Particuology, 2004, 2(1): 25- 30.
[7] IPCC. Climate Change 2007-the Physical Science Basis. Cambridge: Cambridge University Press, 2007: 122- 131.
[8] Xu L L, Chen X Q, Chen J S, Zhang F W, He C, Zhao J P, Yin L Q. Seasonal variations and chemical compositions of PM2.5aerosol in the urban area of Fuzhou, China. Atmospheric Research, 2012, 104- 105: 264- 272.
[9] Zhang T, Tao J, Wang B G, Zhu L H, Han J L, Xu Z C. Study on the pollution characteristics of particle number density in Guangzhou during January 2008. Environmental Monitoring in China, 2009, 25(2): 31- 34.
[10] Pio C, Alves C, Duarte A. Organic components of aerosols in a forested area of central Greece. Atmospheric Environment, 2001, 35(2): 389- 401.
[11] Rissanen T, Hy?tyl?inen T, Kallio M, Kronholm J, Kulmala M, Riekkola M L. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Chemosphere, 2006, 64(7): 1185- 1195.
[12] Ivan K,J?rg W, Willy M, Thorsten H, Magda C.marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 2008, 73(8): 1308- 1314.
[13] Kourtchev I, Warnke J, Maenhaut W, Hoffmann T, Claeys M. Polar organic marker compounds in PM2.5aerosol from a mixed forest site in western Germany. Chemosphere, 2008, 73(8): 1308- 1314.
[14] Matsuda K, Fujimur Y, Hayashi K, Takahashi A, Nakaya K. Deposition velocity of PM2.5sulfate in the summer above a deciduous forest in central Japan. Atmospheric Environment, 2010, 44(36): 4582- 4587.
[15] Horváth L. Dry deposition velocity of PM2.5ammonium sulfate particles to a Norway spruce forest on the basis of S-and N-balance estimations. Atmospheric Environment, 2003, 37(31): 4419- 4424.
[16] Li L, Wang W, Feng J L, Zhang D P, Li H J, Gu Z P, Wang B J, Sheng G Y, Fu J M. Composition, source, mass closure of PM2.5aerosols for four forests in eastern China. Journal of Environmental Sciences, 2010, 22(3): 405- 412.
[17] Guo E G, Wang C, Qie G F, Fang C, Sun Z W, Zhou Z H. Diurnal variations of airborne particulate matters in different seasons in typical recreation forests in west Mountain of Beijing. Acta Ecologica Sinica, 2009, 29(6): 3253- 3263.
[18] Guo E G, Wang C, Peng Z H, Qie G F, Yang W W, Fang C, Zhou Z H. Diurnal variation of airborne particulate matter in 3 typical recreation forests in west mountain of Beijing area in spring. Scientia Silvae Sinicae, 2009, 45(6): 145- 148.
[19] Yu X C, He K B, Ma Y L, Duan F K, Yang F M, Zheng A H, Zhao C Y. Determination of water-soluble inorganic and organic species of aerosols. Environmental Chemistry, 2004, 23(2): 218- 222.
[20] Gu J X, Bai Z P, Li W F, Wu L P, Liu A X, Dong H Y, Xie Y Y. Chemical composition of PM2.5during winter in Tianjin, China. Particuology, 2011, 9(3): 215- 221.
[21] Lai S C, Zou S C, Cao J J, Lee S C, Ho K F. Characterizing ionic species in PM2.5and PM10in four Pearl River Delta cities, South China. Journal of Environmental Sciences, 2007, 19(8): 939- 947.
[22] McInnes L M, Covert D S, Quinn P K, Germani M S. Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research, 1994, 99(D4): 8257- 8268.
[23] Freer S P H, Beckett K P, Taylor G. Deposition velocities toSorbusaria,Acercampestre,Populusdeltoids×trichocarpa‘Beaupré’,Pinusnigraand ×Cupressocyparisleylandiifor coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 2005, 133(1): 157- 167.
[24] Ren Q W, Wang C, Qie G F, Yang Y. Airborne particulates in urban greenland and its relationship with airborne microbes. Urban Environment amp; Urban Ecology, 2006, 19(5): 22- 25.
[25] Cheng M T, Horng C L, Lin Y C. Characteristics of atmospheric aerosol and acidic gases from urban and forest sites in central Taiwan. Bulletin of Environmental Contamination and Toxicology, 2007, 79(6): 674- 677.
[26] Wu Z P, Wang C, Hou X J, Yang W W. Variation of air PM2.5concentration in six urban greenlands. Journal of Anhui Agricultural University, 2008, 35(4): 494- 498.
[27] Fang G C, Chang C N, Wu Y S, Fu P F, Yang D G, Chu C C. Characterization of chemical species in PM2.5and PM10aerosols in suburban and rural sites of central Taiwan. The Science of the Total Environment, 1999, 234(1/3): 203- 212.
[28] Saxena A, Kulshrestha U C, Kumar N, Kumari K M, Srivastava S S. Characterization of precipitation at Agra. Atmospheric Environment, 1996, 30(20): 3405- 3412.
[29] Lara L B L S, Artaxo P, Martinelli L A, Victoria R L, Camargo P B, Krusche A, Ayers G P, Ferraz E S B, Ballester M V. Chemical composition of rainwater and anthropogenic influences in the Piracicaba river basin, southeast Brazil. Atmospheric Environment, 2001, 35(29): 4937- 4945.
[30] Tang X Y, Zhang Y H. Atmospheric Environmental Chemistry. Beijing: China Forestry Press, 1990: 345- 347.
[31] Stelson A W, Seinfeld J H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment (1967), 1982, 16(5): 983- 992.
[32] Huang X D, Olmez I, Aras N K, Gordon G E. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmospheric Environment, 1994, 28(8): 1385- 1391.
[33] McPherson E G, Scott K I, Simpson J R. Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment, 1998, 32(1): 75- 84.
[34] Ye B M, Ji X L, Yang H Z, Yao X H, Chan C K, Cadle S H, Chan T, Mulawa P A. Concentration and chemical composition of PM2.5in Shanghai for a 1-year period. Atmospheric Environment, 2003, 37(4): 499- 510.
[35] Yao X H, Chan C K, Fang M, Cadle S, Chan T, Mulawa P, He K B, Ye B M. The water-soluble ionic composition of PM2.5in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36(26): 4223- 4234.
[36] Watson J G, Chow J C, Houck J E. PM2.5chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 2001, 43(8): 1141- 1151.
[37] Lü W Y, Xu H J, Wang X M. Major inorganic water-soluble ions in fine particles collected in autumn in urban Guangzhou. Environmental Science amp; Technology, 2010, 33(1): 98- 101.
參考文獻:
[9] 張濤, 陶俊, 王伯光, 朱李華, 韓靜磊, 許振成. 2008年1月廣州顆粒物數(shù)濃度污染特征. 中國環(huán)境監(jiān)測, 2009, 25(2): 31- 34.
[17] 郭二果, 王成, 郄光發(fā), 房城, 孫志偉, 周志海. 北京西山典型游憩林空氣顆粒物不同季節(jié)的日變化. 生態(tài)學報, 2009, 29(6): 3253- 3263.
[18] 郭二果, 王成, 彭鎮(zhèn)華, 郄光發(fā), 楊偉偉, 房城, 周志海. 北京西山三種典型游憩林春季空氣顆粒物日變化規(guī)律. 林業(yè)科學, 2009, 45(6): 145- 148.
[19] 余學春, 賀克斌, 馬永亮, 段鳳魁, 楊復(fù)沫, 鄭愛華, 趙承易. 氣溶膠水溶性無機物及有機物的離子色譜測定. 環(huán)境化學, 2004, 23(2): 218- 222.
[24] 任啟文, 王成, 郄光發(fā), 楊穎. 城市綠地空氣顆粒物及其與空氣微生物的關(guān)系. 城市環(huán)境與城市生態(tài), 2006, 19(5): 22- 25.
[26] 吳志萍, 王成, 侯曉靜, 楊偉偉. 6種城市綠地空氣PM2.5濃度變化規(guī)律的研究. 安徽農(nóng)業(yè)大學學報, 2008, 35(4): 494- 498.
[30] 唐孝炎, 張遠航. 大氣環(huán)境化學. 北京: 高等教育出版社, 1990: 345- 347.
[37] 呂文英, 徐海娟, 王新明. 廣州城區(qū)秋季大氣PM2.5中主要水溶性無機離子分析. 環(huán)境科學與技術(shù), 2010, 33(1): 98- 101.
ComparisonofTSP,PM2.5andtheirwater-solubleionsfrombothinsideandoutsideofDafushanforestparkinGuangzhouduringrainyseason
XIAO Yihua1,LI Jiong2,KUANG Yuanwen2,*,TONG Fuchun3,XI Dan2,CHEN Bufeng1, SHI Xin1,PEI Nancai1,HUANG Junbiao1,PAN Yongjun1
1ResearchInstituteofTropicalForestry,ChineseAcademyofForestry,Guangzhou510520,China2SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou510650,China3CollegeofForestry,SouthChinaAgriculturalUniversity,Guangzhou510642,China
There is national research interest in the dynamics of airborne particulate matter (PM) due to its detrimental effects on air quality and human health. Both regional surveys and locally intensive monitoring of PM, particularly particles less than 2.5 micrometers in diameter (PM2.5), are now being conducted throughout China. The main research emphases include the spatial distribution, chemical characteristics, and main sources of airborne PM2.5in many urban areas, as well as industrial sites.
The Pearl River Delta (PRD) is one of the highly urbanized and industrialized regions in China. Unfortunately, accompanying the rapid eco-social developments, the PRD has also deteriorated in terms of air, soil and water quality during the last few decades. Air pollution has been a serious environmental problem for many years now and frequent haze episodes in this region were often attributed to high concentrations of airborne PM2.5.
TSP;PM2.5;water-soluble ions; air pollution; inside and outside forest ; Guangzhou City
國家林業(yè)公益性行業(yè)科研專項資助項目(20130430106); 中國林業(yè)科學研究院熱帶林業(yè)研究所基本科研業(yè)務(wù)費專項資助項目(RITFYW2X201104); 中國科學院知識創(chuàng)新工程重要方向項目(KSCX2-EW-J- 28); 廣州市森林生態(tài)效益監(jiān)測網(wǎng)絡(luò)項目(2012- 2013);廣州市“青山綠地-林帶林區(qū)”工程的生態(tài)效益監(jiān)測項目
2013- 05- 02;
2013- 07- 18
*通訊作者Corresponding author.E-mail: kuangyw@scbg.ac.cn
10.5846/stxb201305020888
肖以華,李炯,曠遠文,佟富春,習丹,陳步峰,史欣,裴男才,黃俊彪,潘勇軍.廣州大夫山雨季林內(nèi)外空氣TSP和PM2.5濃度及水溶性離子特征.生態(tài)學報,2013,33(19):6209- 6217.
Xiao Y H,Li J,Kuang Y W,Tong F C,Xi D,Chen B F, Shi X,Pei N C,Huang J B,Pan Y J.Comparison of TSP, PM2.5and their water-soluble ions from both inside and outside of Dafushan forest park in Guangzhou during rainy season .Acta Ecologica Sinica,2013,33(19):6209- 6217.