• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      磁性納米材料在食源性致病菌分離中應(yīng)用的研究進(jìn)展

      2014-01-18 08:33:26黃小林許恒毅熊勇華
      食品科學(xué) 2014年11期
      關(guān)鍵詞:食源性萬(wàn)古霉素致病菌

      黃小林,許恒毅*,熊勇華,曲 鋒,楊 林

      (南昌大學(xué) 食品科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330047)

      磁性納米材料在食源性致病菌分離中應(yīng)用的研究進(jìn)展

      黃小林,許恒毅*,熊勇華,曲 鋒,楊 林

      (南昌大學(xué) 食品科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330047)

      食源性致病菌是影響食品安全的主要因素之一。食品中污染的致病菌數(shù)量通常較少,加上其基質(zhì)復(fù)雜,常規(guī)分析方法常無(wú)法直接對(duì)致病菌進(jìn)行高靈敏、高特異的檢測(cè)。經(jīng)過(guò)生物學(xué)修飾和功能化的磁性納米材料,可特異性地識(shí)別食品基質(zhì)中少量的致病菌,并通過(guò)磁場(chǎng)對(duì)靶細(xì)菌進(jìn)行快速及高特異性的選擇性分離,實(shí)現(xiàn)了食品樣品中少量致病菌的特異性分離富集,達(dá)到了后續(xù)分析檢測(cè)的純度和數(shù)量。本文綜述了磁性納米材料在食源性致病菌分離富集中的研究進(jìn)展。

      磁性納米材料;食源性致病菌;分離;富集

      食品安全問(wèn)題一直是備受各國(guó)政府和群眾關(guān)注的焦點(diǎn)問(wèn)題,也是關(guān)系到國(guó)計(jì)民生的重大問(wèn)題。其中,由致病菌引起的食品污染問(wèn)題是主要的食品安全問(wèn)題之一。據(jù)報(bào)道,美國(guó)每年有7600萬(wàn)人感染食源性疾病,其中有32500例住院病例和5000例致死病例,而由食源性致病菌引起的占19.4%[1]。有資料顯示,2006年我國(guó)食源性疾病監(jiān)測(cè)地區(qū)暴發(fā)食源性疾病事件共594起,累計(jì)發(fā)病13849例,死亡67例,其中由食源性致病菌引起的占48.3%[2]。就此,尋找快速檢測(cè)食源性致病菌的方法尤為迫切。然而,現(xiàn)有檢測(cè)方法對(duì)已預(yù)增菌培養(yǎng)的樣品靈敏度較高,而對(duì)目的菌數(shù)量少或者存在干擾性物質(zhì)的普通食品樣品,靈敏度低且特異性差,前期對(duì)目的菌進(jìn)行預(yù)增菌或高效分離富集是實(shí)現(xiàn)快速檢測(cè)的重要前提。因此,選擇合適的分離方法,使目的菌從復(fù)雜的食品基質(zhì)中分離出來(lái),同時(shí)清除食品基質(zhì)中干擾后續(xù)檢測(cè)的物質(zhì),對(duì)實(shí)現(xiàn)目的菌靈敏且特異的檢測(cè)至關(guān)重要。目前常用的細(xì)菌分離方法分為選擇性和非選擇性兩類,常見(jiàn)的選擇性方法有基于抗體的免疫分離等,而常見(jiàn)的非選擇性方法有離心、過(guò)濾、交換樹(shù)脂、吸附等。表1總結(jié)了從食品中分離富集細(xì)菌的各種方法及其優(yōu)缺點(diǎn)。

      近年來(lái),基于磁性微球的免疫磁分離法(immunomagnetic separation,IMS)已被廣泛應(yīng)用于食源性致病菌的分離,在一定程度上取代了傳統(tǒng)的增菌培養(yǎng)。但是受磁性微珠捕獲效率、擴(kuò)散速度以及其在食品基質(zhì)中的不穩(wěn)定性等諸多因素的限制,該方法的分離效率有限。隨著納米材料合成技術(shù)的迅猛發(fā)展,納米級(jí)磁性材料的研究受到了廣泛的關(guān)注,其在細(xì)胞分離、蛋白質(zhì)分離、核酸分離和微生物分離等方面都有重要的應(yīng)用。磁性納米材料與普通的磁性微珠相比,直徑從微米級(jí)減小到納米級(jí),具有更理想的比表面積和反應(yīng)動(dòng)力學(xué)特征,且克服了磁性微球穩(wěn)定性差、擴(kuò)散速度慢、非特異性吸附強(qiáng)以及易損傷目標(biāo)菌等缺點(diǎn),在致病菌分離富集中具有良好的應(yīng)用前景。本文綜述了磁性納米材料在食源致病菌分離富集中應(yīng)用的研究進(jìn)展。

      表1 食源性致病菌的分離技術(shù)及其優(yōu)缺點(diǎn)Table1 Technologies for the separation of foodborne pathogens and their advantages and disadvantages

      1 磁性納米材料的生物學(xué)修飾

      磁性納米材料的生物學(xué)修飾是利用磁性納米材料分離富集致病菌的前提,將生物親和分子修飾到磁性納米材料的表面,賦予其捕獲目標(biāo)菌的能力,間接地“磁化”細(xì)菌細(xì)胞(磁細(xì)菌),使磁細(xì)菌在外界磁場(chǎng)作用下能夠從樣品液中分離。另外,經(jīng)修飾后的磁性納米材料可以獲得比單體生物分子更高的結(jié)合能力。例如,由于多個(gè)抗體分子可被修飾于磁性納米粒子上,磁性納米粒子經(jīng)抗體修飾后,與目標(biāo)菌的結(jié)合能力是單獨(dú)抗體的8倍;同理,經(jīng)甘露糖修飾后,與目標(biāo)菌的結(jié)合能力比單體甘露糖強(qiáng)200倍[19-20]。

      磁性納米材料生物學(xué)修飾的方法有很多,大體分為直接修飾和間接修飾兩種。直接修飾又分為物理吸附和共價(jià)偶聯(lián)。物理吸附是指蛋白質(zhì)等生物親和分子和納米材料間的疏水作用和靜電作用;共價(jià)偶聯(lián)是指先在納米材料的表面修飾硫化物、胺或者羧基,通過(guò)這些基團(tuán)與生物親和分子形成共價(jià)鍵從而實(shí)現(xiàn)納米材料生物學(xué)修飾[21-22]。間接修飾則需要利用一對(duì)具有強(qiáng)親和力的分子,比如生物素-親和素。先用親和素包被納米材料,再將要修飾的生物親和分子標(biāo)記生物素,通過(guò)生物素和親和素的結(jié)合間接達(dá)到修飾磁性納米材料的目的。

      2 磁性納米材料捕獲致病菌的方式及其應(yīng)用

      圖1 Fe 1 Fe3O4磁性納米粒子捕獲致病菌的方式Fig.1 Ways of capturing pathogenic bacteria with magnetic Fe3O4nanoparticles

      表2 磁性納米材料在食源性致病菌分離中的應(yīng)用Table2 Summary of the application of magnetic nanomaterials in the separation of foodborne pathogens

      磁性納米材料通過(guò)生物學(xué)修飾,獲得可以捕獲食源性致病菌的能力,再利用外界磁場(chǎng)從而達(dá)到分離菌體目的。表2總結(jié)了近幾年磁性納米材料在分離不同食品基質(zhì)中食源性致病菌的研究。磁性納米材料表面使用的修飾物不同,捕獲食源性致病菌的方式也不同,總結(jié)于圖1。

      2.1 抗原-抗體

      基于抗原抗體之間的特異性反應(yīng)實(shí)現(xiàn)食源性致病菌捕獲是最常用的方式,已被廣泛應(yīng)用于各種食源性致病菌的分離富集。食源性致病菌相應(yīng)的抗體也是磁性納米材料最常用的修飾物。將磁性納米材料的表面包被相應(yīng)抗體,利用抗體和細(xì)菌表面相應(yīng)抗原間的特異性結(jié)合,將食源性致病菌和磁性納米粒子連接,致病菌被“磁化”后,在外界磁場(chǎng)的作用下將目標(biāo)菌從成份復(fù)雜的樣品液中分離出來(lái),便于后續(xù)檢測(cè)。Varshney等[23]通過(guò)生物素-鏈霉親和素將抗大腸桿菌抗體包被到磁性納米粒子的表面,用于捕獲牛肉樣本中大腸桿菌O157∶H7,捕獲效率達(dá)94.5%。Yang等[24]用相應(yīng)抗體修飾氧化鐵納米粒子,結(jié)合實(shí)時(shí)定量聚合酶鏈?zhǔn)椒磻?yīng)(realtime quantitative polymerase chain reaction,real-time qPCR),檢測(cè)牛奶樣品中的單增李斯特菌,檢測(cè)限達(dá)452 CFU/mL。Ravindranath等[25]分別制備了包被有抗大腸桿菌抗體和抗沙門(mén)氏菌抗體的功能化磁性納米粒子,用于分離雞尾酒和菠菜牛奶提取液中相應(yīng)的食源性致病菌,結(jié)合紅外光譜分析,檢測(cè)限達(dá)104~105CFU/mL。Cheng等[26]使用抗大腸桿菌O157∶H7抗體包被的磁性納米粒子分離牛奶中的大腸桿菌O157∶H7,結(jié)合三磷酸腺苷(adenosine triphosphate,ATP)生物發(fā)光分析,檢測(cè)限達(dá)20 CFU/mL。Wang等[27]制備了兩種特異性抗體共修飾的磁性氧化鐵納米粒子用于同時(shí)分離菠菜中的沙門(mén)氏菌和金黃色葡萄球菌,結(jié)合表面增強(qiáng)拉曼散射分析,檢測(cè)限達(dá)103CFU/mL。

      2.2 黏附素(凝集素)-受體(糖類)

      很多細(xì)菌會(huì)在其表面表達(dá)黏附素,它們能與宿主細(xì)胞表面相應(yīng)受體結(jié)合,從而使細(xì)菌黏附在宿主細(xì)胞上。致病菌黏附宿主上皮細(xì)胞的機(jī)制與多種糖類有關(guān)。例如,大腸桿菌的表面可以表達(dá)產(chǎn)生多種黏附素,它們可以黏附宿主上皮細(xì)胞上的半乳糖、葡萄糖、果糖、巖藻糖、甘露糖和蔗糖等[12]。利用黏附素與受體結(jié)合的性質(zhì),經(jīng)凝集素或糖類修飾的磁性納米粒子可特異性地結(jié)合相應(yīng)的食源性致病菌。EI-Boubbou等[28]用D-甘露糖修飾的磁性納米粒子分離大腸桿菌,分離效率達(dá)88%以上。作者再結(jié)合X射線衍射、透射電鏡、熱重和紅外光譜分析,在5 min內(nèi)即可完成檢測(cè),檢測(cè)限達(dá)104個(gè)菌體/mL。Payne等[29]用凝集素修飾的BioMag?粒子分離食品基質(zhì)中的致病菌,結(jié)果顯示,單增李斯特菌、金黃色葡萄球菌和沙門(mén)氏菌最低分離起始濃度分別為大于等于10 CFU/10 g(卡蒙貝爾奶酪)、1 CFU/10 g(燉牛排)和小于10 CFU/10 g(生牛肉)。Wang Yixian等[30]制備了基于凝集素的生物傳感器,用于分離檢測(cè)食品樣品中的大腸桿菌O157∶H7,檢測(cè)限達(dá) 3×103CFU/mL。

      2.3 抗生素(萬(wàn)古霉素)

      萬(wàn)古霉素是一種糖肽類抗生素,它可以與許多種革蘭氏陽(yáng)性菌形成緊密的連接,其機(jī)制是通過(guò)細(xì)胞壁上的端肽D-Ala-D-Ala的氫鍵與萬(wàn)古霉素聯(lián)接[31]。一般認(rèn)為,由于革蘭氏陰性菌外膜的存在,萬(wàn)古霉素不能接觸到D-Ala-D-Ala端肽,因而不能識(shí)別革蘭氏陰性菌。據(jù)報(bào)道[32-33],經(jīng)萬(wàn)古霉素修飾過(guò)的磁性納米粒子同樣可以捕獲革蘭氏陰性菌,并由透射電子顯微鏡的照片猜想萬(wàn)古霉素與革蘭氏陰性菌連接的機(jī)制為細(xì)菌外膜上存在缺陷區(qū)域,使部分D-Ala-D-Ala端肽暴露給萬(wàn)古霉素。Kell等[31]隨后驗(yàn)證了這一猜想。Gu等[32]在FePt磁性納米粒子表面修飾萬(wàn)古霉素(FePt-Van),從大腸桿菌菌液中分離出菌體后再用透射電鏡觀察,檢測(cè)限達(dá)15 CFU/mL。Kell等[31]制備了萬(wàn)古霉素修飾的磁性納米粒子用于同時(shí)分離水樣中革蘭氏陽(yáng)性菌及革蘭氏陰性菌,結(jié)果顯示,不同的致病菌間捕獲效率相差很大(7%~88%)。Wan等[34]使用萬(wàn)古霉素修飾的磁性納米粒子分離磷酸鹽緩沖液中添加的海洋型硫還原型細(xì)菌(如,脫硫腸狀菌屬),結(jié)合生物傳感器,檢測(cè)限達(dá)1.8×104CFU/mL。Choi等[35]在磁性氧化鐵納米粒子表面修飾萬(wàn)古霉素,并用其對(duì)臨床樣本中的細(xì)菌進(jìn)行分離,實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),革蘭氏陽(yáng)性菌的捕獲效率為(84.84±1.70)%,而革蘭氏陰性菌的捕獲效率為(48.48±1.79)%。Chen等[36]用表面修飾有慶大霉素的磁性納米粒子用于分離磷酸鹽緩沖液中添加的金黃色葡萄球菌,最低分離的細(xì)菌濃度為0.5×103CFU/mL。

      2.4 DNA互補(bǔ)序列

      任何細(xì)菌都有其特異性的基因片段,該基因片段的互補(bǔ)寡核苷酸片段可以識(shí)別樣品中的該種細(xì)菌。將寡核苷酸片段修飾后的磁性納米材料用于選擇性的分離目標(biāo)DNA或RNA,再結(jié)合PCR鑒定,不僅省去樣品的預(yù)處理,靈敏度也比普通PCR提高近10 倍[37]。Amagliani等[24]用與李斯特菌素O基因序列(hlyA)互補(bǔ)的寡核苷酸鏈修飾磁性氧化鐵納米粒子分離牛奶樣品中的單增李斯特菌的DNA,結(jié)合PCR分析,檢測(cè)限達(dá)10 CFU/mL。筆者[38]在2010年制備了分別針對(duì)單增李斯特菌和沙門(mén)氏菌的寡核苷酸修飾的磁性氧化鐵納米粒子用于分離魚(yú)中單增李斯特菌和沙門(mén)氏菌的DNA,結(jié)果發(fā)現(xiàn),單增李斯特菌和沙門(mén)氏菌的捕獲效率分別為(62.5±10.0)%和(70.6±7.0)%。結(jié)合多重PCR分析,檢測(cè)限達(dá)1 CFU/g。Xu Hongxia等[39]研究了不同食源性致病菌寡核苷酸修飾的磁性納米粒子在致病菌分離中的應(yīng)用,實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),該磁性納米粒子可以快速富集相應(yīng)致病菌(如,大腸桿菌O157、沙門(mén)氏菌等)。筆者進(jìn)一步研究了同時(shí)使用食源性致病菌多個(gè)基因的互補(bǔ)寡核苷酸修飾的磁性納米粒子分離相應(yīng)致病菌,結(jié)合傳感器檢測(cè),檢測(cè)限達(dá)6×102CFU/mL。

      2.5 螯合反應(yīng)

      脂多糖是革蘭氏陰性菌外膜的重要組分,其中類脂A有大量的磷酸基團(tuán),用金屬氧化物(氧化鈦、氧化鋯或氧化鋁)包被磁性納米粒子,通過(guò)金屬氧化物與磷酸基團(tuán)間的螯合反應(yīng),可與待測(cè)樣品中革蘭氏陰性菌形成復(fù)合物,在外界磁場(chǎng)的作用下可將食源性致病菌從成分復(fù)雜的待測(cè)液中非選擇性分離出來(lái),消除樣品基質(zhì)的干擾[40]。Chen等[40]在磁性氧化鐵納米粒子的表面包被二氧化鈦,利用脂多糖和金屬氧化物的螯合作用捕獲尿樣中的大腸桿菌、志賀氏菌和假單胞菌,磁分離富集菌體后經(jīng)胰蛋白酶水解,再次磁分離除去磁性納米粒子,最后用基質(zhì)輔助激光解吸-電離質(zhì)譜法(matrix-assisted laser desorption ionization mass spectrometry,MALDI-MS)鑒定蛋白序列,根據(jù)蛋白庫(kù)中的信息確定細(xì)菌的種類。該方法是一種快速(耗時(shí)15 min)、特異性強(qiáng)(可區(qū)分兩株不同的大腸桿菌)、靈敏(檢測(cè)限達(dá)104個(gè)細(xì)胞/mL)的分離檢測(cè)方法。2010年,筆者[41]使用表面修飾有二氧化鈦的磁性氧化鐵納米粒子分離細(xì)菌混合液中的目標(biāo)致病菌,隨后分離到的致病菌在紫外燈照射下結(jié)合二氧化鈦的滅菌作用,15 min內(nèi)可以抑制99.9%以上的目標(biāo)菌的生長(zhǎng)。

      3 結(jié) 語(yǔ)

      如何從復(fù)雜的食品樣品中高效特異地分離出數(shù)量極少的食源性致病菌,從而實(shí)現(xiàn)對(duì)目標(biāo)菌高靈敏和高特異的檢測(cè),一直是食品安全領(lǐng)域的一大瓶頸?,F(xiàn)今,磁性納米材料合成技術(shù)迅猛發(fā)展,以及其各方面性能的不斷完善,已被廣泛應(yīng)用于食源性致病菌的分離富集。自從磁性納米材料應(yīng)用于食源性致病菌分離以來(lái),其快速(省去增菌培養(yǎng)的過(guò)程)、高效(捕獲效率高)和消除雜質(zhì)干擾的能力均給人們帶來(lái)巨大驚喜。但在基于磁性納米材料的食源性致病菌分離方面,仍存在一些問(wèn)題值得研究:1)盡管磁性納米材料捕獲食源性致病菌的方式很多,但是能夠?qū)崿F(xiàn)高特異性捕獲的不多,尋找可與致病菌特異性結(jié)合的生物親和分子(如,適配體等)并將其應(yīng)用于致病菌的磁分離值得探究;2)磁性納米材料對(duì)細(xì)菌潛在的毒性問(wèn)題;3)就微米級(jí)磁性材料而言,納米級(jí)磁性材料分離食源性致病菌存在分離速度慢、磁場(chǎng)要求高的缺陷,怎樣通過(guò)生物反應(yīng)放大系統(tǒng)(如,生物素-

      親和素系統(tǒng))實(shí)現(xiàn)磁細(xì)菌信號(hào)的級(jí)聯(lián)放大,通過(guò)增大致病菌的磁性納米材料結(jié)合容量,在較低的磁場(chǎng)強(qiáng)度下就能實(shí)現(xiàn)磁細(xì)菌的分離并減少磁分離時(shí)間值得研究;4)目前常用的免疫磁分離方法大多屬于靜態(tài)分離方法,存在分離體積?。?~1.5 mL)的缺陷,導(dǎo)致濃縮倍數(shù)低,從而造成磁富集效率不高,因此,探討大體積(如15、50 mL)磁細(xì)菌快速分離具有重要的科學(xué)意義和實(shí)踐價(jià)值。

      [1] MEAD P S, SLUTSKER L, DIETZ V, et al. Food-related illness and death in the United States[J]. Emerging Infectious Diseases, 1999, 5: 607-625.

      [2] 王竹天, 陳艷, 郭云昌, 等. 2006年中國(guó)食源性疾病暴發(fā)的監(jiān)測(cè)資料分析[J]. 衛(wèi)生研究, 2006, 39(3): 331-334.

      [3] WANG R F, CAO W W, CERNIGLIA C E. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods[J]. Journal of Applied Microbiology, 1997, 83(6): 727-736.

      [4] NEIDERHAUSER C, CANDRIAN U, HOFELEIN C, et al. Use of polymerase chain reaction for detection of Listeria monocytogenes in food[J]. Applied and Environmental Microbiology, 1992, 58(5): 1564-1568.

      [5] LINDQVIST R. Preparation of PCR samples fromfood by a rapid and simple centifugation technique evaluated by detection of Escherichia coli O157:H7[J]. International Journal of Food Microbiology, 1997, 37(1): 73-82.

      [6] UYTTENDAELE M, HOORDE V I, DEBEVERE J. The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese[J]. International Journal of Food Microbiolog, 2000, 54(3): 205-212.

      [7] van der HORST H C, HANEMAAIJER J H. Cross-flow microfiltration in the food industry. State of the art[J]. Desalination, 1990, 77: 235-258.

      [8] PETTIPHRE G L, RODRIGUES U M. Semi-automated counting of bacteria and somatic cells in milk using epifluorescence microscopy and television image analysis[J]. Journal of Applied Microbiology, 1982, 53(3): 323-329.

      [9] THOMAS D S. Electropositively charged filters for the recovery of yeasts and bacteria from beverages[J]. Journal of Applied Microbiology, 1988, 65(1): 35-41.

      [10] COAKLEY W T. Ultrasonic separations in analytical biotechnology[J]. Trends in Biotechnology, 1997, 15(12): 506-511.

      [11] LITOPOULOU-TZANETAKI E, BAYLISS A, PATCHETT R A, et al. Adsorption of bacteria to ion-exchange materials[J]. Letters in Applied Microbiology, 1989, 9(6): 219-222.

      [12] PEDERSEN L H, SKOUBOEL P, ROSSEN L, et al. Separation of Listeria monocytogenes and Salmonella berta from a complex food matrix by aqueous polymer two-phase partitioning[J]. Letters in Applied Microbiology, 1998, 26(1): 47-50.

      [13] IMAM S H, GOULD J M. Adhesion of an amylolytic Arthrobacter sp. to starch-containing plastic films[J]. Applied and Environmental Microbiology, 1990, 56(4): 872-876.

      [14] KENNEDY J F, BARKER S A, HUMPHREYS J D. Microbial cells living immobilised on metal hydroxides[J]. Nature, 1976, 261: 242-244.

      [15] MARKX G H, DYDA P A, PETHIG R. Dielectrophoretic separation of bacteria using a conductivity gradient[J]. Journal of Biotechnology, 1996, 51(2): 175-180.

      [16] BENNETT A R, DAVIDS F G C, VALHODIMOU S, et al. The use of bacteriophage-based systems for the separation and concentration of Salmonella[J]. Journal of Applied Microbiology, 1997, 83(2): 259-265.

      [17] PORTER J, ROBINSON J, PICKUP R, et al. An evaluation of lectinmediated magnetic bead cell sorting for the targeted separation of enteric bacteria[J]. Journal of Applied Microbiology, 1998, 84(5): 722-732.

      [18] TU S I, PATTERSON D, UKNALIS J, et al. Detection of Escherichia coli O157:H7 using immunomagnetic capture and luciferin-luciferase ATP measurement[J]. Food Research International, 2000, 33(5): 375-380. [19] El-BOUBBOU K, GRUDEN C, HUANG X, et al. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation[J]. Journal of the American Chemical Society, 2007, 129(44): 13392-1 3393.

      [20] SOUKKA T, HARMA H, PAUKKUNEN J, et al. Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates[J]. Analytical Chemistry, 2001, 73(10): 2254-2260.

      [21] TAN Weihong, WANG Kemin, HE Xiaoxiao, et al. Bionanotechnology based on silica nanoparticles[J]. Medicinal Research Reviews, 2004, 24(5): 621-638.

      [22] ZHAO Xiaojun, HILLIARD L R, MECHERY S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15027-15032.

      [23] VARSHNEY M, YANG Liju, SU Xiaoli, et al. Magnetic nanoparticleantibody conjugates for the separation of Escherichia coli O157:H7 in ground beef[J]. Journal of Food Protection, 2005, 68(9): 1804-1811.

      [24] YANG H, QU L W, WIMBROW A N, et al. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR[J]. International Journal of Food Microbiology, 2007, 118(2): 132-138.

      [25] RAVINDRANATH SP, MAUER L J, DEB-ROY C, et al. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes[J]. Analytical Chemistry, 2009, 81(8): 2840-2846.

      [26] CHENG Yuxiao, LIU Yajun, HUANG Jingjing, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli[J]. Talanta, 2009, 77(4): 1332-1336.

      [27] WANG Yuling, RAVINDRANATH S, IRUDAYARAJ J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes[J]. Analytical and Bioanalytical Chemistry, 2011, 399(3): 1271-1278.

      [28] SHARON N. Carbohydrates as future anti-adhesion drugs for infectious diseases[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2006, 1760(4): 527-537.

      [29] PAYNE M J, CAMPBELL S, KROLL R G. Lectin-magnetic separation can enhance methods for the detection of Staphylococcus aureus, Salmonella enteritidis and Listeria monocytogenes[J]. Food Microbiology, 1993, 10(1): 75-83.

      [30] WANG Yixian, YE Zunz hong, SI Chengyan, et al. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor[J]. Food Chemistry, 2013, 136: 1303-1308.

      [31] KELL A J, STEWART G, RYAN S, et al. Vancomycin-modi ed nanoparticles for ef cient targeting and preconcentration of gram-positive and gram-negative bacteria[J]. ACS Nano, 2008, 2(9): 1777-1778.

      [32] GU H, HO P L, TSANG K W T, et al. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration[J]. Chemical Communications, 2003, 15: 1966-1967.

      [33] GU Hongwei, XU Keming, XU Chenjie, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection[J]. Chemical Communications, 2006, 9: 941-949.

      [34] WAN Yi, ZHANG Dun, HOU Baorong. Determination of sulphatereducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modi cation-free quartz crystal microbalance[J]. Biosensors and Bioelectronics, 2010, 25(7): 1847-1850.

      [35] LEE H J, PARK B J, WANG K K. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria[J]. Chemical Communications, 2012, 48: 4591-4593.

      [36] CHEN Longyan, ZHANG Jin. Bioconjugated magnetic nanoparticles for rapid capture of gram-positive bacteria[J]. Journal of Biosensors & Bioelectronics, 2012, S11:005. doi:10.4172/2155-6210.S11-005.

      [37] AMAGLIANI G, OMICCIOLI E, CAMPO A, et al. Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples[J]. Journal of Applied Microbiology, 2006, 100(2): 375-383.

      [38] AMAGLIANI G, OMICCIOLI E, BRANDI G, et al. A multiplex magnetic capture hybridisation and multiplex real-time PCR protocol for pathogen detection in seafood[J]. Food Microbiology, 2010, 27(5): 580-585.

      [39] XU Hongxia, SHA M Y, CROMER R, et al. Raman spectroscopy for nanomaterials characterization[M]. Mountain View: Springer Berlin Heidelberg, 2012: 531-551.

      [40] CHEN W J, TSAI P J, CHEN Y C. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria[J]. Analytical Chemistry, 2008, 80(24): 9612-9621.

      [41] CHEN Weijen, CHEN Yuchie. Fe3O4/TiO2core/shell magnetic nanoparticle-based photokilling of pathogenic bacteria[J]. Nanomedicine, 2010, 5(10): 1585-1593.

      [42] VARSHNEY M, LI Y, SRINIVASAN B, et al. A label-free, micro uidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples[J]. Sensors and Actuators B: Chemical, 2007, 128(1): 99-107.

      [43] VARSHNEY M, LI Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples[J]. Biosensors and Bioelectronics, 2007, 22(11): 2408-2414.

      [44] PAL S, ALOCILJA E C. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples[J]. Biosensors and Bioelectronics, 2009, 24(1): 1437-1444.

      [45] SETTERINGTON E B, CLOUTIER B C, OCHOA J M, et al. Rapid, sensitive, and specific immunomagnetic separation of foodborne pathogens[J]. International Journal of Food Safety, Nutrition and Public Health, 2011, 4(1): 83-100.

      [46] WANG Y, KNOLL W, DOSTALEK J. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays[J]. Analytical Chemistry, 2012, 84: 8345-8350.

      [47] ZHAO Yu, YE Mingqiang, CHAO Qiangguo, et al. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples[J]. Journal of Agricultural and Food Chemistry, 2009, 57(2): 517-524.

      [48] BRAININA K Z, KOZITSINA A N. Hybrid electrochemical/magnetic assay for Salmonella typhimurium detection[J]. Sensors Journal, IEEE, 2010, 10(11): 1699-1704.

      [49] LEE H J, KIM B C, KIM K W, et al. A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR ampli cation of aptamers[J]. Biosensors and Bioelectronics, 2009, 24(12): 3550-3555.

      [50] LI Aihua, ZHANG Huiyuan, ZHANG Xin, et al. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosomeantibody complex and real-time uorescence quantitative PCR[J]. Journal of Separation Science, 2010, 33(21): 3437-3443.

      [51] PAPPERT G, RIEGER M, NIESSNER R, et al. Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli[J]. Microchim Acta, 2010, 168(1/2): 1-8.

      [52] WANG R, RUAN C, KANAYEVA D, et al. TiO2nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes[J]. Nano Letters, 2008, 8(9): 2625-2631.

      [53] PAYNE M J, CAMPBELL S, PATCHETT R A, et al. The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. from pure cultures and foods[J]. Journal of Applied Bacteriology, 1992, 73(1): 41-52.

      [54] GU H, HO P L, TSANG K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration[J]. Journal of the American Chemical Society, 2003, 125(51): 15702-15703.

      Research Progress on Magnetic Nanomaterials for Separation of Foodborne Pathogenic Bacteria

      HUANG Xiao-lin, XU Heng-yi*, XIONG Yong-hua, QU Feng, YANG Lin
      (State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)

      Foodborne pathogenic bacteria are one of the major factors that influences food safety. Pathogens in limited numbers are not easy to directly detect with high sensitivity and specificity in food matrices via routine analytical methods. Magnetic nanomaterials with biological modification and functionalization can specifically recognize foodborne pathogenic bacteria in food samples. Target bacteria can be separated selectively with rapidity and high specificity by a magnetic field, which realizes the specific separation and enrichment of low numbers of pathogens in food samples, providing enriched pathogens with higher purity and quantity for further study. This paper reviews recent progress in applying magnetic nanomaterials for the separation and enrichment of foodborne pathogens.

      magnetic nanomaterials; foodborne pathogenic bacteria; separation; enrichment

      Q93

      A

      1002-6630(2014)11-0280-06

      10.7506/spkx1002-6630-201411056

      2013-06-10

      國(guó)家自然科學(xué)基金面上項(xiàng)目(31271863);國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(81201691);“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2011BAK10B06);2012年度高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金項(xiàng)目(20123601120005);江西省教育廳科技基金資助項(xiàng)目(GJJ13093)

      黃小林(1988—),男,碩士研究生,研究方向?yàn)槊庖叽欧蛛x。E-mail:hxl19880503@163.com

      *通信作者:許恒毅(1981—),男,副研究員,博士,研究方向?yàn)槭称钒踩c食品生物技術(shù)。E-mail:kidyxu@163.com

      猜你喜歡
      食源性萬(wàn)古霉素致病菌
      秋冬季高發(fā)食源性疾病的危害與預(yù)防
      中老年保健(2022年1期)2022-08-17 06:14:22
      論食品安全與食源性疾病的控制
      夏季食品安全頭號(hào)殺手——食源性疾病
      中老年保健(2021年6期)2021-08-24 06:54:00
      基于個(gè)體化給藥軟件的萬(wàn)古霉素血藥濃度分析
      SSEL結(jié)合多重PCR同時(shí)快速檢測(cè)生菜中4種食源性致病菌
      食品中致病菌快速檢測(cè)方法的探討
      食源性病原微生物的危害
      獼猴桃采后致病菌的分離及中草藥提取物對(duì)其抑菌效果初探
      130例萬(wàn)古霉素臨床用藥分析
      《食品中致病菌限量》(GB29921—2013)解析
      平湖市| 正定县| 乐都县| 永春县| 新民市| 碌曲县| 台中市| 东宁县| 康乐县| 尤溪县| 平罗县| 驻马店市| 乌拉特后旗| 普洱| 靖江市| 洛隆县| 达日县| 南溪县| 大港区| 潢川县| 涟源市| 射洪县| 临夏县| 乌拉特中旗| 丹寨县| 五峰| 漳州市| 内黄县| 鸡西市| 江山市| 冷水江市| 砀山县| 天峨县| 新密市| 呼和浩特市| 枝江市| 曲周县| 定兴县| 江城| 湟源县| 喀喇沁旗|