邵雨卉付杰
上海交通大學(xué)附屬第六人民醫(yī)院腫瘤放療科,上海 200233
頭頸部腫瘤自適應(yīng)放療的研究進(jìn)展
邵雨卉綜述付杰審校
上海交通大學(xué)附屬第六人民醫(yī)院腫瘤放療科,上海 200233
調(diào)強(qiáng)放射治療(intensity-modulated radiation therapy,IMRT)是頭頸部惡性腫瘤的重要治療方法之一。但在IMRT過(guò)程中,擺位誤差、解剖結(jié)構(gòu)的移位及變形、腫瘤退縮或進(jìn)展及形狀改變等,可導(dǎo)致靶區(qū)和危及器官的照射劑量和體積出現(xiàn)“偏差”,影響IMRT的精確性。圖像引導(dǎo)的放射治療(image-guided radiotherapy,IGRT)可部分糾正擺位誤差,從而提高放療精度,但不能解決非剛性誤差以及解剖結(jié)構(gòu)變化帶來(lái)的劑量差異。自適應(yīng)放射治療(adaptive radiation therapy,ART)是在IMRT和IGRT基礎(chǔ)上出現(xiàn)的新型放療技術(shù),能修正IMRT和IGRT靶區(qū)和危及器官的偏差。通過(guò)患者圖像、劑量等反饋信息對(duì)原治療計(jì)劃重新優(yōu)化和調(diào)整,這是一種基于反饋控制理論的治療策略。其目的是使放射治療更加精確化、個(gè)體化。
頭頸部腫瘤;自適應(yīng)放療;圖像引導(dǎo)放射治療;調(diào)強(qiáng)放射治療;再計(jì)劃
調(diào)強(qiáng)放射治療(intensity-modulated radiation therapy,IMRT)是頭頸部惡性腫瘤的重要治療方法之一。IMRT的實(shí)施是基于放療前的模擬CT制定放療計(jì)劃,忽略了患者在等待放療的時(shí)間及整個(gè)放療過(guò)程中解剖結(jié)構(gòu)和位置的變化。這些變化包括擺位誤差、解剖結(jié)構(gòu)的移位及變形、腫瘤退縮或進(jìn)展及形狀改變、正常黏膜和腺體的改變等[1-4]。IMRT外放邊界小,靶區(qū)與危及器官之間劑量梯度陡,這些變化可能會(huì)造成靶區(qū)遺漏或危及器官受照范圍擴(kuò)大,從而導(dǎo)致療效下降,并發(fā)癥增加。圖像引導(dǎo)的放射治療(image-guided radiotherapy,IGRT)在每日放療前以照射體位獲取二維或三維影像,應(yīng)用計(jì)算機(jī)軟件對(duì)特定解剖區(qū)域或骨性標(biāo)志融合對(duì)齊,以糾正擺位誤差,從而提高放療精度,但不能解決非剛性誤差以及解剖結(jié)構(gòu)變化帶來(lái)的劑量差異。
自適應(yīng)放射治療(adaptive radiation therapy,ART)是一項(xiàng)最新發(fā)展的放射治療技術(shù)。ART的概念是Yan等[5]于1997年正式提出的。它是基于在線影像位置校正和自適應(yīng)計(jì)劃的個(gè)體化放射治療,通過(guò)實(shí)時(shí)三維影像、在線位置校正、靶區(qū)重建、計(jì)劃評(píng)估和再計(jì)劃等手段來(lái)實(shí)現(xiàn)。它根據(jù)治療過(guò)程中圖像數(shù)據(jù)、累積劑量等反饋信息了解患者各種情況的變化,分析靶區(qū)及危及器官實(shí)際解剖形狀和劑量與原始治療計(jì)劃之間的差異,從而對(duì)后續(xù)治療方案及時(shí)進(jìn)行相應(yīng)調(diào)整,使放射治療更加精確化、個(gè)體化。ART能修正IMRT和IGRT靶區(qū)和危及器官的偏差[6-11],最有可能解決目前放療中存在的問(wèn)題[12-13]。
雖然頭頸部腫瘤在放療中普遍采用面膜固定,但還是不可避免存在位置誤差。Den等[14]共采集了28例患者擺位后的1 013幅千伏級(jí)錐形束CT(cone-beam CT,CBCT)圖像,發(fā)現(xiàn)在分次照射間的擺位存在平移誤差,左右、前后和頭腳方向擺位誤差分別為(1.4±1.4)mm、(1.7±1.9)mm和(1.8±2.1)mm。因?yàn)楝F(xiàn)代放療技術(shù),特別是IMRT靶區(qū)與危及器官之間劑量梯度較陡,位置誤差可造成靶區(qū)和危及器官劑量分布的變化。IGRT在每日放療前以照射體位獲取二維或三維影像以減小擺位誤差,提高放療精確性。位置誤差校正,包括離線和在線兩種方法。離線校正僅僅能改善系統(tǒng)誤差。在線校正同時(shí)可以降低位置的系統(tǒng)和隨機(jī)誤差。De Boer等[15]報(bào)道了31例頭頸部腫瘤,使用離線校正將系統(tǒng)誤差從1.6~2.1 mm降低到1.1~1.2 mm,但是隨機(jī)誤差仍為1.4~1.6 mm。Wang等[16]報(bào)道了應(yīng)用CBCT在鼻咽癌IMRT中在線校正系統(tǒng)和隨機(jī)誤差,應(yīng)用在線校正以后,計(jì)劃靶區(qū)(planning target volume,PTV)外放邊界從5~6 mm可以縮小到3 mm,腦干和脊髓最大劑量減少了10 Gy,91%患者腮腺平均劑量降低了7.8~8.5 Gy,有效地避免了正常組織損傷。雖然IGRT最大程度減少了三維影像上的剛性誤差,但人體并不是剛性結(jié)構(gòu),器官之間存在相對(duì)運(yùn)動(dòng),患者非自主活動(dòng)及頸椎的復(fù)雜運(yùn)動(dòng)導(dǎo)致位置誤差,僅僅通過(guò)位置配準(zhǔn)難以徹底解決。Ahn等[17]研究了23例頭頸部腫瘤患者,患者按計(jì)劃在第11、22和33次放療前重新接受CT掃描,并與原計(jì)劃CT配準(zhǔn)。結(jié)果表明相對(duì)于顱骨、下頜骨及頸椎存在半獨(dú)立旋轉(zhuǎn)和平移運(yùn)動(dòng)。通過(guò)矢量位移測(cè)量,位置變化最大的是下頜骨及下段頸椎。Van Kranen等[18]對(duì)38例CBCT離線配準(zhǔn)后頭頸部腫瘤剩余擺位誤差進(jìn)行分析,每個(gè)方向剩余系統(tǒng)誤差<1.2 mm,隨機(jī)誤差<1.5 mm。局部擺位誤差更大,系統(tǒng)誤差1.1~3.4 mm,隨機(jī)誤差1.3~2.5 mm。系統(tǒng)變形范圍從C1-C3參考點(diǎn)附近的0.4 mm到喉的3.8 mm,隨機(jī)變形范圍為0.5~3.6 mm。
在頭頸部腫瘤的放射治療過(guò)程中,患者一般均會(huì)出現(xiàn)明顯解剖學(xué)變化,包括腫瘤和危及器官的容積改變、軟組織水腫及體重減輕引起的解剖位置移動(dòng)[19]。Barker等[3]研究顯示頭頸部腫瘤大體腫瘤靶區(qū)(gross tumor volume,GTV)每次放療容積平均縮小1.8%,到最后1次放療時(shí)腫瘤容積平均縮小可達(dá)治療前容積的69.5%,且腫瘤的退縮往往是不對(duì)稱的,到治療結(jié)束時(shí),GTV中心平均位移3.3 mm。Han等[20]的研究表明腮腺容積在治療期間同樣縮小,可由20.5 cm3縮小至13.2 cm3,平均每次放療縮小0.21 cm3(1.1%),平均每周4.9%。雙側(cè)腮腺位置在治療期間內(nèi)移,到治療結(jié)束時(shí)中心平均位移達(dá)3.1 mm[3]。下頜下腺容積縮小11%~20%,中心向上后內(nèi)移4 mm[7,10]。Castadot等[9]研究顯示治療5周后腫瘤GTV外移1.4 mm,淋巴結(jié)GTV內(nèi)移0.9 mm,淋巴結(jié)臨床靶區(qū)(clinical target volume,CTV)內(nèi)移1.8 mm,同側(cè)腮腺內(nèi)移3.4 mm。幾乎所有的患者在治療期間體重減輕,Barker等[3]研究表明,治療期間平均體重變化-7.1%。
解剖學(xué)變化導(dǎo)致靶區(qū)和正常組織器官實(shí)際受照劑量與放療計(jì)劃之間的差異可達(dá)15%[21],這會(huì)降低療效和加重正常組織器官的不良反應(yīng)。多項(xiàng)研究顯示,頭頸部腫瘤實(shí)際受照劑量靶區(qū)93%下降,腮腺平均劑量可超限10 Gy,達(dá)到32.7 Gy,腮腺26 Gy超限,左、右腮腺分別超過(guò)3.5%~5.2%和0.3%~4.7%,下頜骨劑量超過(guò)60 Gy[22-23]。這些研究都一致性表明頭頸部腫瘤在IMRT過(guò)程中解剖學(xué)變化可致靶區(qū)劑量下降和危及器官劑量超限。特別是腮腺內(nèi)移至高劑量區(qū),導(dǎo)致其受照劑量明顯高于計(jì)劃劑量[24]。如果不進(jìn)行重新計(jì)劃,將會(huì)導(dǎo)致嚴(yán)重的正常組織并發(fā)癥,并增加腫瘤復(fù)發(fā)或未控的風(fēng)險(xiǎn)。
ART采用實(shí)時(shí)三維影像數(shù)據(jù)在線位置校正,降低隨機(jī)誤差和系統(tǒng)誤差以提高照射精度,同時(shí)通過(guò)劑量三維重建評(píng)估患者實(shí)際照射劑量,從而可以補(bǔ)償靶區(qū)劑量和(或)降低危及器官劑量,進(jìn)一步改善患者的治療效果,減少并發(fā)癥,實(shí)現(xiàn)治療個(gè)體化[7]。根據(jù)ART的實(shí)現(xiàn)方式,分為在線ART和離線ART。在線ART是在每一次治療前實(shí)時(shí)獲得三維影像等反饋信息,進(jìn)行實(shí)時(shí)修改、優(yōu)化治療計(jì)劃,并按照修改后的計(jì)劃實(shí)施該次治療。在線ART在提供更精確治療的同時(shí),也大大增加了醫(yī)務(wù)人員的工作量和患者的治療時(shí)間。離線ART是指采用一個(gè)治療節(jié)點(diǎn)的CT圖像、劑量等反饋信息,修改、優(yōu)化治療計(jì)劃供以后的治療使用。因?yàn)轭^頸部腫瘤在放療中的解剖變化多是逐漸出現(xiàn)的,目前大多數(shù)研究應(yīng)用離線ART技術(shù)評(píng)估頭頸部腫瘤放療中位置誤差和解剖變化對(duì)劑量的影響。
Rebinder等[25]發(fā)現(xiàn)在放療中期修改計(jì)劃1次,且CTV到PTV邊界縮至3 mm時(shí),既能完全覆蓋GTV和CTV,又能降低脊髓最大劑量0~3 Gy,降低腮腺平均劑量0~15 Gy。Wang等[26]為28例鼻咽癌患者在第25次放療前重新定位行計(jì)劃設(shè)計(jì)發(fā)現(xiàn),與未修訂的計(jì)劃相比較,CTV照射劑量增加了4.91%±10.89%,差異有統(tǒng)計(jì)學(xué)意義(P=0.024)。同時(shí)脊髓的最大劑量、左腮腺的平均劑量和右腮腺的V30分別減少了(5.00±9.23)Gy(P=0.008)、(4.23±10.03)Gy(P=0.034)和11.47%±18.89% (P=0.003)。Hansen等[27]以13例局部晚期頭頸部腫瘤為研究對(duì)象,在放療第19次時(shí)重新行計(jì)劃設(shè)計(jì),發(fā)現(xiàn)新計(jì)劃改善了靶區(qū)的D99、D95、V93,92%的患者重新計(jì)劃后95%的GTV和CTV受量分別增加了0.8~6.3 Gy和0.2~7.4 Gy,所有患者的脊髓最大劑量均減少(0.2~15.4 Gy,P=0.003),85%患者腦干的最大劑量減少(0.6~8.1 Gy,P=0.007),證實(shí)在放療過(guò)程中及時(shí)調(diào)整治療計(jì)劃,不但可減少危及器官的劑量,而且能提高靶區(qū)劑量。
Schwartz等[28]前瞻性研究了22個(gè)局部晚期口咽癌患者,所有患者均接受1次重新計(jì)劃;8例患者接受2次重新計(jì)劃。結(jié)果重新計(jì)劃1次較IGRT降低對(duì)側(cè)腮腺平均劑量0.6 Gy(2.8%,P=0.003),降低同側(cè)腮腺平均劑量1.3 Gy(3.9%,P=0.002)。重新計(jì)劃2次進(jìn)一步降低對(duì)側(cè)腮腺平均劑量0.8 Gy(3.8%,P=0.026),降低同側(cè)腮腺平均劑量4.1 Gy(9%,P=0.001)。研究表明,頭頸部腫瘤的ART比IMRT更能改善劑量分布。IGRT如果采用傳統(tǒng)PTV外放數(shù)據(jù)并不能改善劑量分布。在一個(gè)適當(dāng)?shù)臅r(shí)機(jī)實(shí)施再計(jì)劃大多數(shù)可改善劑量分布。ART的臨床結(jié)果有待進(jìn)一步研究。由于額外的員工負(fù)擔(dān)和相關(guān)的成本,仍然需要評(píng)估哪些患者可能從ART中受益。
基于最近發(fā)展的在線實(shí)時(shí)三維圖像配準(zhǔn)、在線實(shí)時(shí)位置校正及在線實(shí)時(shí)劑量?jī)?yōu)化等技術(shù),建立頭頸部腫瘤ART臨床新技術(shù),實(shí)現(xiàn)個(gè)體化自適應(yīng)治療,克服常規(guī)IMRT技術(shù)存在的弊端,縮小非剛性擺位誤差,提高治療精度,避免正常組織超量和靶區(qū)劑量不足,從而提高療效,降低并發(fā)癥是可行的[29-30]。
雖然ART能夠提供更精確的治療,但也大大增加了醫(yī)務(wù)人員的工作量和患者的治療時(shí)間。在線ART過(guò)程包括三維圖像的獲取、配準(zhǔn)、靶區(qū)勾畫(huà)、調(diào)強(qiáng)參數(shù)的修改及計(jì)劃的制定。這些復(fù)雜的步驟需要在患者擺位固定至放療前的時(shí)間內(nèi)完成,頭頸部腫瘤的人工靶區(qū)勾畫(huà)和計(jì)劃重新制定較為耗時(shí),這將大大延長(zhǎng)患者擺位后的等待時(shí)間,極有可能產(chǎn)生新的位置誤差,增加了在線ART的實(shí)施困難。目前,正在研究的在線配準(zhǔn)及靶區(qū)自動(dòng)勾畫(huà)技術(shù),大大縮短了在線靶區(qū)勾畫(huà)的時(shí)間,使在線ART的常規(guī)開(kāi)展成為可能。再計(jì)劃也是耗時(shí)的過(guò)程。為了ART的廣泛開(kāi)展,通過(guò)有效的自動(dòng)計(jì)劃技術(shù)降低工作量和耗費(fèi)的時(shí)間是必須的。目前已在開(kāi)展自動(dòng)計(jì)劃的研究,顯示全過(guò)程耗時(shí)可以控制在5~8 min[31]。同樣,靶區(qū)自動(dòng)勾畫(huà)和自動(dòng)計(jì)劃也能減少離線ART的工作量。
ART放療技術(shù)的臨床應(yīng)用尚未廣泛開(kāi)展。多項(xiàng)研究結(jié)果提示頭頸部腫瘤IMRT再次計(jì)劃的必要性,并給出了不同的解決方案,包括再次計(jì)劃的時(shí)機(jī)及頻率[7,26,32]。目前,尚需進(jìn)一步開(kāi)展相關(guān)的前瞻性研究,以明確ART在頭頸部腫瘤中應(yīng)用的具體程序。另外,ART暫時(shí)不能解決頭頸部腫瘤單次照射中的位置誤差和解剖結(jié)構(gòu)改變對(duì)劑量的影響。例如患者臥位時(shí),吞咽動(dòng)作頻率為0.5~1次/min,咽喉部位移最大可達(dá)到20~25 mm[33]。如此高頻率大幅度的位移,有可能改變預(yù)期劑量分布,從而影響治療效果。
實(shí)時(shí)三維影像設(shè)備出現(xiàn)后,靶區(qū)重建,計(jì)劃評(píng)估,實(shí)時(shí)再計(jì)劃使得ART可能成為新的治療標(biāo)準(zhǔn)和最終取代經(jīng)典治療計(jì)劃的日常臨床實(shí)踐。ART的適應(yīng)證、具體操作程序、安全性和臨床療效需要多中心Ⅲ期臨床試驗(yàn)進(jìn)一步研究。
[1] DONALDSON S S, LENON R A. Alterations of nutritional status: impact of chemotherapy and radiation therapy [J]. Cancer, 1979, 43(5 Suppl): 2036-2052.
[2] CHENCHARICK J D, MOSSMAN K L. Nutritional consequences of the radiotherapy of head and neck cancer[J]. Cancer, 1983, 51: 811-815.
[3] BARKER J L J R, GARDE A S, ANG K K, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system [J]. Int J Radiat Oncol Biol Phys, 2004, 59(4): 960-970.
[4] VAN HERK M. Errors and margins in radiotherapy [J]. Semin Radiat Oncol, 2004, 14(1): 52-64.
[5] YAN D, LOCKMAN D, BRABBINS D, et al. An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer [J]. Int J Radiat Oncol Biol Phys, 2000, 48(1): 289-302.
[6] WU Q, CHI Y, CHEN P Y, et al. Adaptive replanning strategies accounting for shrinkage in head and neck IMRT[J]. Int J Radiat Oncol Biol Phys, 2009, 75(3): 924-932.
[7] SCHWARTZ D L, GARDEN A S, THOMAS J, et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial[J]. Int J Radiat Oncol Biol Phys, 2012, 83(3): 986-993.
[8] HANSEN E K, BUCCI M K, QUIVEY J M, et al. Repeat CT imaging and replanning during the course of IMRT for headand-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2006, 64(2): 355-362.
[9] CASTADOT P, LEE J A, GEETS X, et al. Adaptive radiotherapy of head and neck cancer[J]. Semin Radiat Oncol, 2010, 20(2): 84-93.
[10] LOO H, FAIRFOUL J, CHAKRABARTI A, et al. Tumour shrinkage and contour change during radiotherapy increase the dose to organs at risk but not the target volumes for head and neck cancer patients treated on the Tomo Therapy HiArtTM system[J]. Clin Oncol (R Coll Radiol), 2011, 23(1): 40-47.
[11] CAPLLE L, MACKENZIE M, FIELD C, et al. Adaptive radiotherapy using helical tomotherapy for head and neck cancer in definitive and postoperative settings: initial results[J]. Clin Oncol (R Coll Radiol), 2012, 24(3): 208-215
[12] GRéGOIRE V, JERAJ R, LEE J A, et al. Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive?[J]. Lancet Oncol, 2012, 13(7): e292-e300.
[13] SCHWARTZ D L. Current progress in adaptive radiation therapy for head and neck cancer[J]. Curr Oncol Rep, 2012, 14(2): 139-147.
[14] DEN R B, DOEMER A, KUBICEK G, et al. Daily image guidance with cone-beam computed tomography for headand-neck cancer intensity-modulated radiotherapy: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2010, 76(5): 1353-1359.
[15] DE BOER H C, VAN S?RNSEN DE KOSTE J R, CREUTZBERG C L, et al. Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation[J]. Radiother Oncol, 2001, 61(3): 299-308.
[16] WANG J, BAI S, CHEN N, et al. The clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer[J]. Radiother Oncol, 2009, 90(2): 221-227.
[17] AHN P H, AHN A I, LEE C J, et al. Random positional variation among the skull, mandible, and cervical spine with treatment progression during head-and-neck radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2009, 73(2): 626-633.
[18] VAN KRANEN S, VAN BEEK S, RASCH C, et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5): 1566-1573.
[19] DUMA M N, KAMPFER S, SCHUSTER T, et al. Adaptive radiotherapy for soft tissue changes during helical tomotherapy for head and neck cancer[J]. Strahlenther Onkol, 2012, 188(3): 243-247.
[20] HAN C, CHEN Y J, LIU A, et al. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2008, 70(4): 1256-1262.
[21] LEE C, LANGEN K M, LU W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration[J]. Int J Radiat Oncol Biol Phys, 2008, 71(5): 1563-1571.
[22] O'DANIEL J C, GARDEN A S, SCHWARTZ D L, et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get?[J]. Int J Radiat Oncol Biol Phys, 2007, 69(4): 1290-1296.
[23] ROBAR J L, DAY A, CLANCEY J, et al. Spatial and dosimetric variability of organs at risk in head-and-neck intensity-modulated radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2007, 68(4): 1121-1130.
[24] BELTRAN M, RAMOS M, ROVIRA J J, et al. Dose variations in tumor volumes and organs at risk during IMRT for headand-neck cancer [J]. J Appl Clin Med Phys, 2012, 13(6): 3723.
[25] REBINDER H, LUNDIN A, SHAPER M, et al. Can PTV margins for head-and-neck cancer be reduced based on a single adaptive replanning event?[J]. Int J Radiat Oncol Biol Phys, 2006, 66(suppl 1): 101.
[26] WANG W, YANG H, HU W, et a1. Clinical study of the necessity of replanning before the 25th fraction during the course of intensity-modulatedradiotherapy for patients with nasopharyngeal carcinoma [J]. Int J Radiat Oncol Biol Phys, 2010, 77(2): 617-621.
[27] HANSEN E K, BUCCI M K, QUIVEY J M, et a1. Repeat CT imaging and replanning during the course of IMRT for headand-neck cancer [J]. Int J Radiat Oncol Biol Phys, 2006, 64(2): 355-362.
[28] SCHWARTZ D L, GARDEN A S, SHAH S J, et al. Adaptive radiotherapy for head and neck cancer--dosimetric results from a prospective clinical trial [J]. Radiother Oncol, 2013, 106(1): 80-84.
[29] HEUKELOM J, HAMMING O, BARTELINK H, et al. Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phaseⅡtrial for individualized treatment of head and neck cancer [J]. BMC Cancer, 2013, 13: 84.
[30] NISHI T, NISHIMURA Y, SHIBATA T, et al. Volume and dosimetric changes and initial clinical experience of a twostep adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer [J]. Radiother Oncol, 2013, 106(1): 85-89.
[31] AHUNBAY E E, PENG C, GODLEY A, et al. An on-line replanning method for head and neck adaptive radiotherapy[J]. Med Phys, 2009, 36(10): 4776-4790.
[32] ZHAO L, WAN Q, ZHOU Y, et al. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma[J]. Radiother Oncol, 2011, 98(1): 23-27.
[33] COOK I J, DODDS W J, DANTAS R O, et al. Opening mechanisms of the human upper esophageal sphincter [J]. Am J Physiol, 1989, 257(5 Pt 1): G748-G759.
Progress in research of adaptive radiation therapy for head and neck cancer
SHAO Yu-hui, FU Jie
(Department of Radiation Oncology, Six People’s Hospital of Shanghai Jiao Tong University, Shanghai 200233, China)
FU Jie E-mail: fujieqing@hotmail.com
Intensity-modulated radiation therapy (IMRT) is one of the most important techniques for the treatment of head and neck cancers. During IMRT, the accuracy of radiation dose delivery is limited by errors in patient treatment positioning, inter-treatment, and intra-treatment variation of organ position, size, and shape. Image-guided radiation therapy (IGRT) may partly correct these errors and further improve the radiation dose delivery. However, the dose deviation caused by internal organ motion or non-rigid motion cannot be simply solved by IGRT technique. Nowadays, adaptive radiation therapy (ART) has been introduced to minimize the negative effects of treatment position uncertainty which normally exist in either IMRT or IGRT, and to compensate the target coverage and clinical outcome. Based on the patient’s pre-treatment images and relative information such as dose deviation, ART may provide a better strategy for online treatment. Under the help of ART technique, radiotherapy can be more accurate and more personalized.
Head and neck cancer; Adaptive radiation therapy; Image-guided radiation therapy; Intensitymodulated radiotherapy; Replanning
10.3969/j.issn.1007-3969.2014.12.012
R739.91
A
1007-3639(2014)12-0951-05
2014-06-17
2014-07-23)
上海市科委引導(dǎo)項(xiàng)目資助(134119a9300)。
付杰 E-mail:fujieqing@hotmail.com