柏杖勇 李清華
(桂林醫(yī)學院,廣西 桂林 541000)
帕金森病(PD)是最常見的運動失調(diào)性疾病和第二常見的神經(jīng)變性疾病,位列阿爾茨海默病之后。年齡的增長是散發(fā)性PD發(fā)病的最重要影響因素。許多基因的突變相關于家族性PD,這些基因包括SNCA〔1〕、parkin〔2〕、 UCHL1〔3〕、PINK1〔4〕、DJ-1〔5〕、LRRK2〔6,7〕、 ATP13A2〔8〕、 GIGYF2〔9〕、Omi/HTRA2〔10〕、 PLA2G6〔11〕和 FBXO7〔12〕。在病理上,PD以投射到紋狀體的黑質(zhì)致密部 (SNc)的多巴胺能神經(jīng)元選擇性丟失為特征。黑質(zhì)紋狀體的退行性改變和紋狀體多巴胺能遞質(zhì)的耗竭是PD患者包括運動遲緩、運動功能減退、僵化、靜止性震顫和姿勢不穩(wěn)定等運動癥狀的最主要原因。然而,神經(jīng)變性的進程是不會局限于多巴胺神經(jīng)元的,也能影響去甲腎上腺素(藍斑)、羥色胺(中縫背核)、膽堿(Meynert的下橄欖核)系統(tǒng)、大腦皮層、腦干、脊髓和周圍神經(jīng)系統(tǒng)〔13~15〕,這也能夠解釋PD的非運動方面的臨床表現(xiàn),例如自主神經(jīng)功能紊亂、睡眠障礙、抑郁和認知障礙。PD的另一種明顯的病理表現(xiàn)是包含有聚集的a-synuclein〔16〕在內(nèi)的許多蛋白在神經(jīng)細胞核周的堆積。許多來自于不同的動物等模型的證據(jù)表明,低聚的中間體而不是最終的蛋白聚集體是影響著神經(jīng)系統(tǒng)的毒性過程〔17,18〕。然而,致病作用和Lewy體的意義仍不清楚〔19,20〕。一方面,Lewy體可能是通過隔離毒性的沒有折疊a-synuclein而被賦予保護神經(jīng)作用;另一方面,他們也許作為儲存器和毒性蛋白的源頭,這是由于蛋白質(zhì)的包含物是動態(tài)改變的〔21,22〕,最終,這些儲存的蛋白聚集體通過蛋白酶體通路和自噬-溶酶體通路得以降解。Lewy體不是出現(xiàn)在所有的PD而是出現(xiàn)在許多家族史患者;然而,在MPTP誘導的人類PD中沒有報道,可能PD可能沒有統(tǒng)一的疾病實體〔23,24〕。散發(fā)性PD的發(fā)病機制,最主要來自于PD,可能與基因易感性的可變性以及環(huán)境因素有關。近年來越來越多的證據(jù)表明,線粒體自噬功能障礙在PD的發(fā)病機制中扮演者重要的角色。
線粒體功能障礙和PD的直接關系來自于死于PD的患者黑質(zhì)的復合體1描述〔25,26〕,其次是骨骼肌、血小板、淋巴母細胞線粒體缺陷的個案報告〔27〕。大腦內(nèi)的線粒體缺陷僅限于黑質(zhì),被病理檢查證實為偶發(fā)的PD〔28〕。在PD的發(fā)病機制中,線粒體參與的證據(jù)來自于一個家族性PD的遺傳原因的發(fā)現(xiàn)。所有的這些都具有黑質(zhì)中的多巴胺能神經(jīng)元的丟失和PD的特征。通常,這些具有明顯肌張力障礙和認知功能障礙的遺傳性病例的發(fā)病平均年齡早于散發(fā)型PD。然而,許多PINK1或者LRRK2突變的病例,從臨床上不能和散發(fā)性PD相鑒別。許多突變表達或敲除的模型已被發(fā)現(xiàn)有線粒體功能障礙〔29〕。
受損的線粒體功能導致了PD的神經(jīng)退變,是基于PD患者大腦的生物化學和病理解剖學研究,這個發(fā)現(xiàn)進一步被氧化毒性等所證實。直接影響線粒體能量代謝的復合體1的拮抗劑導致了人類和各種動物模型的PD。最近,發(fā)現(xiàn)了對于罕見的遺傳性PD的線粒體具有保護作用的基因功能特征的在線粒體內(nèi)環(huán)境平衡改變的潛在分子信號通路。在軸突轉(zhuǎn)運、突觸的信號、細胞器的退變和細胞內(nèi)能量的供給方面,線粒體是高度動態(tài)的細胞器,被不斷適應功能的形態(tài)和結(jié)構(gòu)所嚴格調(diào)控。這個通路涉及線粒體質(zhì)量控制,確立了功能障礙的線粒體是通過PINK1/parkin通路來自噬清除,提示PD相關的蛋白在線粒體層面上的復雜的相互作用。用線粒體保護信號網(wǎng)絡來解釋也許可以幫助我們理解PD的通過線粒體和(或)線粒體動力學的改變來調(diào)節(jié)自身的平衡〔30〕。
PINK1,一種PD相關蛋白,具有絲/蘇氨酸蛋白激酶活性〔31〕。PINK1包含有線粒體目標信號和公認的跨膜序列〔32〕,人們已經(jīng)確認了細胞質(zhì)里與PINK1有關的蛋白〔33~35〕。在正常線粒體中,PINK1蛋白存在于線粒體外膜,它的激酶的功能區(qū)面向細胞質(zhì)〔36〕。PINK1能夠作為受損線粒體的分子感受器,當用線粒體實驗性去極化去模仿線粒體損傷,使用線粒體解耦聯(lián)劑carbonyl cyanide m-chlorophenylhydrazone (CCCP)減少了整個線粒體內(nèi)膜的膜電位,需要蛋白質(zhì)的TIM調(diào)節(jié)的線粒體進入——PINK1基因不再作為MPP或者PARL和全長64 kD的形式迅速堆積的進程,使用其激酶功能區(qū)跨越線粒體外膜而面向細胞質(zhì)。
線粒體外膜上的PINK1的穩(wěn)定性是parkin募集到受損的線粒體及激發(fā)線粒體自噬所必需的。到目前為止,已經(jīng)發(fā)現(xiàn)3個公認的PINK1底物。PINK1可以與線粒體分子伴侶TRAP1〔37〕(就像是 Hsp75)相互作用;這個研究揭示了PINK1能夠磷酸化TRAP1,這對于調(diào)節(jié)PINK1的蛋白活力來拮抗氧化是很重要的。PINK1功能上與線粒體絲氨酸蛋白HtrA2/OMI (hightemperature regulation A2)〔38〕相互作用。P38激酶途徑刺激后,HtrA2/OMI 是以PINK1依賴的方式磷酸化保守的絲氨酸殘基。在果蠅模型中這條通路的研究提示,HtrA2/OMI作為共同通路的下游蛋白,獨立于parkin〔39~41〕。PINK1還被發(fā)現(xiàn)與Miro 和Milton 一起出現(xiàn)在許多蛋白復合體中〔42〕。Miro 和 Milton是在線粒體外膜上連接驅(qū)動蛋白重鏈到線粒體,沿著微管順行軸索轉(zhuǎn)運的蛋白〔43〕。有趣的是,缺乏線粒體導入序列和跨膜轉(zhuǎn)運功能區(qū)的細胞質(zhì)里的PINK1是可以保護小鼠的MPTP誘導的毒性損傷,提示細胞質(zhì)里的PINK1可能具有保護神經(jīng)元存活的功能〔44〕。PINK1可以減少基底節(jié)區(qū)神經(jīng)元促凋亡活性和星形孢菌素誘導的細胞凋亡。保護作用的減少可能由于黑質(zhì)多巴胺能神經(jīng)元退變所導致的。PD相關的突變和PINK1激酶失活突變可以減少PINK1的保護作用。
在parkin或者PINK1不足的細胞線粒體膜蛋白減少已經(jīng)影響到線粒體轉(zhuǎn)運的效率〔43〕。表明PINK1也許具有線粒體轉(zhuǎn)運功能。PINK1的一個重要的生理功能是增加細胞內(nèi)應激的抵抗力。PINK1蛋白的過表達可以保護各種毒素誘導的細胞的死亡,當PINK1耗竭會增加應激導致的細胞死亡的易感性〔45〕;這些發(fā)現(xiàn)提示,在細胞應激狀況下,PINK1在維持細胞內(nèi)環(huán)境的穩(wěn)定性方面具有重要的作用。許多機制已經(jīng)被解釋PINK1的細胞保護作用的活力,包括線粒體的生物能量學和鈣穩(wěn)態(tài)的維持。
parkin是一種E3泛素連接酶(E3 ubiquitin ligases),通過介導底物蛋白的泛素化,調(diào)控蛋白降解和信號通路等〔46〕,其突變導致了常染色體隱性遺傳青少年型PD(AR-JP)〔47〕。 parkin在許多組織中強烈的表達,包括腦、骨骼肌、心臟和肝臟組織中,這提示其廣泛表達具有廣泛的生理意義。parkin是一個具有465個氨基酸的細胞質(zhì)蛋白,在N端一個泛素樣(UBL)功能區(qū)和一個靠近C端RBR(RING-between-RING)功能區(qū)。RBR功能區(qū)調(diào)節(jié)鋅離子,由兩個RING功能區(qū)組成,夾有RING(ibr)功能區(qū)。一個RING功能區(qū)已經(jīng)被鑒定是位于UBL和RBR的生物序列之間,具有鋅離子結(jié)合能力〔48〕。依賴于線粒體膜電位的改變,parkin蛋白可以定位于細胞質(zhì)和線粒體。
parkin能夠催化共價結(jié)合的泛素到底物蛋白的賴氨酸殘基。parkin能夠分辨不同的泛素化模型,延伸單泛素到泛素分子內(nèi)的包含不同賴氨酸殘基的多聚泛素鏈(例如Lys48-和Lys63-連接的泛素鏈)。由于泛素內(nèi)部的7-賴氨酸殘基的存在,影響了具有不同結(jié)構(gòu)和功能的多聚泛素鏈形成〔49~51〕。
通常情況下,lys48連接的泛素鏈經(jīng)由蛋白酶體通路降解的目標底物結(jié)合。已確認的parkin的底物有突觸囊泡相關蛋白CDCrel-1、parkin相關內(nèi)皮受體樣受體Pael-R、22 kD的糖基化a-synuclein和synphilin-1等。然而其他泛素的連接在DNA修復、胞吞作用和自噬的信號傳導方面具有廣泛的調(diào)節(jié)作用。parkin表達的增加,能夠保護細胞線粒體毒物,細胞內(nèi)和動物模型中的興奮性毒物,內(nèi)質(zhì)網(wǎng)應激和蛋白毒性應激等誘導的細胞的死亡〔52~55〕。
parkin可以參與線粒體功能蛋白(亞基復合物Ⅰ和Ⅳ)表達,parkin KO 小鼠的中腦側(cè)腹部的氧化應激反應是增加的〔56〕,因此,從parkin缺陷的小鼠紋狀體分離的線粒體的呼吸能力是減少的〔56〕。ATP生產(chǎn)的減少反映了線粒體功能的改變也在攜帶parkin病理性突變患者的皮膚成纖維細胞中被發(fā)現(xiàn)〔57〕。許多途徑已經(jīng)涉及parkin的神經(jīng)保護活力,例如核因子(NF)-κB途徑〔58,59〕,JNK信號〔60,61〕和PI3K 信號〔62,63〕。
當在培養(yǎng)的細胞中PINK1和parkin的過表達,parkin能夠被PINK1純化,反之亦然〔64〕。Kim等〔65〕研究表明PINK1和 Parkin通過調(diào)節(jié)線粒體功能的不同方面維持線粒體的完整性,包括膜電位,內(nèi)環(huán)境的穩(wěn)定性,線粒體嵴結(jié)構(gòu),線粒體呼吸活性以及mtDNA完整性。PINK1募集parkin到線粒體是通過磷酸化parkin的一個RING0功能區(qū)蘇氨酸殘基。在其他實驗中也同樣被發(fā)現(xiàn),PINK1可以磷酸化parkin,表明parkin的催化lsy-63連接的多聚泛素化作用的泛素鏈E3泛素連接酶活性是在PINK1誘導的parkin的磷酸化以后加強的〔66〕。是RING-finger 1功能,而不是E3泛素連接酶的活力,需要parkin和PINK1的相互作用。PINK1磷酸化parkin,這種磷酸化能夠被PD連接的突變消除。在與UbcH13/Uev1a E2酶合作以后,PINK1相關的磷酸化能加強parkin的E3連接酶催化k63連接的多聚泛素鏈的活力〔67〕。當線粒體因氧化應激等某些因素受損而致線粒體膜電位(ΔΨm)去極化后,可以促使線粒體上的PINK1 激活parkin,并使parkin從細胞質(zhì)特異性地轉(zhuǎn)移到受損的線粒體外膜上〔68〕,繼而催化線粒體外膜上相關的蛋白被多聚泛素鏈泛素化,泛素化后的線粒體在VDAC1、p62/SQSTM1等自噬調(diào)節(jié)蛋白的協(xié)助下,沿著微管轉(zhuǎn)運到核周并形成線粒體聚集體〔69,70〕,然后被自噬-溶酶體通路(ALP)降解,這樣,PINK1和parkin聯(lián)合作用使受損的線粒體以完整細胞器的形式選擇性地被自噬清除,這一過程被稱為PINK1/Parkin介導的線粒體自噬(PINK1/Parkin-mediated mitophagy)〔71,72〕,而當PINK1或parkin突變后,自噬對受損線粒體的清除則明顯被抑制,導致受損的線粒體在細胞內(nèi)的堆積,進一步損害了細胞正常生理功能〔73〕。
Ambra1(activating molecule in Beclin1-regulated autophagy,Beclin1)通過刺激對于新的phagophores的形成class Ⅲ phosphatidylinositol 3-kinase (PI3K)復合體的活力來激活自噬。Ambra1不需要parkin轉(zhuǎn)位到去極化的線粒體,而是對于繼發(fā)的線粒體清除非常重要的作用。特別是,Ambra1被募集到去極化的線粒體的核周聚集體,激活附近的class Ⅲ PI3K。有數(shù)據(jù)確定,parkin和Ambra1的相互作用是parkin介導的線粒體自噬的最終清除步驟的誘導的關鍵機制〔74〕。
PINK1-parkin依賴的線粒體自噬表明,mitofusins 1 和mitofusins 2的泛素化是一個早期階段。mitofusins的泛素化可能促進線粒體的降解,潛在的活性線粒體自噬可以作為影響大腦和肌肉疾病的一種治療方法〔75〕。
無論parkin或者PINK1去功能化所導致的線粒體形態(tài)學和ATP產(chǎn)生的改變都可以被線粒體融合蛋白Mfn2和OPA1或者Drp1所解救。Parkin和PINK1是可以抑制Drp1導致的線粒體分裂。此外,在Drp1不足的細胞中,敲除parkin/PINK的表型是不會出現(xiàn)的,這表明,在parkin或者 PINK1不足的細胞中,線粒體改變與線粒體增長的分裂有關〔76〕。ATF4,一個未折疊蛋白應答的轉(zhuǎn)錄因子,介導了parkin對線粒體的轉(zhuǎn)錄上調(diào),內(nèi)質(zhì)網(wǎng)應激,然而,c-Jun抑制了parkin的表達〔77〕。
在PINK1沉默的MN9D細胞中,C2-神經(jīng)酰胺(PP2A激動劑)治療可以減少自噬水平,提示,PP2A在PINK1敲除誘導的自噬途徑中,具有重要的作用。PP2A的失活參與PINK1沉默的自噬蛋白保護作用。PINK1沉默的細胞中,PP2A活力的下調(diào)通過促進Bcl-2在S87磷酸化的神經(jīng)保護作用和凋亡通路來阻止〔78〕。
在線粒體自噬這一過程中,PINK1是怎么發(fā)現(xiàn)線粒體受損,并且對解耦聯(lián)做出反應并募集parkin?PINK1是怎樣在個體細胞中,區(qū)別受損和健康的線粒體,并介導了parkin的募集,僅僅是解耦聯(lián)細胞器?盡管有報道,PINK1結(jié)合和磷酸化parkin,關于PINK1募集parkin到線粒體仍未闡明。
盡管,有許多PD相關的基因陸續(xù)被克隆出來,但是,這些基因所表達的蛋白的功能改變僅是從一方面闡釋了PD的發(fā)病機制,到目前為止還沒有一種理論能夠完全闡釋PD的發(fā)病機制。但是,有一點是可以肯定的,那就是涉及線粒體自噬的線粒體損傷與修復。新的基因或者功能蛋白的發(fā)現(xiàn),必然會為人們揭示PD的發(fā)病機制提供更加有力的證據(jù)。有一點是可能的——線粒體自噬可能成為PD治療的靶點。對于有機體來說,輕度自噬可能有助于蛋白聚集體的清除,然而,過度自噬可能誘發(fā)集體細胞的不可逆的功能改變,甚至死亡。所以,如何控制線粒體自噬在一個溫和而有效的范圍和程度,對于PD將是一個新的挑戰(zhàn)性的治療策略。
6 參考文獻
1Polymeropoulos MH,Lavedan C,Leroy E,etal.Mutation in the alpha-synuclein gene identified in families with Parkinson′s disease〔J〕.Science,1997;276:2045-7.
2Kitada T,Asakawa S,Hattori N,etal.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism〔J〕. Nature,1998;392:605-8.
3Leroy E,Boyer R,Auburger G,etal.The ubiquitin pathway in Parkinson′s disease〔J〕. Nature,1998;395:451-2.
4Valente EM,Abou-Sleiman PM,Caputo V,etal.Hereditary early-onset Parkinson′s disease caused by mutations in PINK1〔J〕. Science,2004;304:1158-60.
5Bonifati V,Rizzu P,van Baren MJ,etal.Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism〔J〕.Science,2003;299:256-9.
6Paisan-Ruiz C,Jain S,Evans EW,etal.Cloning of the gene containing mutations that cause PARK8-linked Parkinson′s disease〔J〕. Neuron,2004;44:595-600.
7Zimprich A,Biskup S,Leitner P,etal.Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology〔J〕. Neuron,2004;44:601-7.
8Ramirez A,Heimbach A,Grundemann J,etal.Hereditary parkinsonism with dementia is caused by mutations in ATP13A2,encoding a lysosomal type 5 P-type ATPase〔J〕. Nat Genet,2006;38:1184-91.
9Lautier C,Goldwurm S,Durr A,etal.Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease〔J〕. Am J Hum Genet,2008;82:822-33.
10Strauss KM,Martins LM,Plun-Favreau H,etal.Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson′s disease〔J〕. Hum Mol Genet,2005;14:2099-111.
11Paisan-Ruiz C,Bhatia KP,Li A,etal.Characterization of PLA2G6 as a locus for dystonia-parkinsonism〔J〕. Ann Neurol,2009;65:19-23.
12Di Fonzo A,Dekker MC,Montagna P,etal.FBXO7 mutations cause autosomal recessive,early-onset parkinsonian-pyramidal syndrome〔J〕. Neurology,2009;72:240-5.
13Braak H,Del Tredici K,Rub U,etal.Staging of brain pathology related to sporadic Parkinson′s disease〔J〕.Neurobiol Aging,2003;24:197-211.
14Forno LS.Neuropathology of Parkinson′s disease〔J〕.Neuropathol Exp Neurol,1996;55:259-72.
15Lang AE,Obeso JA.Challenges in Parkinson′s disease:restoration of the nigrostriatal dopamine system is not enough〔J〕.Lancet Neurol,2004;3:309-16.
16Spillantini MG,Schmidt ML,Lee VM,etal. Alpha-synuclein in Lewy bodies〔J〕.Nature,1997;388:839-40.
17Caughey B,Lansbury PT.Protobrils,pores,fibrils,and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders〔J〕.Annu Rev Neurosci,2003;26:267-98.
18Winklhofer KF,Tatzelt J,Haass C.The two faces of protein misfolding:gain-and loss-of-function in neurodegenerative diseases〔J〕.EMBO,2008;27:336-49.
19Burke RE,Dauer WT,Vonsattel JP.A critical evaluation of the Braak staging scheme for Parkinson′s disease〔J〕.Ann Neurol,2008;64:485-91.
20Obeso JA,Rodriguez-Oroz MC,Goetz CG,etal. Missing pieces in the Parkinson′s disease puzzle〔J〕.Nat Med,2010;16:653-61.
21Li JY,Englund E,Holton JL,etal. Lewy bodies in grafted neurons in subjects with Parkinson′s disease suggest host-to-graft disease propagation〔J〕.Nat Med,2008;14:501-3.
22Kordower JH,Chu Y,Hauser RA,etal.Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson′s disease〔J〕. Nat Med,2008;14:504-6.
23Langston JW,F(xiàn)orno LS,Tetrud J,etal.Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure〔J〕.Ann Neurol,1999;46:598-605.
24Nuytemans K,Theuns J,Cruts M,etal. Genetic etiology of Parkinson disease associated with mutations in the SNCA,PARK2,PINK1,PARK7,and LRRK2 genes:a mutation update〔J〕.Hum Mutat,2010;31:763-80.
25Schapira AH,Cooper JM,Dexter D,etal.Mitochondrial complex Ⅰ deficiency in Parkinson′s disease〔J〕.Lancet,1989;1:1269.
26Schapira AH,Cooper JM,Dexter D,etal.Mitochondrial complex Ⅰ deficiency in Parkinson′s disease〔J〕.Neurochemistry,1990;54:823-7.
27Schapira AH.Evidence for mitochondrial dysfunction in Parkinson′s disease-a critical appraisal〔J〕.Mov Disord,1994;9:125-38.
28Schapira AH,Mann VM,Cooper JM,etal.Anatomic and disease specificity of NADH CoQ1 reductase (complex Ⅰ) deficiency in Parkinson′s disease〔J〕.Neurochemistry,1990;55:2142-5.
29Schapira AH.Mitochondrial dysfunction in Parkinson′s disease〔J〕.Cell Death Differ,2007;14:1261-6.
30Schapira AH.Etiology of Parkinson′s disease〔J〕.Neurology,2006;66 (10 suppl 4):S10-23.
31Burbulla LF,Krebiehl G,Krüger R,etal. Balance is the challenge-the impact of mitochondrial dynamics in Parkinson′s disease〔J〕.Eur J Clin Invest,2010;40(11):1048-60.
32Valente EM,Abou-Sleiman PM,Caputo V,etal. Hereditary early-onset Parkinson′s disease caused by mutations in PINK1〔J〕.Science,2004;304:1158-60.
33Silvestri L,Caputo V,Bellacchio E,etal. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive Parkinsonism〔J〕.Hum Mol Genet,2005;14:3477-92.
34Haque ME,Thomas KJ,D′Souza C,etal.Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP〔J〕.Proc Natl Acad Sci USA,2008;105:1716-21.
35Takatori S,Ito G,Iwatsubo T.Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1〔J〕.Neurosci Lett,2008;430:13-7.
36Lin W,Kang UJ.Characterization of PINK1 processing,stability,and subcellular localization〔J〕.Neurochemistry,2008;106:464-74.
37Zhou C,Huang Y,Shao Y,etal.The kinase domain of mitochondrial PINK1 faces the cytoplasm〔J〕.Proc Natl Acad Sci USA,2008;105:12022-7.
38Pridgeon JW,Olzmann JA,Chin LS,etal. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1〔J〕.PLoS Biol,2007;5:e172.
39Plun-Favreau H,Klupsch K,Moisoi N,etal. The mitochondrial protease HtrA2 is regulated by Parkinson′s disease-associated kinase PINK1〔J〕.Nat Cell Biol,2007;9:1243-52.
40Tain LS,Chowdhury RB,Tao RN,etal.Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin〔J〕.Cell Death Differ,2009;16:1118-25.
41Whitworth AJ,Lee JR,Ho VM,etal. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson′s disease factors Pink1 and Parkin〔J〕.Dis Model Mech,2008;1:168-74.
42Yun J,Cao JH,Dodson MW,etal. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo〔J〕.Neuroscience,2008;28:14500-10.
43Weihofen A,Thomas KJ,Ostaszewski BL,etal. Pink1 forms a multiprotein complex with Miro and Milton,linking Pink1 function to mitochondrial trafcking〔J〕.Biochemistry,2009;48:2045-52.
44Miller KE,Sheetz MP. Axonal mitochondrial transport nd potential are correlated〔J〕.Cell Sci,2004;117:2791-804.
45Haque ME,Thomas KJ,D′Souza C,etal. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP〔J〕.Proc Natl Acad Sci USA,2008;105:1716-21.
46Deas E,Plun-Favreau H,Wood NW. PINK1 function in health and disease〔J〕.EMBO Mol Med,2009;1:152-65 .
47Safadi SS,Shaw GS.Differential interaction of the E3 ligase parkin with the proteasomal subunit S5a and the endocytic protein Eps15〔J〕.Biol Chem,2010;285(2):1424-34.
48Kitada T,Asakawa S,Hattori N,etal.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism〔J〕.Nature,1998;392:605-8.
49Hristova VA,Beasley SA,Rylett RJ,etal. Identication of a novel Zn2+-binding-domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin〔J〕.Biol Chem,2009;284:14978-86.
50Behrends C,Harper JW. Constructing and decoding unconventional ubiquitin chains〔J〕. Nat Struct Mol Biol,2011;18:520-8.
51Ikeda F,Dikic I.Atypical ubiquitin chains:new molecular signals protein modications:beyond the usual suspects′ review series〔J〕.EMBO Rep,2008;9(6):536-42.
52Komander D. The emerging complexity of protein ubiquitination〔J〕.Biochem Soc Trans,2009;37:937-53.
53Bouman L,Schlierf A,Lutz AK,etal.Parkin is transcriptionally regulated by ATF4:evidence for an interconnection between mitochondrial stress and ER stress〔J〕.Cell Death Differ,2011;18:769-82.
54Fett ME,Pilsl A,Paquet D,etal. Parkin is protective against proteotoxic stress in a transgenic zebrash model〔J〕.PLoS One,2010;5(7):e11783.
55Henn IH,Bouman L,Schlehe JS,etal. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling〔J〕.Neuroscience,2007;27:1868-78.
56Rosen KM,Veereshwarayya V,Moussa CEetal. Parkinprotects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells〔J〕.Biol Chem,2006;281:12809-16.
57Palacino JJ,Sagi D,Goldberg MS,etal. Mitochondrial dysfunction and oxidative damage in parkin-decient mice〔J〕.Biol Chem,2004;279:18614-22.
58Grunewald A,Voges L,Rakovic A,etal. Mutant Parkin impairs mitochondrial function and morphology in humanbroblasts〔J〕.PLoS One,2010;5(9):e1296.
59Henn IH,Bouman L,Schlehe JS,etal. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling〔J〕 .Neuroscience,2007;27:1868-78.
60Sha D,Chin LS,Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling〔J〕.Hum Mol Genet,2010;19:352-63.
61Hasegawa T,Treis A,Patenge N,etal. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways〔J〕.Neurochemistry,2008;105:1700-15.
62Cha GH,Kim S,Park J,etal.Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila〔J〕.Proc Natl Acad Sci USA,2005;102:10345-50.
63Fallon L,Belanger CM,Corera AT,etal.A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafcking and PI(3)K-Akt signalling〔J〕.Nat Cell Biol,2006;8:834-42.
64Yang Y,Gehrke S,Imai Y,etal. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin〔J〕.Proc Natl Acad Sci USA,2006;103:10793-8.
65Kim Y,Park J,Kim S,etal. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation〔J〕.Biochem Biophys Res Commun,2008;377:975-80.
66Moore DJ. Parkin:a multifaceted ubiquitin ligase〔J〕.Biochem Soc Trans,2006;34:749-53.
67Sha D,Chin LS,Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling〔J〕.Hum Mol Genet,2010;19:352-63.
68Di Sha,Lih-Shen Chin,Lian Li.Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling〔J〕.Hum Mol Genet,2010;19(2):352-63.
69Vives-Bauza C,Zhou C,Huang Y,etal.PINK1-dependent recruitment of Parkin to mitochondria in mitophagy〔J〕.Proc Natl Acad Sci USA,2010;107(1):378-83.
70Youle RJ,Narendra DP.Mechanisms of mitophagy〔J〕.Nat Rev Mol Cell Biol,2011;12(1):9-14.
71Wild P,Dikic I.Mitochondria get a Parkin′ ticket〔J〕.Nat Cell Biol,2010;12(2):104-6.
72Jones N.PINK1 targets dysfunctional mitochondria for autophagy in Parkinson disease〔J〕.Nat Rev Neurol,2010;6(4):181.
73Abeliovich A.Parkinson′s disease:mitochondrial damage control〔J〕.Nature,2010;463 (7282):744-5.
74Gegg ME,Schapira AH.PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2:implications for Parkinson disease pathogenesis〔J〕.Autophagy,2011;7(3):266-78.
75Cindy Van Humbeeck,Tom Cornelissen,Hilde Hofkens,etal.Parkin interacts with Ambra1 to induce mitophagy〔J〕.J Neurosci,2011;31:10249-61.
76Gegg ME,Schapira AH.PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2:implications for Parkinson disease pathogenesis〔J〕.Autophagy,2011;7(2):243-5.
77Lutz AK,Exner N,F(xiàn)ett ME,etal. Loss of Parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation〔J〕.J Biol Chem,2009;284:22938-51.
78Bouman L,Schlierf A,Lutz AK,etal.Parkin is transcriptionally regulated by ATF4:evidence for an interconnection between mitochondrial stress and ER stress〔J〕.Cell Death Differ,2011;18:769-82.
79Qi ZF,Yang WW,Liu YJ,etal.Loss of PINK1 function decreases PP2A activity and promotes autophagy in dopaminergic cells and a murine model〔J〕.Neurochem Inter,2011;59:572-81.