徐洪杰,戴鐘銓,吳 峰,商 澎,李瑩輝
(1.西北工業(yè)大學(xué)生命學(xué)院 空間生物實(shí)驗(yàn)?zāi)M技術(shù)重點(diǎn)實(shí)驗(yàn)室,陜西 西安710072;2.中國(guó)航天員科研訓(xùn)練中心 航天醫(yī)學(xué)基礎(chǔ)與應(yīng)用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100094)
空間飛行的微重力環(huán)境會(huì)導(dǎo)致一系列航天醫(yī)學(xué)問(wèn)題的發(fā)生,包括骨丟失、肌肉萎縮、貧血、免疫功能下降和心血管系統(tǒng)紊亂等。研究顯示,為適應(yīng)空間獨(dú)特的微重力環(huán)境,組織體細(xì)胞活性和干細(xì)胞分化能力會(huì)發(fā)生改變[1-4],進(jìn)而導(dǎo)致相應(yīng)生理系統(tǒng)問(wèn)題的發(fā)生發(fā)展。成體干細(xì)胞是各種組織器官的祖細(xì)胞和支持細(xì)胞,具有自我更新和分化為多種功能細(xì)胞的潛能;參與多種組織器官(如骨骼和造血系統(tǒng))的失效細(xì)胞的更替及疾病痊愈。隨著干細(xì)胞研究的不斷發(fā)展和深入,微重力效應(yīng)對(duì)成體干細(xì)胞[5]、胚胎干細(xì)胞(embryonic stem cells,ESCs)的影響逐漸成為空間生物學(xué)研究的熱點(diǎn)。理解微重力對(duì)干細(xì)胞的影響將有助于闡明空間飛行期間的骨丟失、肌肉萎縮和貧血等生理變化的細(xì)胞分子機(jī)理,為采取針對(duì)性的防護(hù)措施提供理論和技術(shù)支持。
干細(xì)胞是具有無(wú)限或長(zhǎng)期的自我更新能力和分化產(chǎn)生至少一種成熟特異體細(xì)胞能力的細(xì)胞[6]。成體干細(xì)胞研究最早,但分化潛能有限。ESCs由于其巨大的分化潛能一度成為干細(xì)胞研究的熱點(diǎn),但是倫理爭(zhēng)議和免疫排斥的問(wèn)題限制了其臨床應(yīng)用。2007年體細(xì)胞重編程獲得的類似ESCs潛能的誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)彌補(bǔ)了上述缺陷,該研究獲得2012年諾貝爾生理與醫(yī)學(xué)獎(jiǎng)。研究表明成體干細(xì)胞的多能性、增殖[5]和分化潛能[3,7-9]受重力的影響。目前,失重條件下ESCs的研究才剛剛開(kāi)始[10],而微重力對(duì)iPSCs的作用尚無(wú)報(bào)道。作者在此綜述了iPSCs的發(fā)現(xiàn)及最新研究進(jìn)展,重點(diǎn)闡述重編程方法的優(yōu)化及其在航天醫(yī)學(xué)領(lǐng)域中的應(yīng)用展望,擬為開(kāi)展微重力對(duì)iPSCs影響的研究提供參考。
多能干細(xì)胞包括ESCs、胚胎生殖細(xì)胞(embryonic germ cells,EG)、胚胎腫瘤細(xì)胞(embryonic carcinoma cells,EC)和iPSCs。有文獻(xiàn)[11]將生殖干細(xì)胞(multipotent germline stem cells,mGSC)和骨髓的前體細(xì)胞(multipotent adult progenitor cell)也并入此列。在畸胎瘤中發(fā)現(xiàn)的EC[12]是最早研究的多能干細(xì)胞。由于致瘤性、分化潛能有限且不能形成嵌合小鼠,其研究?jī)r(jià)值逐漸被1981年分離培養(yǎng)成功的小鼠ESCs[13]所取代。1998年John等通過(guò)分離原始生殖細(xì)胞培養(yǎng)后獲得了人EG[14],同年從動(dòng)物囊胚期內(nèi)細(xì)胞團(tuán)中分離培養(yǎng)獲得了ESCs[15-16]。這3種多能干細(xì)胞中ESCs最有研究和應(yīng)用價(jià)值。
成熟的細(xì)胞由分化狀態(tài)被逆轉(zhuǎn)到未分化狀態(tài)的過(guò)程稱為細(xì)胞重編程[17]。通過(guò)重編程可由體細(xì)胞獲得多能干細(xì)胞。目前可實(shí)現(xiàn)體細(xì)胞重編程的方法包括:細(xì)胞核移植[18]、體細(xì)胞與多能細(xì)胞融合[19-20]、用ESCs提取物處理體細(xì)胞[21]以及某些類型細(xì)胞在體外培養(yǎng)時(shí)自發(fā)產(chǎn)生[22-24]。然而這些方法的應(yīng)用條件復(fù)雜、重編程效率低。同時(shí),核移植或細(xì)胞融合實(shí)驗(yàn)提示篩選出有效的多能性相關(guān)的特定因子可能有助于建立簡(jiǎn)便高效的重編程方法。
受細(xì)胞重編程方法的啟示,2006年Takahashi等[25]選擇24種在小鼠早期胚胎、ESCs或腫瘤細(xì)胞中豐富表達(dá)的轉(zhuǎn)錄因子,通過(guò)組合、篩選,發(fā)現(xiàn)用Oct4、Sox2、c-Myc和Klf4四個(gè)因子可有效地將胎鼠成纖維細(xì)胞和小鼠尾尖成纖維細(xì)胞誘導(dǎo)成形態(tài)和生長(zhǎng)特性類似ESCs的克隆,即iPSCs。Thomason等使用慢病毒介導(dǎo)Oct4、Sox2、Nanog和Lin28四個(gè)因子獲得了人的iPSCs[26],但得到的iPSCs不能形成成年的嵌合體小鼠,且沒(méi)有生殖系轉(zhuǎn)移(germline transmission)的能力,而這是鑒定多能干細(xì)胞的嚴(yán)格標(biāo)準(zhǔn)之一。隨后發(fā)現(xiàn)其原因是使用了Fbx15啟動(dòng)子驅(qū)動(dòng)的新霉素抗性基因來(lái)篩選iPSCs,F(xiàn)bx15在ESCs中表達(dá)量較高,但在自我更新和多潛能性的維持中不是必需的[27]。改進(jìn)的篩選系統(tǒng)[28-29]以O(shè)ct4和Nanog取代Fbx15,得到既高效嵌合成年小鼠、又參與形成生殖系細(xì)胞的iPSCs,并獲得了iPSCs衍生的后代小鼠。
猴和豬體形與人相仿,器官大小、結(jié)構(gòu)和功能最適合人體移植,因此在小鼠iPSCs的基礎(chǔ)上陸續(xù)又建立了猴[30]、大鼠[31-32]和豬[33]的iPSCs。此外,大鼠ESCs很難獲得,大鼠iPSCs在ESCs未建系的情況下建立,為大鼠的轉(zhuǎn)基因模式動(dòng)物的建立奠定了基礎(chǔ)。
根據(jù)基因?qū)敕绞降牟煌鼐幊谭椒煞譃椴《据d體和非病毒載體兩類。病毒載體包括逆轉(zhuǎn)錄病毒載體和慢病毒載體,其優(yōu)點(diǎn)是誘導(dǎo)效率高(如新生兒包皮成纖維細(xì)胞重編程效率高達(dá)0.01%[26]),缺點(diǎn)是外源因子永久整合基因組,有插入突變風(fēng)險(xiǎn)。逆轉(zhuǎn)錄病毒載體一般只能轉(zhuǎn)染分裂旺盛的細(xì)胞,腺病毒載體可實(shí)現(xiàn)外源基因的瞬時(shí)表達(dá),但仍有外源基因的整合。非病毒載體的方法包括使用脂質(zhì)體或piggyBac轉(zhuǎn)座子載體、mRNA或microRNA轉(zhuǎn)染、蛋白質(zhì)直接介導(dǎo)、小分子化合物聯(lián)用等。重編程效率低和外源基因整合的風(fēng)險(xiǎn)是上述方法面臨的共同難題。
病毒載體介導(dǎo)的誘導(dǎo)方式由于插入突變而具有誘發(fā)腫瘤的風(fēng)險(xiǎn)。非病毒載體的誘導(dǎo)方式包括2A肽非病毒轉(zhuǎn)染法[34]、誘導(dǎo)性表達(dá)載體法[35]、Cre/LoxP重組切除法[36]及PB轉(zhuǎn)座子介導(dǎo)法[37]等。其中Cre不能介導(dǎo)載體完全切除,而PB轉(zhuǎn)座子系統(tǒng)可將外源DNA徹底清除,是一種更安全的方法。但是目前完全避免使用病毒或轉(zhuǎn)座子的方法如非整合腺病毒[38]、脂質(zhì)體[39]和非插入型的附加體(episomal)[40]等轉(zhuǎn)染效率極低,還需要尋找更有效的誘導(dǎo)方法。
某些細(xì)胞已表達(dá)特定因子,因此只需導(dǎo)入其它幾個(gè)即可完成重編程過(guò)程。研究表明Oct4和Klf4雙因子[41-42]或Oct4單因子[43]均可建立iPSCs。有研究證明小分子化合物可替代轉(zhuǎn)錄因子,如組蛋白甲基轉(zhuǎn)移酶G9a的抑制劑BIX-01294可替代Oct4[44],隨后發(fā)現(xiàn)BIX-01294和BayK8644協(xié)同Oct4和Klf4[45]、組蛋白去乙酰化酶抑制劑丙戊酸(valproic acid,VPA)協(xié)同Oct4和Sox2可誘導(dǎo)成纖維細(xì)胞重編程[46]。
更安全的重編程方式是不涉及任何基因修飾,目前僅有蛋白介導(dǎo)的方式。2009年Zhou等[47]利用細(xì)胞穿膜肽11R引導(dǎo)四因子的重組蛋白并聯(lián)合使用VPA成功重編程鼠成纖維細(xì)胞,但重編程效率僅0.001%。
轉(zhuǎn)染效率低及重編程本身的隨機(jī)性是誘導(dǎo)效率提高的瓶頸。重編程效率與外源因子的誘導(dǎo)水平、內(nèi)源相應(yīng)轉(zhuǎn)錄因子的表達(dá)水平、其它因子過(guò)表達(dá)或RNAi表達(dá)能力等生物因素有關(guān),也與化學(xué)物質(zhì)使用、物理刺激和細(xì)胞培養(yǎng)條件等非生物因素有關(guān)。最初iPSCs建系效率只有0.02%[25],而減少轉(zhuǎn)錄因子以降低腫瘤風(fēng)險(xiǎn)的策略導(dǎo)致重編程效率更低、時(shí)程更長(zhǎng),即使所有四因子同時(shí)使用時(shí)最多也只能達(dá)到2%[35,48],短時(shí)間內(nèi)不能得到足量的細(xì)胞嚴(yán)重阻礙著iPSCs的臨床應(yīng)用。目前提高重編程效率的途徑主要包括篩選小分子化合物、細(xì)胞類型和探索新的誘導(dǎo)因子幾個(gè)方面。小分子化合物除了BIX-01294[44]和VPA[46],DNA甲基化轉(zhuǎn)移酶抑制劑5-aza-cytidine(AZA)[49]、丁酸鹽(butyrate)[50]、組蛋白脫乙?;敢种苿┒∷徕c和TGF-β信號(hào)抑制劑SB431542[51]和糖原合成酶(glycogensynthase kinase-3,GSK-3)抑制劑CHIR990213[52]都能提高重編程效率,其中VPA可提高100多倍。
細(xì)胞類型也是影響重編程效率的重要因素。除了小鼠成纖維細(xì)胞,胃和肝細(xì)胞[34]、神經(jīng)干細(xì)胞[41]、胰腺β細(xì)胞[53]、終末分化的B淋巴細(xì)胞[35]等重編程效率各不相同[41-43]。胃和肝細(xì)胞產(chǎn)生的iPSCs的成瘤性明顯低于皮膚成纖維細(xì)胞[34]。人源iPSCs的報(bào)道較少,除成纖維細(xì)胞外,已有報(bào)道的源細(xì)胞包括人的血液CD34細(xì)胞[54]和皮膚角質(zhì)細(xì)胞[55]。逆轉(zhuǎn)錄病毒介導(dǎo)四因子重編程青少年角化細(xì)胞的效率比成纖維細(xì)胞高100多倍,而且時(shí)程縮短近一半[55]。
蛋白介導(dǎo)重編程的效率低是因?yàn)榈鞍讓?dǎo)入細(xì)胞的效率低,因此尋找導(dǎo)入效率更高的誘導(dǎo)因子如RNA有望解決此問(wèn)題。Warren等[56]使用四因子的mRNA誘導(dǎo)時(shí)程縮短一半,效率提高了100多倍。miR-302和miR-367也有相似的效果[57],原因可能是通過(guò)激活Oct4并抑制組蛋白脫乙酰基酶HDAC2而促進(jìn)iPSCs的形成。另外利用siRNA干擾抑癌基因p53能顯著提高重編程效率,同時(shí)下調(diào)p53和過(guò)量表達(dá)UTF1甚至可替代c-Myc并提高效率100倍[58],p53缺失時(shí)僅需Oct4、Sox2雙因子[59]。但是缺失關(guān)鍵抑癌基因的方法將增加基因組的不穩(wěn)定性或誘導(dǎo)腫瘤的產(chǎn)生,可能帶來(lái)得不償失的風(fēng)險(xiǎn),這提示研究者提高重編程的效率要與iPSCs的安全性兼顧。
物理微環(huán)境和機(jī)械張力影響間充質(zhì)干細(xì)胞(MSC)分化的證據(jù)越來(lái)越多,因此除了生物因素,細(xì)胞培養(yǎng)條件等物理因素對(duì)細(xì)胞重編程過(guò)程的調(diào)控也有必要進(jìn)行研究。航天特殊環(huán)境如微重力、低氧可能影響重編程的效率。已有研究表明低氧條件可以提高重編程效率,促進(jìn)ESCs向視網(wǎng)膜前體細(xì)胞分化[60-61],但是ESCs或iPSCs對(duì)機(jī)械刺激的響應(yīng)幾乎未見(jiàn)報(bào)道。
隨著基礎(chǔ)研究的不斷深入,iPSCs在疾病模型構(gòu)建、藥物篩選、細(xì)胞治療中的應(yīng)用效果顯著。利用iPSCs獲得人體特異細(xì)胞或組織是應(yīng)用的最終目標(biāo)。
Jaenisch博士首次用小鼠iPSCs建立人疾病模型[62],并用于治療人性化的鐮刀型貧血癥小鼠模型和帕金森病大鼠模型,從理論和實(shí)踐上為人類單基因遺傳疾病治療奠定基礎(chǔ),也證明了iPSCs治療復(fù)雜疾病的可能性。2009年Ebert等[63]利用患者成纖維細(xì)胞重編程的iPSCs成功再現(xiàn)脊髓性肌萎縮癥(spinal muscular atrophy,SMA)進(jìn)行性變性的過(guò)程。82歲高齡的女性肌萎縮性側(cè)索硬化癥(amyotrophic lateral sclerosis,ALS)病人的成纖維細(xì)胞重編程的iPSCs可獲得疾病特異性的運(yùn)動(dòng)神經(jīng)元[64],證明慢性病老年患者也可以直接從iPSCs獲得疾病特異性模型。用人iPSCs還建立了女性流行性神經(jīng)發(fā)育疾病Rett綜合癥(Rett syndrome,RTT)[65]、致命性亨廷頓病(Huntington′s disease HD)[66]、X-連鎖隱性遺傳病進(jìn)行性假肥大性肌營(yíng)養(yǎng)不良(duchenne muscular dystrophy,DMD)[67]、21三體導(dǎo)致的特瓦綜合癥(down syndrome,DS)[68]、豹皮綜合癥[69]、人I型糖尿?。?0]、骨髓增生?。╩yeloproliferative disorders,MPDs)[71]、范可尼貧血癥[71]、肝?。?2]、家族性植物神經(jīng)功能障礙癥(falilial dysautonomia,F(xiàn)D)[73]等疾病模型,為發(fā)病機(jī)制和新穎高效治療方法的研究提供了有利條件。
建立人iPSCs疾病模型首先要選擇取材安全、方便的體細(xì)胞,不同體細(xì)胞來(lái)源的iPSCs保留供體細(xì)胞的基因印跡,而且轉(zhuǎn)錄、表觀遺傳和分化能力均有所差異,因此有必要評(píng)價(jià)不同體細(xì)胞來(lái)源的iPSCs差異性對(duì)疾病模型的安全性、有效性的影響。
目前已使用疾病特異性的iPSCs模型對(duì)FD候選藥物激動(dòng)素Kinetin[73]、針對(duì)SMA患者提高SMN蛋白水平的藥物VPA和tobramycin、抗血管生成藥物Azumanaid ESCs進(jìn)行了評(píng)價(jià),可對(duì)iPSCs分化的功能細(xì)胞進(jìn)行藥物效果的實(shí)時(shí)監(jiān)測(cè),為個(gè)性化藥物篩選和藥效研究提供了廣闊的平臺(tái)。
除了建立疾病模型外,患者個(gè)體化的iPSCs進(jìn)行遺傳修飾之后定向分化健康細(xì)胞來(lái)進(jìn)行細(xì)胞移植,理論上可以治療任何遺傳性疾病和退行性疾病。目前通過(guò)人iPSCs治療神經(jīng)系統(tǒng)疾?。?3-64]、I型糖尿?。?4]、肝病、腎病等的效果都已經(jīng)在動(dòng)物模型中得到驗(yàn)證,人ESCs已進(jìn)入臨床實(shí)驗(yàn)。
航天飛行導(dǎo)致一系列生理性改變的主要原因是微重力條件,因此研究微重力效應(yīng)對(duì)細(xì)胞功能的影響,特別是對(duì)維持組織細(xì)胞更新的干細(xì)胞的活性和功能的影響,找到關(guān)鍵性靶點(diǎn)是從根本上解決航天醫(yī)學(xué)問(wèn)題的關(guān)鍵,對(duì)胚胎發(fā)育生理學(xué)也有重要意義。
研究表明,模擬微重力能抑制成體干細(xì)胞向力敏感性細(xì)胞(如成骨細(xì)胞和心肌細(xì)胞)的分化,而促進(jìn)其向力不敏感細(xì)胞(如脂肪細(xì)胞[7-8])的分化。相對(duì)于正常的1G條件,3-D回轉(zhuǎn)器模擬微重力條件有利于維持hMSC細(xì)胞增殖和透明軟骨向分化潛能[75]、促進(jìn)肝干細(xì)胞的分化能力[3]和MSC向髓核樣細(xì)胞的分化潛能[76],但是大梯度強(qiáng)磁場(chǎng)模擬微重力效應(yīng)抑制hMSC早期的成骨向分化[7],回轉(zhuǎn)模擬微重力效應(yīng)也抑制hMSC成骨向分化、促進(jìn)脂肪向分化[77]。
模擬微重力條件下mESCs細(xì)胞總數(shù)減少、細(xì)胞增殖活性沒(méi)有變化、粘附減弱、DNA無(wú)損傷,但是影響輻射誘導(dǎo)損傷的修復(fù)[10],是否對(duì)多潛能的維持和譜系分化能力產(chǎn)生影響亟待研究。局部機(jī)械力影響mESCs伸展方向,但分化后的細(xì)胞硬度增大,單個(gè)ESCs細(xì)胞中Oct4表達(dá)水平改變[78]。然而此方法或模擬微重力可否激活內(nèi)源性重編程因子、促進(jìn)重編程而成為不使用化學(xué)因子的更安全的重編程方法仍不明確。模擬微重力對(duì)干細(xì)胞干性及分化潛能的影響的研究為解決微重力性骨丟失等諸多問(wèn)題奠定了理論基礎(chǔ),但是力學(xué)傳導(dǎo)的機(jī)制目前并不清楚。iPSCs方法的建立必將為研究胚胎發(fā)育復(fù)雜的調(diào)控機(jī)制及遺傳疾病機(jī)制提供優(yōu)質(zhì)的細(xì)胞和組織模型,為解決航天醫(yī)學(xué)的基本問(wèn)題提供新的思路。
[1]Clause K C,Liu L J,Tobita K.Directed stem cell differentiation:The role of physical forces[J].Cell Communication and Adhesion,2010,17(2):48-54.
[2]Li J,Zhang S,Chen J,et al.Modeled microgravity causes changes in the cytoskeleton and focal adhesions,and decreases in migration in malignant human MCF-7cells[J].Protoplasma,2009,238(1-4):23-33.
[3]Majumder S,Siamwala J H,Srinivasan S,et al.Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/Notch1signaling[J].J Cell Biochem,2011,112(7):1898-1908.
[4]Huang Y,Dai Z Q,Ling S K,et al.Gravity,a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J].J Biomed Sci,2009,16(1):87-101.
[5]Gershkovich P M,Gershkovich Iu G,Buravkova L B.Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity[J].Aviakosm Ekolog Med,2011,45(4):39-41.
[6]Alison M R,Poulsom R,F(xiàn)orbes S,et al.An introduction to stem cells[J].J Pathol,2002,197(4):419-423.
[7]Shi D,Meng R,Deng W,et al.Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells[J].Stem Cell Rev,2010,6(4):567-578.
[8]Sheyn D,Pelled G,Netanely D,et al.The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system:A bioinformatics study[J].Tissue Eng Part A,2010,16(11):3403-3412.
[9]Dai Z Q,Wang R,Ling S K,et al.Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells[J].Cell Prolif,2007,40(5):671-684.
[10]Wang Y,An L,Jiang Y,et al.Effects of simulated microgravity on embryonic stem cells[J].PLoS One,2011,6(12):e29214.
[11]Mirzapour T,Tengku A B T I,Movahedin M,et al.Stem cells research and its application:A review[J].Jounal of Applied Science,2011,11(1):163-173.
[12]Solter D.From teratocarcinomas to embryonic stem cells and beyond:A history of embryonic stem cell research[J].Nat Rev Genet,2006,7(4):319-327.
[13]Martin G R.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J].Proc Natl Acad Sci USA,1981,78(12):7634-7638.
[14]Shamblott M J,Axelman J,Wang S P,et al.Derivation of pluripotent stem cells from cultured human primordial germ cells[J].Proc Natl Acad Sci USA,1998,95(23):13726-13731.
[15]Rossant J.Stem cells from the mammalian blastocyst[J].Stem Cells,2001,19(6):477-482.
[16]Thomson J A,Itskovitz-Eldor J,Shapiro S S,et al.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282(5391):1145-1147.
[17]Hochedlinger K,Jaenisch R.Nuclear reprogramming and pluripotency[J].Nature,2006,441(7097):1061-1067.
[18]Rodolfa K T,Eggan K.A transcriptional logic for nuclear reprogramming[J].Cell,2006,126(4):652-655.
[19]Tada M,Takahama Y,Abe K,et al.Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells[J].Curr Biol,2001,11(19):1553-1558.
[20]Cowan C A,Atienza J,Melton D A,et al.Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells[J].Science,2005,309(5739):1369-1373.
[21]Hansis C,Barreto G,Maltry N,et al.Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1[J].Curr Biol,2004,14(16):1475-1480.
[22]Jiang Y,Jahagirdar B N,Reinhardt R L,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.
[23]Matsui Y,Zsebo K,Hogan B L.Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture[J].Cell,1992,70(5):841-847.
[24]Guan K,Nayernia K,Maier L S,et al.Pluripotency of spermatogonial stem cells from adult mouse testis[J].Nature,2006,440(7088):1199-1203.
[25]Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.
[26]Yu J,Vodyanik M A,Smuga-Otto K,et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science,2007,318(5858):1917-1920.
[27]Tokuzawa Y,Kaiho E,Maruyama M,et al.Fbx15is a novel target of Oct3/4but is dispensable for embryonic stem cell self-re-newal and mouse development[J].Mol Cell Biol,2003,23(8):2699-2708.
[28]Okita K,Ichisaka T,Yamanaka S.Generation of germline-competent induced pluripotent stem cells[J].Nature,2007,448(7151):313-317.
[29]Wernig M,Meissner A,F(xiàn)oreman R,et al.In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J].Nature,2007,448(7151):318-324.
[30]Liu H,Zhu F,Yong J,et al.Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J].Cell Stem Cell,2008,3(6):587-590.
[31]Li W,Wei W,Zhu S,et al.Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J].Cell Stem Cell,2009,4(1):16-19.
[32]Liao J,Cui C,Chen S,et al.Generation of induced pluripotent stem cell lines from adult rat cells[J].Cell Stem Cell,2009,4(1):11-15.
[33]Esteban M A,Xu J,Yang J,et al.Generation of induced pluripotent stem cell lines from Tibetan miniature pig[J].J Biol Chem,2009,284(26):17634-17640.
[34]Carey B W,Markoulaki S,Hanna J,et al.Reprogramming of murine and human somatic cells using a single polycistronic vector[J].Proc Natl Acad Sci USA,2009,106(1):157-162.
[35]Hanna J,Markoulaki S,Schorderet P,et al.Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J].Cell,2008,133(2):250-264.
[36]Soldner F,Hockemeyer D,Beard C,et al.Parkinson′s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J].Cell,2009,136(5):964-977.
[37]Kaji K,Norrby K,Paca A,et al.Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J].Nature,2009,458(7239):771-775.
[38]Stadtfeld M,Nagaya M,Utikal J,et al.Induced pluripotent stem cells generated without viral integration[J].Science,2008,322(5903):945-949.
[39]Okita K,Nakagawa M,Hyenjong H,et al.Generation of mouse induced pluripotent stem cells without viral vectors[J].Science,2008,322(5903):949-953.
[40]Yu J,Hu K,Smuga-Otto K,et al.Human induced pluripotent stem cells free of vector and transgene sequences[J].Science,2009,324(5928):797-801.
[41]Kim J B,Zaehres H,Wu G,et al.Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors[J].Nature,2008,454(7204):646-650.
[42]Eminli S,Utikal J,Arnold K,et al.Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2expression[J].Stem Cells,2008,26(10):2467-2474.
[43]Kim J B,Sebastiano V,Wu G,et al.Oct4-induced pluripotency in adult neural stem cells[J].Cell,2009,136(3):411-419.
[44]Shi Y,Do J T,Desponts C,et al.A combined chemical and genetic approach for the generation of induced pluripotent stem cells[J].Cell Stem Cell,2008,2(6):525-528.
[45]Shi Y,Desponts C,Do J T,et al.Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4and Klf4with small-molecule compounds[J].Cell Stem Cell,2008,3(5):568-574.
[46]Huangfu D,Osafune K,Maehr R,et al.Induction of pluripotent stem cells from primary human fibroblasts with only Oct4and Sox2[J].Nat Biotechnol,2008,26(11):1269-1275.
[47]Zhou H,Wu S,Joo J Y,et al.Generation of induced pluripotent stem cells using recombinant proteins[J].Cell Stem Cell,2009,4(5):381-384.
[48]Maherali N,Ahfeldt T,Rigamonti A,et al.A high-efficiency system for the generation and study of human induced pluripotent stem cells[J].Cell Stem Cell,2008,3(3):340-345.
[49]Mikkelsen T S,Hanna J,Zhang X,et al.Dissecting direct reprogramming through integrative genomic analysis[J].Nature,2008,454(7200):49-55.
[50]Mali P,Chou B K,Yen J,et al.Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes[J].Stem Cells,2010,28(4):713-720.
[51]Trokovic R,Weltner J,Manninen T,et al.Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J].Stem Cells Dev,2013,22(1):114-123.
[52]Moraveji S F,Attari F,Shahverdi A,et al.Inhibition of glycogen synthase kinase-3promotes efficient derivation of pluripotent stem cells from neonatal mouse testis[J].Hum Reprod,2012,27(8):2312-2324.
[53]Stadtfeld M,Brennand K,Hochedlinger K.Reprogramming of pancreatic beta cells into induced pluripotent stem cells[J].Curr Biol,2008,18(12):890-894.
[54]Loh Y H,Agarwal S,Park I H,et al.Generation of induced pluripotent stem cells from human blood[J].Blood,2009,113(22):5476-5479.
[55]Aasen T,Raya A,Barrero M J,et al.Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J].Nat Biotechnol,2008,26(11):1276-1284.
[56]Warren L,Manos P D,Ahfeldt T,et al.Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J].Cell Stem Cell,2010,7(5):618-630.
[57]Anokye-Danso F,Trivedi C M,Juhr D,et al.Highly efficient mi-RNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J].Cell Stem Cell,2011,8(4):376-388.
[58]Zhao Y,Yin X,Qin H,et al.Two supporting factors greatly improve the efficiency of human iPSC generation[J].Cell Stem Cell,2008,3(5):475-479.
[59]Kawamura T,Suzuki J,Wang Y V,et al.Linking the p53tumour suppressor pathway to somatic cell reprogramming[J].Nature,2009,460(7259):1140-1144.
[60]Bae D,Mondragon-Teran P,Hernandez D,et al.Hypoxia enhan-ces the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells[J].Stem Cells Dev,2012,21(8):1344-1355.
[61]Yoshida Y,Takahashi K,Okita K,et al.Hypoxia enhances the generation of induced pluripotent stem cells[J].Cell Stem Cell,2009,5(3):237-241.
[62]Hanna J,Wernig M,Markoulaki S,et al.Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J].Science,2007,318(5858):1920-1923.
[63]Ebert A D,Yu J,Rose F F,et al.Induced pluripotent stem cells from a spinal muscular atrophy patient[J].Nature,2009,457(7227):277-280.
[64]Dimos J T,Rodolfa K T,Niakan K K,et al.Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J].Science,2008,321(5893):1218-1221.
[65]Kim K Y,Hysolli E,Park I H.Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome[J].Proc Natl Acad Sci USA,2011,108(34):14169-14174.
[66]Juopperi T A,Kim W R,Chiang C H,et al.Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington′s disease patient cells[J].Mol Brain,2012,5(1):17.
[67]Nakahata T,Awaya T,Chang H,et al.Derivation of engraftable myogenic precursors from murine ES/iPS cells and generation of disease-specific iPS cells from patients with duchenne muscular dystrophy(DMD)and other diseases[J].Rinsho Shinkeigaku,2010,50(11):889.
[68]Mou X,Wu Y,Cao H,et al.Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome[J].Stem Cell Res Ther,2012,3(2):14.
[69]Carvajal-Vergara X,Sevilla A,D′Souza S L,et al.Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome[J].Nature,2010,465(7299):808-812.
[70]Maehr R,Chen S,Snitow M,et al.Generation of pluripotent stem cells from patients with type 1diabetes[J].Proc Natl Acad Sci USA,2009,106(37):15768-15773.
[71]Ye Z,Zhan H,Mali P,et al.Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders[J].Blood,2009,114(27):5473-5480.
[72]Choi S M,Kim Y,Liu H,et al.Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells[J].Cell Cycle,2011,10(15):2423-2427.
[73]Lee G,Papapetrou E P,Kim H,et al.Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs[J].Nature,2009,461(7262):402-406.
[74]Jeon K,Lim H,Kim J H,et al.Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1diabetes mouse model[J].Stem Cells Dev,2012,21(14):2642-2655.
[75]Yuge L,Kajiume T,Tahara H,et al.Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation[J].Stem Cells Dev,2006,15(6):921-929.
[76]Luo W,Xiong W,Qiu M,et al.Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro[J].J Huazhong Univ Sci Technolog Med Sci,2011,31(2):199-203.
[77]Zayzafoon M,Gathings W E,McDonald J M.Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis[J].Endocrinology,2004,145(5):2421-2432.
[78]Chowdhury F,Na S,Li D,et al.Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells[J].Nat Mater,2010,9(1):82-88.