• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    2014-04-07 02:02:14WanlongXuXibinZhaoQingWangJungangSunJiangboXuWenzhengZhouHaoWangShiguiYanHongYuan

    Wanlong Xu, Xibin Zhao, Qing Wang, Jungang Sun, Jiangbo Xu, Wenzheng Zhou, Hao Wang, Shigui Yan, Hong Yuan

    1 People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China

    2 The Second Af fi liated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China

    Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    Wanlong Xu1, Xibin Zhao1, Qing Wang1, Jungang Sun1, Jiangbo Xu1, Wenzheng Zhou1, Hao Wang1, Shigui Yan2, Hong Yuan1

    1 People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China

    2 The Second Af fi liated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of radiotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease inMeriones meridiani. The focus of the hydatid disease on the left femur was subjected to radiotherapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no obvious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized withEchinococcus granulosusdisappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized withEchinococcus granulosuswas lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease inMeriones meridianiwithout damaging the morphology or function of the sciatic nerve.

    nerve regeneration; three-dimensional conformal intensity-modulated radiation therapy; hydatid disease; sciatic nerve; neurons; radiation damage; succinate dehydrogenase; NSFC gran ts; neural regeneration

    Funding:This study was supported by the National Natural Science Foundation of China, No. 81360276; a grant from the Science and Technology Project of Xinjiang Uygur Autonomous Region in China, No. 2013911129; a grant from the Youth Science and Technology Innovation Talents Project of Xinjiang Uygur Autonomous Region-Young Doctor Talents Training Project, No. 2013731013; the Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2012211B34; the China Postdoctoral Science Foundation, No. 2014M552566XB.

    Xu WL, Zhao XB, Wang Q, Sun JG, Xu JB, Zhou WZ, Wang H, Yan SG, Yuan H. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve. Neural Regen Res. 2014;9(20):1824-1829.

    Introduction

    Hydatid disease, also called echinococcosis, is a parasitic disease ofEchinococcustapeworms, which is a zoonotic infection in humans (Wang et al., 2013). Bone hydatid disease occurs when echinococcus larvae parasitizes bone tissue. Recently, three-dimensional conformal intensity-modulated radiation therapy has been frequently used clinically to treat tumors because of its advantages, including efficacy in killing tumors and protection of the peripheral organs. Conformal intensity-modulated radiation therapy has been demonstrated to kill bone hydatid cyst cells without injuring the surrounding tissue (Xu et al., 2012a, b, d). However, because the anatomical structure of the femur is complex, it remains unclear whether conformal intensity-modulated radiation therapy would harm the sciatic nerve. The aim of the present study was to assess the ef fi cacy of conformal intensity-modulated radiation therapy on killing hydatid cysts in the femur ofMeriones meridianiand whether it damages the sciatic nerve, in order to determine the efficacy and safety of conformal intensity-modulated radiation therapy in the treatment of hydatid disease in bone.

    Materials and Methods

    Establishment of animal models of hydatid disease in bone

    One hundred and twenty purebred, clean, adult, maleMeriones meridianiaged 2-3 months and weighing 30.0 ± 6.5 g were provided by the Institute of Experimental Animals, Chinese Armed Police General Hospital (license No. SCXK (Jing) 2011-0012). The animals were housed in individual cages, fed with complete feed and clean water at 20-23°C and humidity of 40-60%, and ensured adequate sleep. The experimental protocol was approved by the AnimalEthics Committee of the People’s Hospital of Xinjiang Uygur Autonomous Region in China (Ethical approval No. 20130301A41). The subperiosteum of the hind femurs ofMeriones meridianiwas selected as the best position for hydatid inoculation with a suspension of 12,000 scolex/mL. The hydatid suspension was injected into the subperiosteum of the hind femur ofMeriones meridianiusing a No. 7 needle. Three months later, X-ray and CT examinations veri fi ed a successful inoculation of secondary hydatid in the femur.

    Radiotherapy

    The regions in the 120Meriones meridianiwith hydatid cysts were considered to be the target areas. A successful treatment strategy would not harm the surrounding blood vessels, tendons, nerves, and skin. CT scanning (Philips, Cleveland, OH, USA) and computer-aided design were used to outline the target areas. After formulating a radiotherapy plan, theMeriones meridianireceived inhalation anesthesia with desflurane and were placed in a restraint (Beijing Baiyou Putai Medical Products Co., Ltd., Beijing, China). Using a three-dimensional treatment planning system (Novalis knife, Siemens, Munich, Germany), the focus of the hydatid disease in the left femur underwent image-guided radiotherapy (4 Gy) once a day for 10 sessions within 2 weeks (exposures occurred Monday through Friday; 10 separate days). The total dose was 40 Gy, with a dose rate of 300 cGy/min. The dose in the right femur was 0 Gy (control).

    Sample collection

    After conformal intensity-modulated radiation therapy, theMeriones meridianiwith hydatid disease were subjected to inhalation anesthesia and euthanized by air embolism. Under an operating microscope (Sichuan Keaoda Company, The Institute of Optics and Electronics, The Chinese Academy of Sciences, Chengdu, Sichuan Province, China), cysts from theEchinococcus granulosuswere harvested from the femoral marrow cavities bilaterally. Portions of the hydatid fl uid were aspirated from the cysts to stabilize intracapsular pressure. Then, the remaining protoscolex of theEchinococcus granulosusand hydatid fl uid were aspirated. All the obtained samples were mixed and made into suspensions, which were separately placed in sterile polyethylene tubes. Bilateral sections of the sciatic nerve after radiotherapy were obtained, rapidly fixed in 10% formaldehyde and 2.5% glutaraldehyde, and stored in liquid nitrogen. After paraf fi n imbedding, all samples were sliced into 4 μm-thick sections, dewaxed, hydrated, and stained with hematoxylin and eosin. The histological morphology of the sciatic nerves was observed under light microscopy (Leica, Wetzlar, Germany).

    Trypan blue staining to detect pathological changes in the boneEchinococcus granulosusand the protoscolex mortality after radiation therapy

    The suspensions of protoscolex from theEchinococcus granulosusin sterile polyethylene tubes were stained with 1% trypan blue solution (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for approximately 2 minutes and then smeared on the slides. The percentage of necrotic protoscolex was judged using visual fi elds on an inverted microscope (Leica). Dead protoscoleces show damaged structure and are stained with trypan blue, while live scolex have clear structure and are not stained with trypan blue. The percentage of necrotic cells was calculated as the number of protoscolex stained with trypan blue/the total number of protoscolex × 100%.

    Enzyme histochemical staining to detect succinate dehydrogenase activity in protoscolex

    The smears of the suspensions ofEchinococcus granulosusprotoscolex in the sterile polyethylene tubes were dried with a hair dryer using the nitroblue tetrazolium (Santa Cruz Biotechnology) method. Then, the samples were incubated in incubation solution at 25-30°C for 50 minutes until the blue color had fully developed. After being washed in distilled water, all the samples were fi xed in 10% calcium formate for 10 minutes, washed with running water for 3 minutes, and then observed with a microscope (Leica). Using the BT-2000 color pathology image analysis system (Hubei Botai Electronic Technology Co., Ltd., Wuhan, Hubei Province, China), 10 fields were randomly selected from each image and mean optical density was measured.

    Ultrastructure of the sciatic nerve by transmission electron microscopy

    After washing with buffer solution, the samples were prefi xed in 2.5% glutaraldehyde for 2 hours, post- fi xed in 1% osmic acid for 2 hours, and then washed with PBS. The samples were dehydrated with increasing concentrations of ethanol and acetone, embedded, dried at 37°C overnight, sliced into 50 nm-thick sections, and observed and imaged with a transmission electron microscope (Hitachi, Hokkaido, Japan).

    Apoptosis of sciatic nerve neurons detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) after radiotherapy

    Paraffin sections of the sciatic nerves were washed twice with xylene for 4-5 minutes, rehydrated through a graded alcohol series in 1 minute intervals, incubated in protease at 37°C for 20-30 minutes, incubated in transparent liquid for 6 minutes, and washed twice with PBS. When the slides were dry, the sections were incubated with 50 μL of TUNEL reagent (Boehringer Mannheim, Berlin, Germany) at 37°C for 1 hour, and then were washed three times with PBS. After the slides were dry, the sections were incubated with POD (Boehringer Mannheim) at 37°C for 30 minutes, washed three times with PBS, incubated with 100 μL of diaminobenzidine at 15-25°C for 10 minutes, washed three times with PBS, and then stained with hematoxylin and diaminobenzidine (Boehringer Mannheim). Next, the slides were dehydrated through a graded alcohol series, permeabilized with xylene, and mounted with a neutral resin. Using the BT-2000 color pathology image analysis system (Hubei Botai Electronic Technology Co., Ltd.), 10 fi elds at 20 × magni fication with densely distributed apoptotic cells were selectedfrom each section. The neuronal apoptotic index (%) was calculated as the mean optical density of the TUNEL-positive cells × the percentage of TUNEL-positive cells (from all types of cells in the fi eld) (Stock et al., 2012).

    Figure 1 Effects of conformal intensity-modulated radiation therapy on the morphology of sciatic nerve neurons in the femur ofMeriones meridianiwith secondary hydatid disease (hematoxylin-eosin staining, light microscopy, × 400).

    Figure 2 Effects of conformal intensity-modulated radiation therapy on the ultrastructure of sciatic nerve neurons in the femur ofMeriones meridianiwith secondary hydatid disease (electron microscopy, × 8,000).

    Figure 3 Effects of conformal intensity-modulated radiation therapy on the protoscolex ofEchinococcus granulosus.

    Statistical analysis

    Data were analyzed using SPSS 19.0 software (IBM, Armonk, NY, USA) and expressed as the mean ± SD. The group means were compared using Student’st-tests (α= 0.05). Values ofP< 0.05 were considered statistically signi fi cant.

    Results

    Conformal intensity-modulated radiation therapy did not alter the morphology of sciatic nerve neurons in the femur ofMeriones meridianiwith secondary hydatid disease

    Hematoxylin-eosin staining showed a normal morphology of the sciatic nerve neurons in the left femur ofMeriones meridianiwith osseous hydatid disease after radiotherapy. Although a few neuronal cells showed reversible changes, most cells were triangular or polygonal with clear dendrites and axons. The nuclei were plump, and the nuclear structure was normal. Abundant Nissl’s bodies were uniformly distributed in the cytoplasm, and no clear differences were found between the sciatic nerve neurons in the right side that did not receive radiotherapy (Figure 1).

    The transmission electron microscopy results demonstrated that the sciatic nerve neurons in the left side ofMeriones meridianiwith osseous hydatid disease were normal after conformal intensity-modulated radiation therapy. The cell membranes were not ruptured, the organelles in the cytoplasm were complete, and the nuclei were in the center, with no visible pyknosis. No significant differences were found compared to the neurons in the right side that did not receive radiotherapy (Figure 2).

    Conformal intensity-modulated radiation therapy increased the percentage of dead protoscolex in the boneEchinococcus granulosus

    In the right femur, which did not receive radiotherapy, the shape of the protoscolex of theEchinococcus granulosuswas normal in the region with echinococcosis granulosa, and the edge was distinct, repelling trypan blue and remaining unstained. However, after radiotherapy, the protoscolex in the left femur disappeared in the region withEchinococcus granulosus, the cell edges were not distinct, and the cells stained positively for trypan blue. The percent age of dead protoscolex in the osseous hydatid was increased in the region with echinococcosis granulosa after radiotherapy (P<0.05; Figure 3).

    Figure 4 Effects of conformal intensity-modulated radiation therapy on succinate dehydrogenase activity in the protoscolex ofEchinococcus granulosus.

    Figure 5 Effects of conformal intensity-modulated radiation therapy on the apoptosis of sciatic nerve neurons inMeriones meridianiwith secondary hydatid disease.

    Conformal intensity-modulated radiation therapy decreased succinate dehydrogenase activities in protoscolex

    Enzyme histochemical staining showed a high activity of succinate dehydrogenase in the protoscolex of the osseous hydatid in the right femur, which did not receive radiotherapy. The succinate dehydrogenase activity was decreased by radiotherapy in the left femur. The mean optical density of the protoscolex in the osseous hydatid was lower in the left femur than in the right femur (P< 0.05; Figure 4).

    Conformal intensity-modulated radiation therapy did not alter the apoptosis index of sciatic nerve neurons inMeriones meridianiwith secondary hydatid disease

    The apoptotic index, calculated from the TUNEL staining, was not different between the left and right femurs in the animals (P> 0.05; Figure 5).

    Discussion

    Since the turn of the century, the rapid progress in imaging and computer technologies has created an era of precision radiotherapy. Of the different radiotherapy techniques, three-dimensional conformal intensity-modulated radiation therapy has become the most widely used. Intensity-modulated radiation therapy controls the direction of the radiation using a computer. Precise, high-dose radiation can be focused on the diseased tissue area of concern, while only rarely damaging the surrounding tissue. Intensity-modulated radiation therapy is a reliable, high-precision radiation therapy used in the clinic, which is also highly praised by scholars (Xilinbaoleri et al., 2009; Cho et al., 2010; Hevezi, 2010; Lisbona et al., 2010; Nagesha et al., 2010; Barney et al., 2011; Chen et al., 2011; Li et al., 2011; Peng et al., 2011; Sangalli et al., 2011; Shi et al., 2011; Teke et al., 2011; Valeriani et al., 2011; Graff et al., 2012; Lee et al., 2012; Mohammed et al., 2012; Stock et al., 2012; Bettington et al., 2013; Bonnette, 2013; Ichinohe et al., 2013; Kim et al., 2013; Kobayashi et al., 2013; Li et al., 2013; Margaritora et al., 2013; Perri et al., 2013; Qian et al., 2013; Salama and Vokes, 2013; Sun et al., 2013; Sung et al., 2013; Tao et al., 2013; Yin et al., 2013;Zhang et al., 2013). Because intensity-modulated radiation therapy is effective at killing tumor cells, we believed that it would be effective for killing the protoscolex ofEchinococcus granulosus. Thus, in the present study, we performed intensity-modulated radiation therapy, trypan blue staining, and histochemical staining, which showed that intensity-modulated radiation therapy effectively killed the protoscolex ofEchinococcus granulosuswithin the cancellous bone and trabeculae and decreased the residual and relapse rates of bone hydatid.

    The results of this study indicated that intensity-modulated radiation therapy at the therapeutic dose (40 Gy) used on benign tumors was effective at killing protoscolex ofEchinococcus granulosus. Moreover, the histochemical staining results showed that intensity-modulated radiation therapy decreased the activity of succinate dehydrogenase in the protoscolex ofEchinococcus granulosus. Succinate dehydrogenase is a rate-limiting enzyme in the Krebs cycle and cell respiration chain, is involved in cellular energy metabolism and oxygen utilization, and is necessary for cell metabolism and vital movement. The succinate dehydrogenase activity re fl ects the workings of the tricarboxylic acid cycle, and indirectly re fl ects the levels of cellular aerobic glucose metabolism (Xu et al., 2014). In the present study, intensity-modulated radiation therapy decreased the succinate dehydrogenase activity in the protoscolex ofEchinococcus granulosus, likely causing a reduction in cellular energy metabolism and eventually cell death. Our experimental results are consistent with those of other papers. Chen and Xie (2014) reported that radiotherapy was effective for treating bone hydatid disease in mice, with different radiation doses leading to different hydatid scolex mortalities, but none of the various radiation doses injured the mice. Xu et al. (2012c) performed intensity-modulated radiation therapy for bone hydatid for 1 month and found that the apoptotic index of the cells in the germinal layer of the hydatid cysts was positively correlated with the dose of radiotherapy. Wang et al. (2009) reported that X-ray irradiation could kill echinococcus isolated from rats, and this lethal effect was dose-dependent. Zhang et al. (2011) demonstrated that an appropriate radiation dose inhibited the growth of alveolar hydatid in rats with hydatid disease. Yuan et al. (2013) showed thatEchinococcus granulosusprotoscoleces were directly killed by γ-ray irradiationin vitroand that the protoscolex cells were apoptotic.

    Sciatic nerve is the tissue that most needs protection during radiotherapy for femoral lesions. However, the light microscopy, electron microscopy, and TUNEL assay results here indicated that the morphology of sciatic nerve neurons was normal after radiotherapy, suggesting that intensity-modulated radiation therapy during the treatment of osteohydatidosis is relatively safe for the surrounding tissues.

    In summary, intensity-modulated radiation therapy was effective for the treatment of secondary osteohydatidosis and safe for the surrounding tissue. However, this was a preliminary study using an animal model. Additional clinical studies should be performed before applying the above results in the clinic.

    Acknowledgments:We are very grateful to Zhang C from the Animal Laboratory of the First Teaching Hospital of Xinjiang Medical University in China and Zhang YJ from the People’s Hospital of Xinjiang Uygur Autonomous Region in China for their technical support.

    Author contributions:Xu WL provided data, ensured the integrity of the data and wrote the manuscript. Yuan H participated in study concept and design, and obtained the funding. Zhao XB was in charge of manuscript authorization. Sun JG, Xu JB, Zhou WZ and Wang H provided technical or data support, and served as the principle investigators. All authors approved the final version of the paper.

    Con fl icts of interest:None declared.

    Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT (2011) Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fi ducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys 80:301-305.

    Bettington CS, Tripcony L, Bryant G, Hickey B, Pratt G, Fay M (2013) A retrospective analysis of survival outcomes for two different radiotherapy fractionation schedules given in the same overall time for limited stage small cell lung cancer. J Med Imaging Radiat Oncol 57:105-112.

    Bonnette P (2013) Chemo-radiotherapy before surgery in stage III non-small-cell lung cancer. Rev Mal Respir 30:105-114.

    Chen G, Xu WL, Xilinbaoleri, Bai JP (2011) Evaluation of radiation damages of vertebral bone cells after radiotherapy in dogs. Jiangsu Yiyao 37:1882-1884.

    Chen L, Xie ZR (2014) The research progress of echinococcosis radiotherapy. Xinjiang Yike Daxue Xuebao 36:557-559.

    Cho B, Poulsen PR, Keall PJ (2010) Real-time tumor tracking using sequential kV imaging combined with respiratory monitoring: a general framework applicable to commonly used IGRT systems. Phys Med Biol 55:3299-3316.

    Graff P, Hu W, Yom SS, Pouliot J (2012) Does IGRT ensure target dose coverage of head and neck IMRT patients? Radiother Oncol 104:83-90.

    Hevezi JM (2010) Current IGRT, SBRT, and SRS procedures and reimbursement. J Am Coll Radiol 7:739-740.

    Ichinohe K, Ijima M, Usami T, Baba S (2013) Complete remission of primary retroperitoneal transitional cell carcinoma after radiotherapy and oral chemotherapy: a case report. Ann R Coll Surg Engl 95:e52-54.

    Kim MJ, Yeo SG, Kim ES, Min CK, Se An P (2013) Intensity-modulated stereotactic body radiotherapy for stage I non-small cell lung cancer. Oncol Lett 5:840-844.

    Kobayashi N, Nakayama H, Osaka Y, Tachibana S, Nogi S, Tajima Y, Okubo M, Mikami R, Kanesaka N, Sugahara S, Hoshino S, Tsuchida A, Tokuuye K (2013) Tumor response after low-dose preoperative radiotherapy combined with chemotherapy for squamous cell esophageal carcinoma. Anticancer Res 33:1157-1161.

    Lee JH, Wu HG, Kim HJ, Kim DW, Lee SH, Kim TM, Kim YW, Heo DS (2012) Influence of comorbidities on the efficacy of radiotherapy with or without chemotherapy in elderly stage III non-small cell lung cancer patients. Cancer Res Treat 44:242-250.

    Li F, Song D, Lu Y, Zhu H, Chen Z, He X (2013) Delayed-type hypersensitivity (DTH) immune response related with EBV-DNA in nasopharyngeal carcinoma treated with autologous dendritic cell vaccination after radiotherapy. J Immunother 36:208-214.

    Li T, Thongphiew D, Zhu X, Lee WR, Vujaskovic Z, Yin FF, Wu QJ (2011) Adaptive prostate IGRT combining online re-optimization and re-positioning: a feasibility study. Phys Med Biol 56:1243-1258.

    Lisbona A, Averbeck D, Supiot S, Delpon G, Ali D, Vinas F, Diana C, Murariu C, Lagrange JL (2010) IMRT combined to IGRT: increase of the irradiated volume. Consequences? Cancer Radiother 14:563-570.

    Margaritora S, Cesario A, Cusumano G, Dall’armi V, Porziella V, Meacci E, Lococo F, D’Angelillo R, Congedo MT, Granone P (2013) Pneumonectomy with and without induction chemo-radiotherapy for non-small cell lung cancer: short and long-term results from a single centre. Eur Rev Med Pharmacol Sci 17:29-40.

    Mohammed N, Kestin L, Grills I, Shah C, GlideHurst C, Yan D, Ionascu D (2012) Comparison of IGRT registration strategies for optimal coverage of primary lung tumors and involved nodes based on multiple four-dimensional CT scans obtained throughout the radiotherapy course. Int J Radiat Oncol Biol Phys 82:1541-1548.

    Nagesha DK, Tada DB, Stambaugh CKK, Gultepe E, Jost E, Levy CO, Cormack R, Makrigiorgos GM, Sridhar S (2010) Radiosensitizer-eluting nanocoatings on gold fi ducials for biological in-situ image-guided radio therapy (BIS-IGRT). Phys Med Biol 55:6039-6055.

    Peng JL, Kahler D, Li JG, Amdur RJ, Vanek KN, Liu C (2011) Feasibility study of performing IGRT system daily QA using a commercial QA device. J Appl Clin Med Phys 12:3535.

    Perri F, Muto P, Argenone A, Ionna F, Longo F, Fulciniti F, Sandomenico F, Daponte A, Caponigro F (2013) Induction chemotherapy with docetaxel, cisplatin and capecitabine, followed by combined cetuximab and radiotherapy in patients with locally advanced inoperable squamous cell carcinoma of the head and neck: a phase I-II study. Oncology 84:251-254.

    Qian D, Zhang B, He LR, Cai MY, Mai SJ, Liao YJ, Liu YH, Lin MC, Bian XW, Zeng YX, Huang JJ, Kung HF, Xie D (2013) The telomere/ telomerase binding factor PinX1 is a new target to improve the radiotherapy effect of oesophageal squamous cell carcinomas. J Pathol 229:765-774.

    Salama JK, Vokes EE (2013) New radiotherapy and chemoradiotherapy approaches for non-small-cell lung cancer. J Clin Oncol 31:1029-1038.

    Sangalli G, Passoni P, Cattaneo GM, Broggi S, Bettinardi V, Reni M, Slim N, Muzio ND, Calandrino R (2011) Planning design of locally advanced pancreatic carcinoma using 4DCT and IMRT/IGRT technologies. Acta Oncol 50:72-80.

    Shi W, Li JG, Zlotecki RA, Yeung A, Newlin H, Palta J, Liu C, Chvetsov AV, Olivier K (2011) Evaluation of kV cone-beam CT performance for prostate IGRT: a comparison of automatic grey-value alignment to implanted fi ducial-marker alignment. Am J Clin Oncol 34:16-21

    Stock M, Palm A, Altendorfer A, Steiner E, Georg D (2012) IGRT induced dose burden for a variety of imaging protocols at two different anatomical sites. Radiother Oncol 102:355-363.

    Sun W, Song L, Ma J, Zhang Y, Zhang L, Gao Y, Ai T (2013) Scope and method of image registration and clinical target volume margin for central-type non-small cell lung cancer in image-guided radiotherapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 38:132-137.

    Sung KW, Lim do H, Son MH, Lee SH, Yoo KH, Koo HH, Kim JH, Suh YL, Joung YS, Shin HJ (2013) Reduced-dose craniospinal radiotherapy followed by tandem high-dose chemotherapy and autologous stem cell transplantation in patients with high-risk medulloblastoma. Neuro Oncol 15:352-359.

    Tao Y, Bardet E, Rosine D, Rolland F, Bompas E, Daly-Schveitzer N, Lusinchi A, Bourhis J (2013) Phase I trial of oral etoposide in combination with radiotherapy in head and neck squamous cell carcinoma - GORTEC 2004-02. Radiat Oncol 8:40.

    Teke T, Gill B, Duzenli C, Popescu IA (2011) A Monte Carlo model of the Varian IGRT couch top for RapidArc QA. Phys Med Biol 56:N295-305.

    Valeriani M, Monaco F, Osti MF, DE Sanctis V, Minniti G, Enrici RM (2011) Hypofractionated radiotherapy with or without IGRT in prostate cancer: preliminary report of acute toxicity. Anticancer Res 31:3555-3558.

    Wang K, Zhang X, Jin Z, Ma H, Teng Z, Wang L (2013) Modeling and analysis of the transmission of Echinococcosis with application to Xinjiang Uygur Autonomous Region of China. J Theor Biol 333:78-90.

    Wang X, Wang XH, Bao GS, Liu J, Han J, Jing T (2009) The experimental study on the radiotherapy of echinococcosis. Zhongguo Ren Shou Gonghuanbing Xuebao 25:653-656.

    Xilinbaoleri, Xu WL, Wang RZ, Liu H, Zhang JR, Bai JP (2009) The apoptosis of neurons after intensity modulated radiotherapy and conventional radiation therapy of the spine. Xinjiang Yike Daxue Xuebao 32:1645-1647.

    Xu WL, Xilinbaoleri, Liu H, Wang RZ, Bai JP (2012a) Spinal cord biological safety of image-guided radiation therapy versus conventional radiation therapy. Neural Regen Res 7:2755-2760.

    Xu WL, Miao XG, Tayierjiangjulaiti, Zhao XB, Wang H, Yuan H (2012b) Effect of intensity modulated radiation therapy on echinococcosis of bone in rat of Xinjiang. Zhongguo Shiyong Yikan 39:41-43.

    Xu WL, Miao XG, Tayierjiangjulaiti, Zhao XB, Wang H, Yuan H (2012c) Effect of perutaneous pedicle screw fi xation on thoraco-lumbar fractures. Zhongguo Shiyong Yikan 39:41-43.

    Xu WL, Waresijiangniyazi, Tayierjiangjulaiti, Miao XG, Zhao XB, Wang H, Yuan H (2012d) Studies on the killing effect of echinococcosis of bone by intensity modulated radiation therapy combined with Albnedazole in rat of Xinjiang. Yixue Dongwu Fangzhi 28: 1181-1183.

    Xu WL, Xu JB, Sun JG, Zhou WZ, Zhao XB, Wang H, Yuan H (2014) Experimental study on the killing effect of protoscolex of bone echinococcosis by intensity modulated radiation therapy. Xinjiang Yike Daxue Xuebao 37:817-820.

    Yin LJ, Yu XB, Ren YG, Gu GH, Ding TG, Lu Z (2013) Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis. Multidiscip Respir Med 8:21.

    Yuan Q, Li B, Hu K, Zhang MY, Duo J, Chen C, Li X, Xiang ZW (2013) Killing effect on in vitro exposure of Echinococcus protoscoleces to Gamma-ray. Zhongguo Ren Shou Gonghuanbing Xuebao 29:904-908.

    Zhang XM, Li YX, Wang WH, Jin J, Wang SL, Liu YP, Song YW, Ren H, Fang H, Zhou LQ, Chen B, Qi SN, Liu QF, Lu NN, Liu XF, Yu ZH (2013) Favorable outcome with doxorubicin-based chemotherapy and radiotherapy for adult patients with early stage primary systemic anaplastic large-cell lymphoma. Eur J Haematol 90:195-201.

    Zhang YF, Xie ZR, Ni YQ, Mao R, Qi HZ, Yang YG, Jiang T, Bao YX (2011) Curative effect of radiotherapy at various doses on subcutaneous alveolar echinococcosis in rats. Chin Med J (Engl) 124:2845-2848.

    Copyedited by McCarty W, Hindle A, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    Hong Yuan, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang Uygur Autonomous Region, China, Doctoryuanhong@sina.com.

    10.4103/1673-5374.143430

    Shigui Yan, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, zrjwsj@zju.edu.cn.

    http://www.nrronline.org/

    Accepted: 2014-07-08

    中文资源天堂在线| 久久精品综合一区二区三区| 欧美色视频一区免费| 99久久综合精品五月天人人| 黄色毛片三级朝国网站| 日本免费一区二区三区高清不卡| 美女高潮喷水抽搐中文字幕| 亚洲精华国产精华精| 久久草成人影院| 亚洲国产欧美网| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 岛国视频午夜一区免费看| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 欧美日韩福利视频一区二区| 国产成人一区二区三区免费视频网站| 亚洲免费av在线视频| 欧美中文综合在线视频| 精品一区二区三区av网在线观看| 亚洲国产欧美网| 精品福利观看| 一边摸一边做爽爽视频免费| 999久久久国产精品视频| 国产一区二区在线观看日韩 | 夜夜躁狠狠躁天天躁| 国产精品免费视频内射| 久久久久久久久久黄片| 国产熟女午夜一区二区三区| 国产av麻豆久久久久久久| 色哟哟哟哟哟哟| 国产精品免费一区二区三区在线| 一本一本综合久久| 日日爽夜夜爽网站| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清专用| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 88av欧美| 欧美日韩一级在线毛片| 香蕉久久夜色| 中文字幕人成人乱码亚洲影| 1024视频免费在线观看| 精品久久久久久久久久免费视频| 亚洲电影在线观看av| 美女黄网站色视频| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 久久精品91蜜桃| 国产精品,欧美在线| 免费看十八禁软件| 亚洲第一电影网av| 亚洲中文字幕一区二区三区有码在线看 | 久久久久亚洲av毛片大全| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 午夜福利在线在线| 亚洲欧美一区二区三区黑人| 成人18禁在线播放| 小说图片视频综合网站| 男女做爰动态图高潮gif福利片| 欧美在线一区亚洲| 美女扒开内裤让男人捅视频| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 成年免费大片在线观看| 亚洲av电影不卡..在线观看| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 欧美成人午夜精品| 在线观看一区二区三区| 男女之事视频高清在线观看| aaaaa片日本免费| 精品国内亚洲2022精品成人| 又黄又爽又免费观看的视频| 久久久久久九九精品二区国产 | 最新在线观看一区二区三区| 亚洲av片天天在线观看| 人妻夜夜爽99麻豆av| 亚洲激情在线av| 欧美成人性av电影在线观看| 亚洲成a人片在线一区二区| 精品第一国产精品| 久久久久久久久免费视频了| 特级一级黄色大片| 身体一侧抽搐| 美女午夜性视频免费| 久久精品影院6| 午夜福利在线观看吧| 97超级碰碰碰精品色视频在线观看| www.熟女人妻精品国产| 91在线观看av| 精品一区二区三区视频在线观看免费| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 18美女黄网站色大片免费观看| 国产视频内射| 白带黄色成豆腐渣| 亚洲av成人av| 免费在线观看成人毛片| 欧美精品亚洲一区二区| 午夜免费观看网址| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频| www日本黄色视频网| 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 亚洲真实伦在线观看| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 国产三级在线视频| 久久精品91无色码中文字幕| 波多野结衣巨乳人妻| 村上凉子中文字幕在线| 色播亚洲综合网| 国产av一区在线观看免费| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 亚洲免费av在线视频| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 很黄的视频免费| 亚洲最大成人中文| 免费高清视频大片| 99久久精品国产亚洲精品| 一本大道久久a久久精品| 成人三级黄色视频| 麻豆av在线久日| 亚洲在线自拍视频| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 最新美女视频免费是黄的| 两个人的视频大全免费| 日韩欧美三级三区| 亚洲国产欧美人成| 人妻夜夜爽99麻豆av| 18禁黄网站禁片免费观看直播| 90打野战视频偷拍视频| www.精华液| 亚洲 欧美 日韩 在线 免费| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 亚洲全国av大片| 久久中文字幕一级| xxx96com| 丁香欧美五月| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 在线免费观看的www视频| 国产成人av教育| 天天一区二区日本电影三级| 亚洲成人国产一区在线观看| 国产成人一区二区三区免费视频网站| 麻豆成人av在线观看| 美女黄网站色视频| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 国产片内射在线| 国产亚洲精品一区二区www| 成人特级黄色片久久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 亚洲男人的天堂狠狠| 在线观看www视频免费| 欧美性猛交黑人性爽| 欧美一级毛片孕妇| 日韩欧美 国产精品| 丝袜美腿诱惑在线| 国内精品久久久久精免费| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放 | 婷婷六月久久综合丁香| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 国产精品九九99| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 成人午夜高清在线视频| 中文字幕av在线有码专区| 日本 av在线| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲美女久久久| 午夜免费观看网址| 欧美一级毛片孕妇| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| bbb黄色大片| 成人永久免费在线观看视频| 午夜福利在线在线| 中文字幕人妻丝袜一区二区| 手机成人av网站| av中文乱码字幕在线| 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲综合一区二区三区_| 日本在线视频免费播放| 伊人久久大香线蕉亚洲五| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| 1024手机看黄色片| 午夜激情av网站| 久久香蕉国产精品| 久久午夜综合久久蜜桃| 日本五十路高清| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 国产野战对白在线观看| 成人av在线播放网站| 免费无遮挡裸体视频| 久久久久久久午夜电影| 99热这里只有精品一区 | 成人av一区二区三区在线看| 久久久久久久精品吃奶| 久久 成人 亚洲| 国产av一区二区精品久久| 精品无人区乱码1区二区| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 波多野结衣巨乳人妻| 他把我摸到了高潮在线观看| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 亚洲国产欧美一区二区综合| 超碰成人久久| 国产一区二区在线av高清观看| √禁漫天堂资源中文www| 91字幕亚洲| 最近最新免费中文字幕在线| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 操出白浆在线播放| 变态另类成人亚洲欧美熟女| 最近最新中文字幕大全免费视频| 成人精品一区二区免费| 十八禁网站免费在线| 成人亚洲精品av一区二区| 好男人电影高清在线观看| 中国美女看黄片| 韩国av一区二区三区四区| 国产成年人精品一区二区| 色av中文字幕| 少妇人妻一区二区三区视频| 欧美色欧美亚洲另类二区| 在线观看www视频免费| av视频在线观看入口| 麻豆一二三区av精品| 美女黄网站色视频| svipshipincom国产片| 2021天堂中文幕一二区在线观| 两性夫妻黄色片| www日本在线高清视频| 麻豆国产97在线/欧美 | 99re在线观看精品视频| 欧美3d第一页| 最好的美女福利视频网| 国产成人一区二区三区免费视频网站| 一区二区三区高清视频在线| 男人的好看免费观看在线视频 | 亚洲成av人片免费观看| 麻豆成人av在线观看| 51午夜福利影视在线观看| 亚洲中文日韩欧美视频| 麻豆国产97在线/欧美 | 午夜a级毛片| 中文字幕精品亚洲无线码一区| 夜夜看夜夜爽夜夜摸| cao死你这个sao货| 国内精品一区二区在线观看| 香蕉丝袜av| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 欧美中文综合在线视频| 亚洲国产看品久久| 欧美中文日本在线观看视频| 国产av在哪里看| 99精品久久久久人妻精品| av福利片在线观看| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 国产精品99久久99久久久不卡| 亚洲美女视频黄频| 国产成人影院久久av| 脱女人内裤的视频| www.999成人在线观看| 国产激情久久老熟女| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| av中文乱码字幕在线| 亚洲人成电影免费在线| 我的老师免费观看完整版| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| 一个人观看的视频www高清免费观看 | 精品第一国产精品| 欧美黄色片欧美黄色片| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 中文字幕最新亚洲高清| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| 色在线成人网| e午夜精品久久久久久久| 天天躁夜夜躁狠狠躁躁| 在线观看日韩欧美| 亚洲中文字幕一区二区三区有码在线看 | 国产av又大| 国产视频一区二区在线看| 日韩av在线大香蕉| 国产黄片美女视频| 69av精品久久久久久| 国产精品亚洲美女久久久| 91成年电影在线观看| 高潮久久久久久久久久久不卡| 宅男免费午夜| 久久久久久久久免费视频了| 亚洲国产欧洲综合997久久,| 午夜精品一区二区三区免费看| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 中文字幕人成人乱码亚洲影| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 最新在线观看一区二区三区| av天堂在线播放| 可以在线观看的亚洲视频| 妹子高潮喷水视频| 国产av又大| 在线观看www视频免费| 高清毛片免费观看视频网站| 精品国产亚洲在线| 大型av网站在线播放| 国产激情欧美一区二区| 日本三级黄在线观看| 丁香六月欧美| 神马国产精品三级电影在线观看 | 免费观看精品视频网站| 午夜福利18| 午夜福利视频1000在线观看| 一本综合久久免费| 男女床上黄色一级片免费看| 性欧美人与动物交配| 妹子高潮喷水视频| 黄频高清免费视频| 日韩大尺度精品在线看网址| 巨乳人妻的诱惑在线观看| 久久久国产成人免费| 色老头精品视频在线观看| 黄色视频不卡| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 日本一二三区视频观看| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 成人三级做爰电影| 久久这里只有精品中国| 国产视频内射| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 国产一区在线观看成人免费| 亚洲国产欧美人成| 国产在线精品亚洲第一网站| 床上黄色一级片| 可以在线观看毛片的网站| 九色成人免费人妻av| 国产精品野战在线观看| 国产精品精品国产色婷婷| 黄色毛片三级朝国网站| 久久精品国产清高在天天线| 国模一区二区三区四区视频 | 麻豆av在线久日| 国内精品久久久久精免费| 亚洲国产精品999在线| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 欧美人与性动交α欧美精品济南到| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 中文在线观看免费www的网站 | 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 1024手机看黄色片| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影| 9191精品国产免费久久| 天堂动漫精品| av片东京热男人的天堂| 精品不卡国产一区二区三区| 丝袜美腿诱惑在线| 亚洲人成网站高清观看| 在线观看一区二区三区| 可以在线观看的亚洲视频| 欧美乱色亚洲激情| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影| 我要搜黄色片| 欧美日韩精品网址| 丝袜美腿诱惑在线| 久久久精品大字幕| 99re在线观看精品视频| 欧美一区二区精品小视频在线| 日韩国内少妇激情av| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区| 手机成人av网站| 久久久水蜜桃国产精品网| 99热这里只有是精品50| 美女大奶头视频| 亚洲人成电影免费在线| 动漫黄色视频在线观看| 日本免费a在线| 人人妻人人看人人澡| 亚洲av美国av| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 黄频高清免费视频| 亚洲成av人片在线播放无| 九九热线精品视视频播放| 精品国产乱子伦一区二区三区| 免费在线观看影片大全网站| 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 大型av网站在线播放| 欧美三级亚洲精品| 黄频高清免费视频| 在线国产一区二区在线| 岛国视频午夜一区免费看| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| www国产在线视频色| 国产成人一区二区三区免费视频网站| 欧美三级亚洲精品| 日本一二三区视频观看| 日本成人三级电影网站| 久久精品成人免费网站| 久热爱精品视频在线9| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 一夜夜www| 成人永久免费在线观看视频| 露出奶头的视频| 亚洲av成人一区二区三| 久久久水蜜桃国产精品网| 一级毛片女人18水好多| 亚洲av美国av| 一本精品99久久精品77| 国产精品,欧美在线| www.熟女人妻精品国产| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 亚洲美女黄片视频| 成人国语在线视频| av天堂在线播放| 免费在线观看成人毛片| 欧美又色又爽又黄视频| 午夜老司机福利片| 亚洲专区中文字幕在线| 欧美乱妇无乱码| 国产精品久久久久久久电影 | 999精品在线视频| 俺也久久电影网| 国产精品久久久久久久电影 | 成人三级黄色视频| 国产精品亚洲av一区麻豆| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 91字幕亚洲| 在线观看日韩欧美| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 麻豆久久精品国产亚洲av| 精品欧美国产一区二区三| 999久久久精品免费观看国产| 午夜精品在线福利| 国产精品免费视频内射| 亚洲黑人精品在线| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 午夜激情av网站| 亚洲国产精品成人综合色| 午夜激情av网站| a级毛片在线看网站| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 国产精品一区二区精品视频观看| 狠狠狠狠99中文字幕| 无限看片的www在线观看| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 国内毛片毛片毛片毛片毛片| 欧美日韩国产亚洲二区| 一夜夜www| 成人国产综合亚洲| а√天堂www在线а√下载| 757午夜福利合集在线观看| 一夜夜www| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 69av精品久久久久久| 国产精品99久久99久久久不卡| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| 69av精品久久久久久| 亚洲专区国产一区二区| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 国产精华一区二区三区| 两个人的视频大全免费| 国产麻豆成人av免费视频| 成人三级做爰电影| 欧美在线黄色| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 欧美久久黑人一区二区| 久久精品影院6| 久久 成人 亚洲| 90打野战视频偷拍视频| 日韩欧美在线乱码| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 天堂av国产一区二区熟女人妻 | 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区| 国产一区二区在线观看日韩 | 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 久久精品aⅴ一区二区三区四区| 高清在线国产一区| 国产私拍福利视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产av不卡久久| 国产亚洲精品综合一区在线观看 | 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 中文字幕人成人乱码亚洲影| 久久伊人香网站| 国产av一区二区精品久久| 男女那种视频在线观看| 国产av不卡久久| 9191精品国产免费久久| av视频在线观看入口| 麻豆成人av在线观看| 成人手机av| 国内少妇人妻偷人精品xxx网站 | 欧美国产日韩亚洲一区| 宅男免费午夜| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清 | 一进一出好大好爽视频| 久久热在线av| 琪琪午夜伦伦电影理论片6080| 欧美日本视频| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 国产精品影院久久| 久久草成人影院| 国产精品久久久人人做人人爽| 国内精品久久久久精免费| 最近视频中文字幕2019在线8| 757午夜福利合集在线观看| 中亚洲国语对白在线视频| 三级国产精品欧美在线观看 | 成熟少妇高潮喷水视频| 国产精品一及| 男男h啪啪无遮挡| 国产亚洲精品久久久久5区| av免费在线观看网站| 久久久国产成人免费| 村上凉子中文字幕在线| svipshipincom国产片| 久久精品影院6| 国产伦在线观看视频一区| 日本 欧美在线| 麻豆久久精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 国产精品av视频在线免费观看| 夜夜躁狠狠躁天天躁| 99国产综合亚洲精品| 国产精品免费视频内射| 久久香蕉激情| 亚洲国产精品sss在线观看| 中文字幕最新亚洲高清| 国产一区二区激情短视频| 欧美性长视频在线观看| 久久久久九九精品影院|