• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      RIG-I樣受體信號(hào)通路及其調(diào)控研究進(jìn)展

      2014-04-13 05:58:22丁云磊孫英杰王曉旭費(fèi)榮梅
      關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)泛素干擾素

      丁云磊,孫英杰,王曉旭,胡 躍,費(fèi)榮梅,丁 鏟

      (1.南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,南京 210095;2. 中國農(nóng)業(yè)科學(xué)院上海獸醫(yī)研究所,上海 200241;3. 安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥 223006;4. 吉林農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,長春 130118)

      ·綜述·

      RIG-I樣受體信號(hào)通路及其調(diào)控研究進(jìn)展

      丁云磊1,孫英杰2,王曉旭3,胡 躍4,費(fèi)榮梅1,丁 鏟2

      (1.南京農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,南京 210095;2. 中國農(nóng)業(yè)科學(xué)院上海獸醫(yī)研究所,上海 200241;3. 安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥 223006;4. 吉林農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,長春 130118)

      模式識(shí)別受體(pattern-recognition receptors,PRRs)中的RIG-I樣受體(RIG-I like receptors,RLRs)是細(xì)胞質(zhì)中一類RNA解旋酶,它們可以通過其RNA配體結(jié)合病原相關(guān)分子模式(pathogen associated molecular pattern,PAMP),識(shí)別非自身的病毒RNA。被感染的細(xì)胞中,這種相互作用可以通過觸發(fā)RLRs以及下游信號(hào)分子的活化,最終導(dǎo)致I型干擾素的產(chǎn)生和炎性因子的產(chǎn)生,細(xì)胞做出抗病毒免疫應(yīng)答。本文簡單介紹了RLR信號(hào)通路的組成及其泛素化調(diào)控,總結(jié)了病毒逃避RLR通路信號(hào)轉(zhuǎn)導(dǎo)的機(jī)制,最后闡述了NOD樣受體(NOD-like receptors,NLRs)通路對RLR通路的影響。通過對RLR信號(hào)通路分子在抗病毒免疫調(diào)節(jié)中的作用了解,可以為控制病毒的感染和免疫調(diào)節(jié)提供一個(gè)新的思路。

      RIG-I樣受體;先天性免疫;細(xì)胞信號(hào)轉(zhuǎn)導(dǎo);病毒感染

      包括病毒在內(nèi)的多種病原體能夠觸發(fā)細(xì)胞先天性免疫應(yīng)答,這種免疫應(yīng)答對于限制病原體的早期擴(kuò)散是必不可少的。病毒感染機(jī)體后,有效的抗病毒天然免疫作用的發(fā)展需要強(qiáng)健的特異性免疫系統(tǒng)的活化。這個(gè)過程依賴于宿主細(xì)胞第一感知病毒的能力,然后提醒相鄰細(xì)胞或者一些免疫細(xì)胞病毒感染正在進(jìn)行。細(xì)胞內(nèi)這種信號(hào)的傳達(dá)需要一類模式識(shí)別受體(pattern-recognition receptors,PRRs)特異性地識(shí)別病毒表達(dá)的病原相關(guān)分子模式(pathogen associated molecular patter,PAMP),也就是1989年Charles Janeway提出的天然免疫模式識(shí)別理論。這一類模式識(shí)別受體主要包括Toll樣受體(Toll like receptors,TLRs)、RIG-I樣受體(RIG-I like receptors,RLRs)、NOD樣受體(NOD like receptors,NLRs)、Hin-200家族蛋白和一些DNA受體。

      Toll樣受體(TLR)家族的模式識(shí)別受體(PRRs)存在于細(xì)胞表面和胞內(nèi)體膜上,比如內(nèi)質(zhì)網(wǎng)、溶酶體、內(nèi)涵體等[1]。相反,一些PRRs存在于細(xì)胞質(zhì)內(nèi),識(shí)別被感染細(xì)胞細(xì)胞質(zhì)中的病原微生物的產(chǎn)物,包括RLRs、NLRs、DNA受體(如AIM2和DAI)[2,3]。雖然幾年來我們對于PRRs對病毒感染應(yīng)答的信號(hào)通路有了一定的了解,但是對于病毒特異性的干擾免疫信號(hào)通路的研究還不是很全面。本文就近年來確定的RLRs功能和病毒感染干擾其信號(hào)通路的轉(zhuǎn)導(dǎo)做一個(gè)綜述。

      1 RLRs介導(dǎo)的抗病毒信號(hào)通路

      1.1 RLRs成員結(jié)構(gòu)和功能RLRs的成員包括視黃酸誘導(dǎo)基因蛋白I(retinoic acid-inducible gene I,RIG-I)、黑色素瘤分化相關(guān)基因5(MDA5)和遺傳學(xué)和生理實(shí)驗(yàn)室蛋白2(LGP2)[4]。它們都包含一個(gè)特殊的DEX/DH框RNA酶解旋結(jié)構(gòu)域,可與RNA結(jié)合,并且它們都具有ATP酶的功能,可使RNA構(gòu)象發(fā)生改變并激活下游信號(hào)的轉(zhuǎn)導(dǎo)。除了LGP2、RIG-I和MDA5都包含兩個(gè)N端CARD結(jié)構(gòu)域(capase活化和招募結(jié)構(gòu)域),該結(jié)構(gòu)域可促進(jìn)他們與其他包含該結(jié)構(gòu)域分子的相互作用。這些結(jié)構(gòu)域的相互作用促進(jìn)了RIG-I/MDA5結(jié)合到下游同樣含有CARD結(jié)構(gòu)域的一個(gè)重要的接頭分子MAVS(mitochondrial antiviral signaling protein,也稱IPS-1/VISA/Cardif),并導(dǎo)致干擾素調(diào)節(jié)因子IRF-3、IRF-7(interferon regulatory factors)的活化和NF-κB(nuclear factor κB)的入核[5]。這一過程最終導(dǎo)致干擾素、干擾素刺激基因、促炎因子等各種抗病毒基因的活化,從而抑制病毒的復(fù)制和傳播[6]。RIG-I和LGP2的C端結(jié)構(gòu)域包含抑制結(jié)構(gòu)域(repressor domain,RD結(jié)構(gòu)域),可以使其在細(xì)胞沒有病毒RNA刺激時(shí)處于非活化狀態(tài)[7]。

      1.2 RLRs識(shí)別病毒RNA各種各樣的RNA病毒可以刺激RIG-I和MAD5,并且RIG-I和MDA5可以分別識(shí)別不同的病毒。目前發(fā)現(xiàn)的可以被RIG-I識(shí)別的病毒主要有副黏病毒科,如新城疫病毒、仙臺(tái)病毒、呼吸道合胞病毒[8];棒狀病毒科,如水泡型口炎病毒、狂犬病病毒[9];正黏病毒科,如流感病毒;黃病毒科,如肝炎病毒和日本腦炎病毒[10]。相反,MDA5主要識(shí)別小RNA病毒科如EMCV;以及冠狀病毒,如鼠肝炎病毒[11]。RIG-I和MDA5還都可以識(shí)別登革熱病毒、新尼羅河病毒以及呼腸孤病毒。

      有研究表明,RIG-I識(shí)別雙鏈RNA[12],但是后來發(fā)現(xiàn)含有5′端三磷酸(5′ppp)尾巴的RNA是被RIG-I識(shí)別的必須條件,5′ppp被完全去除后可徹底阻止RIG-I信號(hào)通路的活化[13,14]。這種結(jié)構(gòu)可以使RIG-I區(qū)別宿主細(xì)胞RNA和病毒RNA,因?yàn)樗拗骷?xì)胞RNA的5′端有帽子結(jié)構(gòu),而tRNA和rRNA缺少5′ppp結(jié)構(gòu)。之后經(jīng)過Schmidt[15]、Saito等[16],證明RIG-I識(shí)別含有5′ppp結(jié)構(gòu),有一定長度并帶有多聚核苷酸序列或雙鏈結(jié)構(gòu)的RNA。此外,有報(bào)道證明經(jīng)RNA聚合酶Ⅲ以AT-rich DNA為模板轉(zhuǎn)錄的5′ppp雙鏈RNA也可被RIG-I識(shí)別[17,18]。

      關(guān)于MDA5識(shí)別的RNA的特點(diǎn)還不是很清楚。目前研究顯示,MDA5更傾向于識(shí)別具有網(wǎng)狀結(jié)構(gòu)的長雙鏈RNA[19]。對于LGP2的研究還不明確,LGP2對RLR信號(hào)通路的正調(diào)控或者負(fù)調(diào)控作用還沒有統(tǒng)一的定論[20]。

      2 RLRs介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)反應(yīng)

      RIG-I和MDA5被活化后觸發(fā)下游線粒體或過氧化物酶體上的一個(gè)重要的接頭分子MAVS的活化,進(jìn)而激活下游通路導(dǎo)致IRF3和NF-kB的磷酸化并活化,最終導(dǎo)致I型干擾素和促炎因子的產(chǎn)生。但是過氧化物酶體上的MAVS在早期可誘導(dǎo)一型干擾素誘導(dǎo)基因的上調(diào)而不誘導(dǎo)干擾素的上調(diào)(圖1)。

      在RLRs識(shí)別病毒RNA后,引起MAVS的活化,進(jìn)而將信號(hào)轉(zhuǎn)導(dǎo)給下游的TRAF3、TBK1激酶和IKK-i復(fù)合體,進(jìn)而磷酸化活化IRF3/7[6],活化的IRF3/7轉(zhuǎn)移至細(xì)胞核內(nèi),并誘導(dǎo)I型干擾素的產(chǎn)生。而活化的MAVS還可通過TRAF2/6(tumor necrosis factor(TNF)R-associated factor2/6)或者FADD (Fas-associated death domain)、RIP1 (receptor interacting protein-1)、TRADD(TANK-binding kinase-1)、Caspase 8 /10通路將信號(hào)轉(zhuǎn)導(dǎo)給IKK復(fù)合物(包含IKKα、IKKβ、IKKγ),最后導(dǎo)致NF-kB和IkBα復(fù)合物的磷酸化,磷酸化的IkBα從NF-kB上脫落并降解,活化的NF-kB入核促進(jìn)促炎因子和炎性趨化因子的產(chǎn)生[21]。此外,另一種接頭分子STING(stimulator of interferon genes)也可以與RIG-I和MAVS相互作用活化IRF/IFN,很多實(shí)驗(yàn)已經(jīng)證明DNA在刺激IFN產(chǎn)生的過程中起重要作用,但是STING在RNA病毒刺激細(xì)胞內(nèi)RLR信號(hào)轉(zhuǎn)導(dǎo)中的作用還不清楚。

      3 RLR通路的泛素化

      RIG-I可以被E3泛素化酶調(diào)節(jié),TRIM25(tripartite motif containing 25)作為一個(gè)泛素連接酶可以與RIG-I結(jié)合,對其CARD結(jié)構(gòu)域的K172賴氨酸殘基進(jìn)行K63連接的泛素化修飾,促進(jìn)RIG-I與MAVS的結(jié)合和信號(hào)通路的活化[22]。此外,E2泛素耦合酶Ubc5(ubiquitin-conjugating enzyme5)參與活化RIG-I信號(hào)通路,可能參與MAVS下游的IKKγ的K63泛素化,促進(jìn)IKKγ招募TBK1和IRF/NF-kB的活化[23]。TRIM25和Ubc5并不參與MDA5的泛素化。

      同樣RIG-I通路也可被泛素化負(fù)調(diào)控,E3泛素酶RNF125可以將K48泛素鏈結(jié)合到RIG-I和MDA5上,促進(jìn)它們被蛋白酶體降解[24]。與此相同,被SeV感染的細(xì)胞中,RNF5直接與MAVS相互作用,在K362和K461發(fā)生K48位連接的泛素化,使MAVS被蛋白酶體降解[25]。這些結(jié)論證明K48位泛素化修飾可以作用于信號(hào)通路中的各種分子來抑制RLR信號(hào)通路的轉(zhuǎn)導(dǎo)。

      除了泛素化蛋白,去泛素化酶(deubiquitinating enzymes,DUBs)在RLRs信號(hào)通路中起到重要的負(fù)調(diào)控作用。例如,DUBA(deubiquitinating enzyme A)可以與TRAF3相互作用,移除K63泛素鏈,最終使其失去與TBK1的相互作用,阻止MAVS下游信號(hào)的轉(zhuǎn)導(dǎo)[26]。去泛素化酶CYLD(cylindromatosis)可以直接作用RIG-I去除K63泛素化修飾,抑制干擾素的產(chǎn)生。

      4 病毒干擾RLRs介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)反應(yīng)

      病毒感染細(xì)胞后往往會(huì)破壞RLR信號(hào)通路的轉(zhuǎn)導(dǎo)來逃避細(xì)胞的免疫應(yīng)答。各種各樣的病毒蛋白已經(jīng)被證實(shí)可以阻止RLRs識(shí)別病毒RNA,靶向并結(jié)合到RLR信號(hào)通路中的信號(hào)分子,調(diào)節(jié)或阻止RLR通路的信號(hào)轉(zhuǎn)導(dǎo)。

      一些病毒可以保護(hù)自身的RNA不被RLRs識(shí)別。如埃博拉病毒(Ebola)的VP35蛋白可以使其dsRNA隱藏在細(xì)胞質(zhì)中不被RIG-I識(shí)別[27]。小核糖核酸病毒(Picornaviruses)利用其Vpg蛋白保護(hù)病毒RNA[8]。這些作用可能是阻止了5'ppp RNA被RIG-I識(shí)別。更有趣的是Haantan病毒、克里米亞-剛果出血熱病毒(Crimean-Congo Hemorrhagic fever virus)和博爾納病病毒(Borna disease virus)可以修飾他們的病毒RNA,去除5'ppp保護(hù)其RNA不被RIG-I識(shí)別[28]。

      病毒還可以靶向RLR信號(hào)通路分子,干擾信號(hào)轉(zhuǎn)導(dǎo)。特別是MAVS可被多種病毒裂解和失活,對RLR信號(hào)通路有拮抗作用。丙型肝炎病毒的蛋白NS3/4A可以裂解MAVS,并將MAVS從胞內(nèi)膜上移除,阻止RLR信號(hào)通路IFN的產(chǎn)生[29,30]。此外,呼吸道合胞病毒感染細(xì)胞后其非結(jié)構(gòu)蛋白NS1可以MAVS共定位,并破壞MAVS與RIG-I的相互作用以及下游的IFN的產(chǎn)生[31]。柯薩奇病毒蛋白酶B3C可以裂解MAVS,阻斷下游信號(hào)[32];A型肝炎病毒蛋白酶前體3ABC也可以裂解MAVS[33];71型腸病毒蛋白酶2A可以裂解MAVS,抑制抗病毒Ⅰ型干擾素的免疫應(yīng)答[34]。其他的病毒也可以破壞或隱藏RLR信號(hào)通路元件。一些副黏病毒科病毒的V蛋白可以直接結(jié)合MDA5,并阻礙下游信號(hào)的活化[35,36]。流感病毒的NS1蛋白可以直接結(jié)合到RIG-I上,并移除RIG-I對下游的信號(hào)轉(zhuǎn)導(dǎo),也有報(bào)道稱NS1可以直接結(jié)合TRIM25并去除RIG-I的K63泛素化修飾[37,38]。這說明病毒不僅靶向RLR信號(hào)通路,而且會(huì)靶向RLR信號(hào)通路的相關(guān)調(diào)節(jié)因素。

      圖1 RLR信號(hào)通路及其細(xì)胞內(nèi)調(diào)控Fig.1 RLR signaling and cellular regulation

      經(jīng)RNA聚合酶Ⅲ以AT-rich DNA為模板轉(zhuǎn)錄的5'ppp雙鏈RNA也可被RIG-I識(shí)別,多種DNA病毒也已經(jīng)被證明可以調(diào)控RLR信號(hào)通路以逃避細(xì)胞抗病毒免疫反應(yīng)。肝炎病毒B的X蛋白可以結(jié)合到MAVS上并通過K63泛素化修飾降解MAVS[39]。牛痘病毒的E3蛋白可以結(jié)合到RNA聚合酶Ⅲ產(chǎn)生的RNAs上,并阻止他們被RIG-I識(shí)別[41]。慢病毒屬的人類免疫缺陷病毒(HIV)的蛋白酶可以分離RIG-I并阻止ISG的產(chǎn)生,此外HIV還可以直接去除TLR,RLR或者其他信號(hào)通路下游的IRF3,來阻止ISG的產(chǎn)生[42,43]。

      此外,PCBP2(ploy(rC) binding protein 2)蛋白被證明在病毒誘導(dǎo)下表達(dá)上調(diào),并通過E3連接酶AIP4對MAVS進(jìn)行K48位泛素化修飾,導(dǎo)致MAVS被蛋白酶體降解[44]。PSMA7(α4)亞基可以直接結(jié)合MAVS限制其誘導(dǎo)IFN的表達(dá)[45]。而Atg5-Atg12自噬復(fù)合體可以直接作用于RIG-I和MAVS抑制下游IFN的產(chǎn)生[46]。最新研究發(fā)現(xiàn),病毒感染細(xì)胞后,內(nèi)質(zhì)網(wǎng)膜表面蛋白Gp78可以通過兩條平行的路徑調(diào)節(jié)MAVS信號(hào)轉(zhuǎn)導(dǎo),一方面E3泛素連接酶和內(nèi)質(zhì)網(wǎng)相關(guān)降解途徑的活化直接降解MAVS,另一方面Gp78直接與MAVS相互作用,以阻礙MAVS與上游RIG-I/MDA5或下游TRAF3/6的相互作用[47]。RNA病毒感染巨噬細(xì)胞之后能夠特異性誘導(dǎo)表達(dá)的膜分子---Siglec-G (唾液酸結(jié)合性免疫球蛋白樣凝集素-G)表達(dá)上調(diào)。通過體外實(shí)驗(yàn),發(fā)現(xiàn)病毒dsRNA結(jié)合RIG-I后,上調(diào)NF-kB下游的Siglec-G ,Siglec-G可促進(jìn)E3泛素酶c-Cbl和SHP2介導(dǎo)的RIG-I泛素化降解,并通過這種方式抑制RIG-I的活化及其觸發(fā)I型干擾素的產(chǎn)生,從而幫助RNA病毒逃逸機(jī)體天然免疫[48](圖2)。

      5 NLR對RLR信號(hào)通路的影響

      NLRs在促炎因子、抗菌基因以及炎癥小體的產(chǎn)生過程中起重要作用。例如,NOD2可以被細(xì)菌細(xì)胞壁成份胞壁酰二肽(MDP)刺激,觸發(fā)NF-kB的活化[49]。NLRC4、 NLRP1 和 NLPR3參與到炎性小體的活化,活化的炎性小體可剪切IL-1β、 IL-18和IL-33的前體形式成活化形式,引發(fā)抗病毒炎性反應(yīng)和發(fā)熱反應(yīng)[50]。

      有趣的是,NLRs和RLRs在抗病毒信號(hào)轉(zhuǎn)導(dǎo)中存在一種特殊的關(guān)聯(lián),NLRs也參與一型干擾素通路的調(diào)控。Sabbah等[51]證明NOD2對病毒感染產(chǎn)生免疫應(yīng)答并介導(dǎo)IRF3的活化,而且這種作用介于NOD2與MAVS的直接相互作用。此反應(yīng)發(fā)生在RSV的衍生ssRNA被NOD2識(shí)別,并活化IRF3和IFN 的產(chǎn)生。因此我們可以理解為這樣一種模式,細(xì)菌可以觸發(fā)NOD2介導(dǎo)的NF-kB的活化,而病毒的感染則通過觸發(fā)NOD2/MAVS活化IRF3?,F(xiàn)在還不清楚NOD2是否作為ssRNA的受體,或者只是與RNA簡單的結(jié)合,然后NOD2通過與RIG-I或者M(jìn)DA5的作用,將ssRNA提供給RIG-I或者M(jìn)DA5識(shí)別,觸發(fā)MAVS依賴的信號(hào)轉(zhuǎn)導(dǎo)。

      NLRs也被證明可以負(fù)調(diào)控RLR信號(hào)通路。NLR家族成員NLRX1可定位于線粒體外膜,并與MAVS相互作用,抑制IRF3和NF-kB的活化,干擾掉NLRX1可以顯著增強(qiáng)辛德畢斯病毒和仙臺(tái)病毒對IFN的誘導(dǎo)和NF-kB的活化[52,53]。NLRP5也可以抑制NF-kB和IFN免疫應(yīng)答途徑,可能通過調(diào)節(jié)IKK磷酸化或者直接結(jié)合RIG-I和MDA5[54-56]。所以NLRs既正調(diào)控也負(fù)調(diào)控RLR信號(hào)通路。

      6 總結(jié)

      近年來,隨著人們對于模式識(shí)別受體的研究越來越多,人們對天然免疫抗病毒通路分子機(jī)制的認(rèn)識(shí)也取得了較大的進(jìn)步。不同通路之間相輔相成,形成復(fù)雜的網(wǎng)絡(luò)降低病毒對機(jī)體的危害。RLRs在I型干擾素和促炎因子的產(chǎn)生以及對抗病毒感染的過程之中起重要作用。隨著一些重要分子的發(fā)現(xiàn),我們對這個(gè)錯(cuò)綜復(fù)雜的信號(hào)通路的理解有了一定的拓寬,對于RLRs的活化和調(diào)控以及與其他先天性免疫信號(hào)通路的聯(lián)系有了更深刻的了解。但是,人們對于細(xì)胞質(zhì)內(nèi)模式識(shí)別受體RIG-I和MDA5的研究較多,對于LGP2的研究較少,甚至有爭議。同樣,對于一些特殊的天然缺少RIG-I的機(jī)體(比如雞)的RLR信號(hào)通路的研究還處于初級階段。越來越多的研究報(bào)道了病毒如何通過調(diào)控RLR信號(hào)通路以逃避先天性免疫應(yīng)答的,這對于我們以后疫苗或者免疫佐劑等的研究提供了很好的方向,可以更好地抑制病原菌感染和控制病毒的復(fù)制傳播,為研制抗病毒臨床實(shí)驗(yàn)藥物及策略提供理論依據(jù)。

      圖2 病毒被RIG-I和MDA5識(shí)別及其對RLR信號(hào)通路的調(diào)控Fig.2 Requirements for RIG-I and MDA5 in recognition of distinct viral families and viral regulation of RLR signaling

      [1] Blasius A L,Beutler B. Intracellular Toll-like receptors[J]. Immunity,2010,32(3): 305-315.

      [2] Wilkins C,Gale M Jr. Recognition of viruses by cytoplasmic sensors[J]. Curr Opin Immunol,2010,22(1): 41-47.

      [3] Yanai H,Savitsky D,Tamura T,et al. Regulation of the cytosolic DNA-sensing system in innate immunity: a current view[J]. Curr Opin Immunol,2009,21(1): 17-22.

      [4] Loo Y M,Gale M. Immune signaling by RIG-I-like receptors[J]. Immunity,2011,34(5): 680-692.

      [5] Hiscott J,Lin R,Nakhaei P,et al. MasterCARD: a priceless link to innate immunity[J]. Trends Mol Med,2006,12(2): 53-56.

      [6] Huihui C,Zhengfan J.The essential adaptors of innate immune signaling[J]. Protein Cell,2013,4(1): 27-39.

      [7] Saito T,Hirai R,Loo Y M,et al. Regulation of innate antiviral defenses through a shared repressor domain inAT-rich DNARIG-I and LGP2[J]. Proc Natl Acad Sci USA,2007,104(2): 582-587.

      [8] Kato H,Takeuchi O,Sato S,et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses[J]. Nature,2006,441(7089): 101-105.

      [9] Faul E J,Wanjalla C N,Suthar M S,et al. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling[J]. PLoS Pathog,2010,6(7): e1001016.

      [10] Loo Y M,Fornek J,Crochet N,et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity[J]. J Virol,2008; 82(1): 335-345.

      [11] Yoneyama M,Fujita T. RNA recognition and signal transduction by RIG-I-like receptors[J]. Immunol Rev,2009,227(1): 54-65.

      [12] Yoneyama M,Kikuchi M,Natsukawa T,et al. The RNA helicase RIG-I has an essential function in doublestranded RNA-induced innate antiviral responses[J]. Nat Immunol,2004,5(7): 730-737.

      [13] Hornung V,Ellegast J,Kim S,et al. 5'-Triphosphate RNA is the ligand for RIG-I[J]. Science,2006,314(5801): 994-997.

      [14] Pichlmair A,Schulz O,Tan C P,et al. RIG-Imediated antiviral responses to single-stranded RNA bearing 5'-phosphates[J]. Science,2006,314(5801): 997-1001.

      [15] Schmidt A,Schwerd T,Hamm W,et al. 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I[J]. Proc Natl Acad Sci USA,2009,106(29): 12067-12072.

      [16] Saito T,Owen D M,Jiang F,et al. Innate immunity induced by compositiondependent RIG-I recognition of hepatitis C virus RNA[J]. Nature,2008,454(7203): 523-527.

      [17] Ablasser A,Bauernfeind F,Hartmann G,et al. RIGI-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate[J]. Nat Immunol,2009,10(10): 1065-1072.

      [18] Chiu Y H,MacMillan J B,Chen Z J. RNA Polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway[J]. Cell,2009,138(3): 576-591.

      [19] Pichlmair A,Schulz O,Tan C P,et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection[J]. J Virol,2009,83(20): 10761-10769.

      [20] 孫文香,蔣爭凡. 病毒感染引發(fā)天然免疫細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)研究進(jìn)展[J]. 中國細(xì)胞生物學(xué)學(xué)報(bào),2013,35(5): 563-573.

      [21] Eisen?cher K,Krug A. Regulation of RLR-mediated innate immune signaling-It is all about keeping the balance[J]. Eur J Cell Biol,2012,91(1): 36-47.

      [22] Gack M U,Shin Y C,Joo C H,et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I mediated antiviral activity [J]. Nature,2007,446(7138): 916-920.

      [23] Zeng W,Xu M,Liu S,et al. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3[J]. Mol Cell,2009,36(2): 315-325.

      [24] Arimoto K,Takahashi H,Hishiki T,et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125[J]. Proc Natl Acad Sci USA,2007,104(18): 7500-7505.

      [25] Zhong B,Zhang Y,Tan B,et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation[J]. J Immunol,2010,184(11): 6249-6255.

      [26] Kayagaki N,Phung Q,Chan S,et al. DUBA: a deubiquitinase that regulates type I interferon production[J]. Science,2007,318(5856): 1628-1632.

      [27] Cardenas W B,Loo Y M,Gale M Jr,et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling[J]. J Virol,2006,80(11): 5168-5178.

      [28] Habjan M,Andersson I,Klingstrom J,et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction[J]. PLoS One,2008,3(4): e2032.

      [29] Loo Y M,Owen D M,Li K,et al. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection[J]. Proc Natl Acad Sci USA,2006,103(15): 6001-6006.

      [30] Meylan E,Curran J,Hofmann K,et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus[J]. Nature,2005,437(7062): 1167-1172.

      [31] Boyapalle S,Wong T,Garay J ,et al. RSV NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection[J]. PLoS One,2012,7(2): e29386.

      [32] Mukherjee A,Morosky S A,Delorme-Axford E,et al. The coxsackievirus B 3C protease cleaves MAVS andTRIF to attenuate host Type I interferon and apoptotic signaling[J]. PLoS Pathog,2011,7(3): e1001311.

      [33] Yang Y,Liang Y,Qu L,et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor[J]. Proc Natl Acad Sci USA,2007,104(17): 7253-7258.

      [34] Wang B,Xi X,Lei X,et al. Enterovirus 71 protease 2A pro targets MAVS to inhibit anti-viral type I interferon responses[J]. PLoS Pathog,2013,9(3): e1003231.

      [35] Andrejeva J,Childs K S,Young D F,et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase,mda-5,and inhibit its activation of the IFN-beta promoter[J]. Proc Natl Acad Sci USA,2004,101(49): 17264-17269.

      [36] Childs K,Stock N,Ross C,et al. MDA-5,but not RIG-I,is a common target for paramyxovirus V proteins[J]. Virology,2007,359(1): 190-200.

      [37] Mibayashi M,Martinez-Sobrido L,Loo Y M,et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus[J]. J Virol,2007,81(2): 514-524.

      [38] Gack M U,Albrecht R A,Urano T,et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I[J]. Cell Host Microbe,2009,5(5): 439-449.

      [39] Wei C,Ni C,Song T,et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein[J]. J Immunol,2010,185(2): 1158-1168.

      [40] Valentine R,Smith G L. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3[J]. J Gen Virol,2010,91(Pt 9): 2221-2229.

      [41] Solis M,Nakhaei P,Jalalirad M,et al. RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I[J]. J Virol,2011,85(3): 1224-1236.

      [42] Doehle B P,Hladik F,McNevin J P,et al. Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells[J]. J Virol,2009,83(20): 10395-10405.

      [43] Okumura A,Alee T,Lubyova B,et al. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation[J]. Virology,2008,373(1): 85-97.

      [44] You F,Sun H,Zhou X,et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4[J]. Nat Immunol,2009,10(12): 1300-1308.

      [45] Jia Y,Song T,Wei C,et al. Negative regulation of MAVS-mediated innate immune response by PSMA7[J]. J Immunol,2009,183(7): 4241-4248.

      [46] Jounai N,Takeshita F,Kobiyama K,et al. The Atg5 Atgl2 conjugate associates with innate antiviral immune responses[J]. Proc NatlAcadSci USA,2007,104(35): 14050-14055.

      [47] Jacobs J L,Zhu J,sarkar S N,et al. Regulation of mitochondrial antiviral signaling (MAVS) expression and signaling by the mitochondria-associated endoplasmic reticulum membrane (MAM) protein Gp78[J]. J Biol Chem,2014,289(3): 1604-1616.

      [48] Park J H,Kim Y G,McDonald C,et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs[J]. J Immunol,2007,178(4): 2380-2386.

      [49] Chen W,Han C,Xie B,et al. Induction of siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation[J]. Cell,2013,152(3): 467-478.

      [50] Kanneganti T D. Central roles of NLRs and inflammasomes in viral infection[J]. Nat Rev Immunol,2010,10(10):688-698.

      [51] Sabbah A,Chang T H,Harnack R,et al. Activation of innate immune antiviral responses by Nod2[J]. Nat Immunol,2009,10(10): 1073-1080.

      [52] Moore C B,Bergstralh D T,Duncan J A,et al. NLRX1 is a regulator of mitochondrial antiviral immunity[J]. Nature,2008,451(7178): 573-577.

      [53] Lei Y,Wen H,Yu Y,et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy[J]. Immunity,2012,36(6): 933-946.

      [54] Benko S,Magalhaes J G,Philpott D J,et al. NLRC5 limits the activation of inflammatory pathways[J]. J Immunol,2010,185(3): 1681-1691.

      [55] Cui J,Zhu L,Xia X,et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways[J]. Cell,2010,141(3): 483-496.

      [56] Neerincx A,Lautz K,Menning M,et al. A role for the human nucleotide-binding domain,leucine-rich repeat-containing family member NLRC5 in antiviral responses[J]. J Biol Chem,2010,285(34): 26223-26232.

      ADVANCES IN SIGNALING PATHWAYS AND REGULATION OF RIG-I-LIKE RECEPTOR

      DING Yun-lei1,SUN Ying-jie2,WANG Xiao-xu3,HU Yue4,FEI Rong-mei1,DING Chan2
      (1. College of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China ; 2.Shanghai Veterinary Research Institute,CAAS,Shanghai 200241,China; 3.College of Animal Science and Technology,Anhui Agricultural University,Hefei 223006,China; 4.College of Animal Science and Technology,Jilin Agricultural University,Changchun 130118,China)

      The RIG-I-like receptors (RLRs) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as non-self via binding to pathogen associated molecular pattern (PAMP) motifs within RNA ligands. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other proinflammatory cytokines that serve to induce antiviral and inflammatory gene expression. In this paper,the composition of the RLR signaling pathway and regulation of ubiquitination reaction are described briefl y. The mechanisms of viruses targeting RLR pathways to escape from the immune response are also summarized. Furthermore,the signaling crosstalk between RLR pathways and NOD-like receptor (NLR) pathways are introduced. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity.

      RIG-I-like receptors; innate immunity; cell signaling; viral infection

      S852.42

      A

      1674-6422(2014)05-0072-08

      2014-04-19

      863計(jì)劃(2011AA10A209);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201003012)

      丁云磊,女,碩士研究生,預(yù)防獸醫(yī)學(xué)專業(yè)

      費(fèi)榮梅, E-mail:feirongmei@niau.edu.cn;丁鏟, E-mail: shoveldeen@shvri.ac.cn

      猜你喜歡
      信號(hào)轉(zhuǎn)導(dǎo)泛素干擾素
      Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
      α-干擾素聯(lián)合利巴韋林治療慢性丙型肝炎
      蛋白泛素化和類泛素化修飾在植物開花時(shí)間調(diào)控中的作用
      霧化吸入γ干擾素對免疫低下肺炎的療效觀察
      干擾素α-1b治療成人麻疹療效初步觀察
      泛RNA:miRNA是RNA的“泛素”
      HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
      泛素結(jié)合結(jié)構(gòu)域與泛素化信號(hào)的識(shí)別
      SCF E3泛素化連接酶的研究進(jìn)展
      恩替卡韋治療干擾素失敗的慢性乙型肝炎72例療效觀察
      隆昌县| 大姚县| 荆州市| 丹巴县| 通化市| 静乐县| 象山县| 通化县| 南和县| 晋中市| 隆尧县| 霍城县| 洪雅县| 腾冲县| 甘泉县| 密云县| 乌兰浩特市| 西平县| 高青县| 万载县| 龙江县| 吴桥县| 和静县| 甘泉县| 繁昌县| 高雄县| 花垣县| 吉水县| 疏附县| 光山县| 伊金霍洛旗| 滦南县| 铅山县| 嘉定区| 毕节市| 邵阳县| 通化市| 静乐县| 荆州市| 翁源县| 通化市|