吳西棟, 邵燕靈
?
一類含有2個非零元的極小譜任意符號模式
吳西棟, 邵燕靈*
(中北大學(xué) 理學(xué)院, 山西 太原, 030051)
符號模式; 譜任意; 冪零—雅可比方法; 蘊(yùn)含冪零
[10][11] Lyn Noquil Semea, South China Sea Disputes: How Different Domestic Dynamics Impact on Contemporary Philippine Political and Economic Relations with China, Norwegian University, Master Thesis, 2015, p. 26,pp. 23-24.
逐次按最后一行展開可得:
引理2得證.
證明 由引理1、引理2及引理3可知定理1得證.
是譜任意的相矛盾;
[1] Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns [J]. Linear Algebra and its Applications, 2000, 308(1): 121—137.
[2] Britz T, McDonald J J, Olesky D D, et al. Minimal spectrally arbitrary sign patterns [J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1): 257—271.
[3] CAVERS M S, Kim I J, Shader B L, et al. On determining minimal spectrally arbitrary patterns [J]. Elec J Linear Algebra, 2005, 13: 240—248.
[4] CAVERS M S, VANDER MEULEN K N. Spectrally and inertially arbitrary sign patterns [J]. Linear Algebra and its Applications, 2005, 394: 53—72.
[5] GAO Yu-bin, SHAO Yan-ling. A spectrally arbitrary patterns [J]. Advances in Mathematics, 2006, 35(5): 551—555.
[6] Pereira R. Nilpotent matrices and spectrally arbitrary sign-patterns [J]. Electron J Linear Algebra, 2007, 16: 232—236.
[7] Bergsma H, Kevin N, Vander M, et al. Potentially nilpotent patterns and the Nilpotent-Jacobian method[J]. Linear Algebra and Its Applications, 2012, 436: 4433—4445.
A class of minimally spectrally arbitrary patterns with 2nonzero entries
WU XiDong, SHAO YanLing
(School of Science, North University of China, Taiyuan 030051, China)
sign pattern; spectrally arbitrary; Nilpotent-Jacobian method; potentially nilpotent
10.3969/j.issn.1672-6146.2014.03.001
O 157
1672-6146(2014)04-0001-05
email: ylshao@nuc.edu.cn.
email: wuxidong123.2008@163.com.
2014-06-13
國家自然科學(xué)基金 (11071227); 山西省回國留學(xué)人員科研項目(12-070).
(責(zé)任編校:劉曉霞)