鄭文勤 鄧宇峰 宋謝炎** 陳列錳 于宋月 周國富 劉世榮 向建新
1.中國科學(xué)院地球化學(xué)研究所,礦床地球化學(xué)國家重點實驗室,貴陽 550002
2.合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院,合肥 230009
3.攀鋼集團(tuán)礦業(yè)有限公司,攀枝花 617000
鈦鐵礦是火成侵入巖體的主要氧化物之一,盡管常常是以副礦物的形式出現(xiàn),但具有重要的成因指示意義。在鎂鐵-超鎂鐵侵入體中,鈦鐵礦和磁鐵礦都是主要的氧化物礦物,甚至形成釩鈦磁鐵礦礦床。釩鈦磁鐵礦成礦主要產(chǎn)于大型層狀巖體或斜長巖套,前者如著名的南非Bushveld巖體、格陵蘭Skaergaard巖體和加拿大Sept Iles巖體等 (Klemm et al.,1985;Reynold,1985;Hunter and Sparks,1987;Toplis and Carrol,1996;Cawthorn and Ashwal,2009;Namur et al.,2010),后者如著名的挪威Tellnes鐵鈦礦床 (Wilmart et al.,1989;Charlier et al.,2006,2007)。鈦鐵礦不僅是釩鈦磁鐵礦礦床的主要氧化物礦物,相對于磁鐵礦而言,其固相線以下的固溶體分離現(xiàn)象較弱,能夠更好地保留其結(jié)晶時的成分特點,因此,可以為礦床成因探討提供重要信息。
峨眉大火成巖省內(nèi)帶是世界上最大的釩鈦磁鐵礦聚集區(qū),巨厚的釩鈦磁鐵礦礦層賦存于幾個大型鎂鐵-超鎂鐵層狀巖體的中下部,鈦鐵礦是僅次于磁鐵礦的主要礦石礦物。近年來,不少作者對這些礦床的磁鐵礦成分及其成因意義進(jìn)行了較多的探討,例如Pang et al.(2008,2009)和Song et al.(2013)在攀枝花巖體及其釩鈦磁鐵礦礦床的研究中,都從磁鐵礦的成分中獲得了重要的成因信息,但對鈦鐵礦成分的系統(tǒng)數(shù)據(jù)較少,成因意義的關(guān)注不夠。作者選擇開采最早、剝露最充分的攀枝花巖體,對其中、下部巖相帶進(jìn)行了系統(tǒng)采樣和鈦鐵礦成分的電子探針分析,試圖闡明鈦鐵礦成分的變化規(guī)律及其與分離結(jié)晶過程及巖漿補(bǔ)充的關(guān)系。
峨眉大火成巖省(ELIP)指峨眉山玄武巖所覆蓋的揚(yáng)子板塊西部的廣大區(qū)域。近年來的研究表明峨眉火成巖省的西界應(yīng)為青藏高原東緣金沙江縫合帶(Song et al.,2004),向東延伸到廣西北部(范蔚茗等,2004),向南擴(kuò)展至越南北部“Song Da”地塊(Hanski et al.,2004)??紤]到中新生代以來松潘-甘孜造山帶的劇烈褶皺、向東推覆和橫向收縮,峨眉火成巖省當(dāng)時的面積應(yīng)該超過50萬平方千米(Song et al.,2004),為晚二疊世地幔柱活動產(chǎn)物(Chung and Jahn,1995;Xu et al.,2001;Zhang et al.,2006,2008,2009)。
根據(jù)峨眉山玄武巖系厚度、成分、巖性變化、以及侵入巖的巖石組合的規(guī)律性變化可以將峨眉火成巖省具分為內(nèi)帶和外帶(圖1)。內(nèi)帶玄武巖厚度超過2000m,在云南賓川一帶最厚達(dá)5000m;而在ELIP的邊緣,玄武巖減薄為數(shù)十至百余米。盡管峨眉大火成巖省的噴出巖以高鈦玄武巖為主,但在內(nèi)帶玄武巖系的中下部可以發(fā)現(xiàn)多層低Ti玄武巖,而在外帶的玄武巖系中低鈦玄武巖較少(徐義剛和鐘孫霖,2001;Song et al.,2001,2009;Xu et al.,2001,2004;Zhou et al.,2002;徐義剛等,2003;肖龍等,2003;He et al.,2003;Zhong et al.,2003;郝艷麗等,2004;Xiao et al.,2004;侯增謙等,2005;宋謝炎等,2005)。由于中新生代以來的隆升,內(nèi)帶攀西地區(qū)峨眉山玄武巖往往因后期強(qiáng)烈剝蝕而缺失,從而使含V-Ti磁鐵礦礦床的大型層狀巖體和含Ni-Cu-(PGE)硫化物礦床的小型鎂鐵-超鎂鐵巖體得以出露;外帶則僅發(fā)現(xiàn)了含銅鎳硫化物礦床或礦化的鎂鐵-超鎂鐵雜巖體,如火成巖省北緣四川丹巴地區(qū)和南緣云南金平-越南北部地區(qū)(圖1)(王登紅,1998;胡瑞忠等,2005;宋謝炎等,2005)。
大型-超大型的V-Ti磁鐵礦礦床只出現(xiàn)在峨眉火成巖省內(nèi)帶,從北向南包括太和、白馬、新街、紅格和攀枝花(圖1),這些巖體沿攀枝花斷裂、磨盤山-元謀斷裂和安寧河斷裂等南北向深斷裂分布,如:攀枝花巖體位于攀枝花斷裂東側(cè)。多數(shù)巖體侵入于新元古代(震旦系燈影組)大理巖、云母石英片巖中(如:攀枝花和紅格巖體)或古生代砂巖中(如:白馬巖體),個別巖體侵入峨眉山玄武巖中(如新街巖體)。近年來的鋯石U-Pb年代學(xué)研究表明這些巖體形成于~260Ma(Zhou et al.,2002,2005;Zhong and Zhu,2006,Hou et al.,2012,2013),是峨眉山大火成巖省的重要組成部分(Zhang et al.,2009,2014)。其中釩鈦磁鐵礦礦石總儲量超過100億噸,V2O5儲量約1580萬噸、TiO2約8.7億噸,V和Ti分別占世界儲量的11.6%和35.17%,占我國總儲量的62.6%和90.54%(攀西地質(zhì)大隊,1984)。
如圖2所示,攀枝花巖體侵入于新元古代白云質(zhì)大理巖、片麻巖和片巖中,傾向北西,傾角約40°~60°,巖體頂部與三疊系陸相碎屑巖呈斷層接觸(攀西地質(zhì)大隊,1984)。該巖體長約19km,巖體最厚處達(dá)2000余米,被后期斷層分為7個礦段(圖2)。巖體的邊緣相厚度介于幾米至數(shù)十米,
圖1 峨眉大火成巖省玄武巖以及各種巖漿礦床分布圖(據(jù)攀西地質(zhì)大隊,1984① 攀西地質(zhì)大隊.1984.攀枝花-西昌地區(qū)釩鈦磁鐵礦共生礦成礦規(guī)律與預(yù)測研究報告;宋謝炎等,2005;Song et al.,2009)三個橫貫內(nèi)帶近南北向斷裂從西向東依次是攀枝花斷裂、磨盤山-元謀斷裂和安寧河斷裂Fig.1 Distribution of the basalts and magmatic deposits in Emeishan large ignous province(after Song et al.,2004,2009)The three N-S trending faults crossing the central zone are the Panzhihua,Mopanshan-Yuanmou and Anninghe,respectively from the west to east
圖2 攀枝花巖體地質(zhì)簡圖(據(jù)攀西地質(zhì)大隊,1984;Song et al.,2013)Fig.2 Simplified geological sketch of the Panzhihua intrusion(after Song et al.,2013)
根據(jù)Song et al.(2013)的觀察和詳細(xì)描述,下部巖相帶由5個旋回組成(I-V),除旋回I外,每個旋回都由下部的塊狀氧化物礦層和上部的中粗粒磁鐵礦輝長巖構(gòu)成,其中,旋回II和V塊狀礦層厚度達(dá)40~60m(圖3)。塊狀礦石含有70%~90%的自形和半自形磁鐵礦,3% ~15%的半自形鈦鐵礦和小于10%的橄欖石、單斜輝石和斜長石;磁鐵礦/鈦鐵礦比值介于5~24,多大于10(表1、圖3)。磁鐵礦輝長巖含40%~70%的斜長石和單斜輝石,半自形磁鐵礦及鈦鐵礦的含量最高達(dá)60%,橄欖石<10%;磁鐵礦/鈦鐵礦比值介于4~11,多小于6。每一旋回從下至上不僅鐵鈦氧化物的含量減少,磁鐵礦/鈦鐵礦的比值也顯著降低。磁鐵礦中鈦鐵礦出溶葉片以及鈦鐵礦中磁鐵礦出溶葉片發(fā)育,單斜輝石席列構(gòu)造非常發(fā)育(圖4a,b),斜長石和單斜輝石往往定向排列顯示韻律層理(Pang et al.,2008;Song et al.,2013)。巖石
結(jié)構(gòu)特征的研究表明每個旋回的下部鐵鈦氧化物的結(jié)晶往往較早,稍晚于橄欖石,早于或與斜長石和單斜輝石同時發(fā)生,而在旋回的上部,鐵鈦氧化物的結(jié)晶常晚于硅酸鹽礦物;中下部巖相帶磁鐵礦結(jié)晶稍早于鈦鐵礦,而上部巖相帶鈦鐵礦結(jié)晶稍早于磁鐵礦;塊狀和稠密浸染狀礦石中的硅酸鹽礦物常會因新巖漿的補(bǔ)充而發(fā)生一定程度的熔蝕(圖4)(Song et al.,2013)。
表1 攀枝花巖體磁鐵礦和鈦鐵礦含量統(tǒng)計Table 1 Modal abundances of magnetite and ilmenite of the Panzhihua intrusion
圖3 攀枝花巖體中、下巖相帶氧化物含量、比值及鈦鐵礦成分柱狀圖Fig.3 Stratigraphic composition variations of the ilmenite of the Lower and Middle zones of the Panzhihua intrusion
圖4 攀枝花礦床典型礦石結(jié)構(gòu)(a)-塊狀礦石,顯示高的磁鐵礦/鈦鐵礦比值,磁鐵礦呈半自形粒狀,鈦鐵礦呈半自形或他形粒狀或填隙狀,反光顯微鏡照片;(b)-稠密浸染狀礦石中橄欖石和單斜輝石邊緣不完整,說明受到一定程度的熔蝕,單斜輝石的席列構(gòu)造發(fā)育.Ol-橄欖石;Cpx-單斜輝石;Oxieds-鐵鈦化物氧;Mt-磁鐵礦;Ilm-鈦鐵礦Fig.4 Typical lithological structures of the Panzhihua intrusion(a)-massive ore shows high magnetite/ilmenite ratio and subhedral magnetite granins and subhedral or anhedral or interstitial ilmenite grains;(b)-olivine and clinopyroxene grains with melted margins in the densely disseminated ore and the clinopyroxene with magnetite exsolution lamina.Ol-olivine;Cpx-clinopyroxene;Oxieds-Fe-Ti oxides;Mt-magnetite;Ilm-ilmenite
中部巖相帶有6個旋回(VI-XI),每個旋回由中粗粒磁鐵礦輝長巖和輝長巖構(gòu)成(圖3)。磁鐵礦輝長巖的特征與下部巖相帶的同類巖石相似,但氧化物中鈦鐵礦的比例明顯升高,磁鐵礦/鈦鐵礦比值多介于1~6(表1、圖3)。輝長巖則以較低的鐵鈦氧化物含量(10% ~20%),以及更高的單斜輝石(30% ~40%)和斜長石(40% ~50%)為特征,幾乎不含橄欖石,韻律層理也非常發(fā)育。上部巖相帶由中粗粒磷灰石輝長巖構(gòu)成,該巖相帶以磷灰石含量的突然增高(3% ~5%),鐵鈦氧化物含量一般低于10%,巖性旋回和韻律層理均不發(fā)育,單斜輝石無鐵鈦氧化物出溶為突出特點(圖3)(Song et al.,2013)。
圖5 攀枝花巖體鈦鐵礦TiO2與其它氧化物相關(guān)圖Skaergaard巖體和挪威Tellnes鐵鈦礦床的鈦鐵礦成分?jǐn)?shù)據(jù)分布據(jù)Jang and Naslund,2003和Charlier et al.,2007Fig.5 Binary plots of major oxide elements versus TiO2of ilmenite from the Panzhihua intrusionData of the ilmenite of the Tellnes deposit and Skaergaard intrusion are from Jang and Naslund,2003 and Charlier et al.,2007,respectively
表2 攀枝花巖體鈦鐵礦電子探針成分平均值(wt%)Table 2 Average composition of major elements of ilmenite in the Panzhihua intrusion(wt%)
本次研究樣品采自攀枝花巖體的朱家包包礦段,采樣路徑如圖2所示。由于上部巖相帶氧化物較少,僅對中、下部巖相帶的鈦鐵礦進(jìn)行成分分析。鈦鐵礦的氧化物成分利用中國科學(xué)院地球化學(xué)研究所礦床地球化學(xué)國家重點實驗室的EPMA-1600型電子探針儀分析,束斑直徑為5μm,電流為25nA,加速電壓為25kV。分析誤差小于5%,分析結(jié)果列于表2。
如圖5所示,下部巖相帶塊狀礦石中的鈦鐵礦具有最高的MgO和TiO2含量,最低的FeO、Fe2O3和MnO含量;無論下部還是中部巖相帶,其磁鐵礦輝長巖中鈦鐵礦這些氧化物的含量都基本相同,而輝長巖中鈦鐵礦具有最低的MgO和TiO2含量及最高的FeO含量。同時,這些巖石和礦石中鈦鐵礦的TiO2都與MgO呈正比,而與FeO和Fe2O3及MnO呈反比。圖6顯示攀枝花巖體中、下部巖相帶中鈦鐵礦的FeO含量隨MnO的增加而增加,隨MgO的增加而降低,而與Fe2O3的關(guān)系不明顯。
此外,鈦鐵礦中的TiO2和MgO含量與磁鐵礦中這兩種氧化物的含量基本呈正比,而與Al2O3呈反比(圖7)。塊狀礦石的鈦鐵礦和磁鐵礦都具有較高的MgO和TiO2含量,輝長巖中這兩種礦物的MgO和TiO2均較低。另一方面,鈦鐵礦的MgO含量更高,而Al2O3含量更低(圖7b,c),這說明鐵鈦氧化物結(jié)晶時Mg更趨向于進(jìn)入鈦鐵礦,而Al則趨于進(jìn)入磁鐵礦。此外,鈦鐵礦MgO的含量與同一樣品中橄欖石的鎂橄欖石牌號(Fo)呈正比(圖8)。
圖6 攀枝花巖體鈦鐵礦FeO與MnO(a)、Fe2O3(b)和MgO(c)的相關(guān)圖Skaergaard巖體和挪威Tellnes鐵鈦礦床的鈦鐵礦成分?jǐn)?shù)據(jù)分布據(jù)Jang and Naslund,2003和Charlier et al.,2007Fig.6 Binary plots of MnO(a),F(xiàn)e2O3(b)and MgO(c)vs.FeOof ilmenite from the Panzhihua intrusionData of the ilmenite of the Tellnes deposit and Skaergaard intrusion are from Jang and Naslund(2003)and Charlier et al.(2007),respectively
圖7 攀枝花巖體鈦鐵礦和磁鐵礦的TiO2(a)、MgO(b)和Al2O3(c)的相關(guān)圖(磁鐵礦成分據(jù)Song et al.,2013)Fig.7 Binary plots of TiO2(a),MgO(b)and Al2O3(c)of ilmenite and magnetite from the Panzhihua intrusion(data of the magnetite after Song et al.,2013)
圖8 鈦鐵礦MgO含量與橄欖石Fo牌號的關(guān)系橄欖石成分據(jù)張曉琪等,2011;圖中橄欖石和鈦鐵礦的數(shù)據(jù)均為同一樣品中若干電子探針點的平均值Fig.8 Binary plots of MgO of ilmenite vs.Fo of olivine from the Panzhihua intrusionData of the olivine component are from Zhang et al.,2011;the data of the olivine and ilmenite are the averages of several grains of these minerals in the same sample
圖5和圖6的投影表明,攀枝花巖體和格陵蘭Skaergaard巖體的鈦鐵礦氧化物成分的變化具有相似的趨勢,暗示在成因上的相似性(Jang and Naslund,2003)。研究表明Skaergaard巖體是冰島熱點地幔柱幔源巖漿活動的產(chǎn)物(Tegner et al.,1998),而攀枝花等層狀巖體與峨眉地幔柱的活動密切相關(guān)(Song et al.,2001;Xu et al.,2001,2004;侯增謙等,2005)。圖5和圖6的對比表明與地幔柱有關(guān)的幔源巖漿演化特征的相似性也反映在鈦鐵礦成分的變化中。另一方面,與挪威斜長巖套有關(guān)的Tellnes鐵鈦礦床鈦鐵礦的TiO2含量遠(yuǎn)低于攀枝花巖體和Skaergaard巖體的鈦鐵礦,同時,其 MgO、FeO和 MnO含量也相對較低(圖5、圖6),Charlier et al.(2006,2007)認(rèn)為Tellnes巖體的母巖漿是特殊的富鐵鈦的閃長質(zhì)巖漿,鈦鐵礦和斜長石(鈣長石比例An牌號小于50,低于攀枝花巖體斜長石的An牌號=49~66,張曉琪等,2011)是主要堆積礦物,結(jié)晶早于磁鐵礦,但由于母巖漿基性程度很低,鈦鐵礦不僅具有低的MgO含量,其TiO2含量也較低,而Fe2O3含量非常高(圖5、圖6)。這不僅說明Tellnes巖體母巖漿的成分與攀枝花巖體和Skaergaard巖體有很大差異,也說明母巖漿成分對巖漿的結(jié)晶順序和礦物的成分都有決定性影響。一般認(rèn)為斜長巖套形成與碰撞后伸展背景下的地?;蛳碌貧と廴谟嘘P(guān),其巖漿的起源和演化過程及其成分特點與地幔柱背景有很大差異。攀枝花和Skaergaard巖體的鈦鐵礦與Tellnes鐵鈦礦床鈦鐵礦成分的差異,說明不同構(gòu)造背景鎂鐵-超鎂鐵巖漿活動形成的鐵鈦氧化物礦床,其母巖漿成分有較明顯的區(qū)別。
圖9 攀枝花巖體鈦鐵礦TiO2-全巖Fe2O3(a)和鈦鐵礦MgO-全巖Al2O3/(K2O+Na2O)(b)的相關(guān)圖(全巖成分據(jù)Song et al.,2013)Fig.9 Binary plots TiO2of ilmenite vs.Fe2O3of whole rocks(a)and MgO of ilmenite vs.Al2O3/(K2O+Na2O)of whole rocks(b)from the Panzhihua intrusion(data of the component of whole rocks after Song et al.,2013)
另一方面,盡管攀枝花巖體和Skaergaard巖體的鈦鐵礦氧化物成分的變化具有相似的趨勢,但前者的TiO2和MgO含量顯著高于后者,而FeO和Fe2O3的含量較低。研究表明Skaergaard巖體的氧化物包括鈦鐵礦結(jié)晶明顯晚于硅酸鹽礦物,因此,富鐵鈦氧化物層產(chǎn)于巖體上部,說明鈦鐵礦的結(jié)晶發(fā)生于分離結(jié)晶作用的晚期階段(Jang et al.,2001)。攀枝花巖體釩鈦磁鐵礦礦層產(chǎn)于巖體中、下部巖相帶的宏觀現(xiàn)象、鈦鐵礦較高的MgO含量以及鈦鐵礦MgO含量與橄欖石Fo牌號的正相關(guān)關(guān)系,都說明鐵鈦氧化物的結(jié)晶發(fā)生于分離結(jié)晶較早的階段,而其較高的TiO2含量表明攀枝花巖體的母巖漿是一種特殊的富鐵鈦的巖漿。這與Song et al.(2013)的研究結(jié)果相吻合,他們的研究表明攀枝花巖體的母巖漿是由高鈦苦橄質(zhì)巖漿經(jīng)深部巖漿房硅酸鹽礦物分離結(jié)晶產(chǎn)生的獨特的富鐵鈦的巖漿。攀枝花巖體鈦鐵礦較低的FeO和Fe2O3含量與磁鐵礦結(jié)晶稍早于鈦鐵礦有關(guān)。
圖4表明盡管中、下部巖相帶的每個旋回從下至上鈦鐵礦含量的變化較為復(fù)雜,但磁鐵礦含量及磁鐵礦/鈦鐵礦比值總體上是逐漸降低的。每個旋回從塊狀礦石或磁鐵礦輝長巖到輝長巖,鈦鐵礦的TiO2和MgO含量有規(guī)律地逐漸降低,而FeO和Fe2O3含量則逐漸增高。盡管巖石結(jié)構(gòu)關(guān)系及MELTs計算都表明攀枝花巖體鈦鐵礦開始結(jié)晶晚于橄欖石和磁鐵礦(Song et al.,2013),但鈦鐵礦MgO含量與磁鐵礦MgO含量及橄欖石Fo牌號的正相關(guān)關(guān)系(圖7、圖8)都表明,它們結(jié)晶的溫度區(qū)間是有較大重疊的。塊狀礦石中個別磁鐵礦樣品較低的MgO含量可能與磁鐵礦與橄欖石之間的Fe-Mg交換有關(guān)。鈦鐵礦的MgO含量與全巖Al2O3/(K2O+Na2O)比值的正相關(guān)關(guān)系指示鈦鐵礦的MgO含量與斜長石的An牌號呈正相關(guān)關(guān)系,也表明鈦鐵礦結(jié)晶較早(圖9b)。這些特點反映出每個旋回的巖漿分異過程中氧化物結(jié)晶較早,隨著氧化物的結(jié)晶,巖漿中TiO2和MgO的含量逐漸降低。每個旋回從下至上磁鐵礦/鈦鐵礦比值逐漸降低的特點(圖3)表明分離結(jié)晶過程中鈦鐵礦的結(jié)晶比例逐漸增高。
中、下部巖相帶每個旋回鈦鐵礦成分的韻律式變化,特別是每個旋回底部鈦鐵礦成分的相似性(圖2),都暗示旋回的形成與新的巖漿的周期性補(bǔ)充有著密切的關(guān)系。下部巖相帶每個旋回底部鈦鐵礦更高的TiO2和MgO含量和較低的FeO含量,特別是塊狀礦石中鈦鐵礦和磁鐵礦很高的MgO含量(圖3、圖5、表2),表明與中部巖相帶相比,下部巖相帶母巖漿演化程度更低。結(jié)合塊狀礦石極高的鐵鈦氧化物含量以及極高的磁鐵礦/鈦鐵礦比值的特征(圖3),下部巖相帶母巖漿還具有更高的TiO2、FeO和Fe2O3含量。此外,II和V旋回底部塊狀礦石中鈦鐵礦較穩(wěn)定的成分還暗示富鐵鈦巖漿非常頻繁的補(bǔ)充為巨厚塊狀礦石層的形成提供了充足的物質(zhì)條件。
攀枝花巖體中、下部巖相帶鈦鐵礦成分特征和變化說明每個旋回從下至上鈦鐵礦的成分具有規(guī)律性變化,這種規(guī)律性變化說明每個旋回可以代表一次比較明顯的巖漿補(bǔ)充。盡管每次有新巖漿的補(bǔ)充,鈦鐵礦和磁鐵礦及橄欖石都是結(jié)晶較早的礦物。此外,通過與挪威Tellnes鐵鈦礦床的鈦鐵礦成分比較說明地幔柱成因的幔源巖漿中結(jié)晶出的鈦鐵礦成分與元古宙斜長巖套中鈦鐵礦的成分有顯著區(qū)別。因此,鈦鐵礦的成分對于分析巖體形成的地質(zhì)背景以及巖漿結(jié)晶過程有重要的指示意義。
致謝 攀枝花集團(tuán)有限公司張加飛高工等對于野外工作給予了大力支持和協(xié)助;戚華文研究員和官建祥參與了部分采樣和測試工作;審稿人提出了寶貴的修改意見;在此一并感謝。
Cawthorn RG and Ashwal LD.2009.Origin of anorthosite and magnetitite layers in the Bushveld Complex,constrained by major element compositions of plagioclase.Journal of Petrology,50(9):1607-1637
Charlier B,Duchesne JC and Vander Auwera J.2006.Magma chamber processes in the Tellnes ilmenite deposit(Rogaland Anorthosite Province,SW Norway)and the formation of Fe-Ti ores in massiftype anorthosites.Chemical Geology,234(3-4):264-290
Charlier B,Sk?r ?,Korneliussen A,Duchesne JC and Auwera JV.2007.Ilmenite composition in the Tellnes Fe-Ti deposit, SW Norway:Fractionalcrystallization,postcumulus evolution and ilmenite-zircon relation.Contribution to Mineralogy and Petrology,154(2):119-134
ChungSL andJahnBM.1995. Plume-lithosphereinteractionin generation of the Emeishan flood basalts at the Permian-Triassic boundary.Geology,23(10):889-892
Fan WM,Wang YJ,Peng TP,Miao LC and Guo F.2004.Ar-Ar and UPb geochronology of Late Paleozoie basahs in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism.Chinese Science Bulletin,49(18):1892-1900(in Chinese)
Hanski E,Walker RJ,Huhma H,Polyakov GV,Balykin PV,Ngo TT and Phuong NT.2004.Origin of the Permian-Triassic komatiites,northwestern Vietnam.Contribution to Mineralogy and Petrology,147(4):453-469
Hao YL,Zhang ZC,Wang FS and Mahoney JJ.2004.Petrogenesis of high-Ti and low-Ti basalts from the Emeishan Large Igneous Province.Geological Review,50(6):587-592(in Chinese with English abstract)
He B,Xu YG,Chung SL,Xiao L and Wang YM.2003.Sedimentary evidence for a rapid,kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts.Earth and Planetary Science Letters,213(3-4):391-405
Hou T,Zhang ZC,Pirajno F.2012.A new metallogenic model of the Panzhihua giant V-Ti iron oxide deposit in the Emeishan large province:Based on high-Mg olivine-bearing wehrlites and new field evidence.International Geology Review,54(15):1721-1745
Hou T,Zhang ZC,Encarnacion J,Santosh M and Sun Y.2013.The role recycled oceanic crust in magmatism and metallogenesis:Os-Sr-Nd isotpes,U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit,central Emeishan large igneous province.Contributions to Mineralogy and Petrology,165(4):805-822
Hou ZQ,Lu JR and Lin SZ.2005.The axial zone consisting of pyrolite and eclogite in the Emei mantle plume:Major,trace element and Sr-Nd-Pb isotope evidence.Acta Geologica Sinica,79(2):200-219(in Chinese with English abstract)
Hu RZ, Tao Y, Zhong H, Huang ZL andZhangZW.2005.Mineralization systems of a mantle plume:A case study from the Emeishan igneousprovince, SouthwestChina. Earth Science Frontiers,12(1):42-54(in Chinese with English abstract)
Hunter RH and Sparks RSJ.1987.The differentiation of the Skaergaard intrusion.Contribution to Mineralogy and Petrology,95(4):451-461
Jang YD,Naslund HR and McBirney AR.2001.The differentiation trend ofthe Skaergaard Intrusion and the timing of magnetite crystallization:Iron enrichmentrevisited.Earth and Planetary Science Letters,189(3-4):189-196
Jang YD and Naslund HR.2003.Major and trace element variation in ilmenite in the Skaergaard intrusion:Petrologic implications.Chemical Geology,193(1-2):109-125
Klemm DD,Henckel J,Dehm RM and von Gruenewaldt G.1985.The geochemistry of titanomagnetite in magnetite layers and their host rocks of the Eastern Bushveld Complex.Economic Geology,80(4):1075-1088
Namur O,Charlier B,Toplis J,Higgins MD,Liegeois JP and Auwera JV.2010.Crystallization sequence and magma chamber processes in the ferrobasaltic septiles layered intrusion, Canada. Journal of Petrology,51(6):1203-1236
Pang KN,Zhou MF,Lindsley D,Zhao DG and Malpas J.2008.Origin of Fe-Ti Oxide ores in mafic intrusions:Evidence from the Panzhihua Intrusion,SW China.Journal of Petrology,49(2):295-313
Pang KN,Li CS,Zhou MF and Ripley EM.2009.Mineral compositional constraints on petrogenesis and oxide ore genesis of the Late Permian Panzhihua layered gabbroic intrusion,SW China.Lithos,110(1-4):199-214
Reynolds IM.1985.The nature and origin of titaniferous magnetiterich layers in the Upper Zone of the Bushveld complex:A review and synthesis.Economic Geology,80(4):1089-1108
Song XY,Zhou MF,Hou ZQ,Cao ZM,Wang YL and Li YG.2001.Geochemical constraints on the mantle source of the Upper Permian Emeishan continental flood basalts, southwestern China.International Geology Review,43(3):213-225
Song XY,Zhou MF,Cao ZM and Robinson PT.2004.Late Permian rifting of the South China Craton caused by the Emeishan mantle plume?Journal of the Geological Society London,161(5):773-781
Song XY,Zhang CJ,Hu RZ,Zhong H,Zhou MF,Ma RZ and Li YG.2005.Genetic links of magmatic deposits in the Emeishan large igneous province with dynamics of mantle plume.Journalof Mineralogy and Petrology,25(4):35-44(in Chinese with English abstract)
Song XY,Keays RR,Long X,Qi HW and Ihlenfeld C.2009.Platinumgroup element geochemistry of the continental flood basalts in the central Emeisihan large igneous province,SW China.Chemical Geology,262(3-4):246-261
Song XY,Qi HW,Hu RZ,Chen LM,Yu SY and Zhang JF.2013.Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma:Evidence from the Panzhihua intrusion,SW China.Geochemistry Geophysics Geosystems,14(3):712-732
Tegner C,Duncan RA,Bernstein S,Brooks CK,Bird DK and Storey M.1998.40Ar-39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin:Relation to flood basalts and the Iceland hotspot track.Earth and Planetary Science Letters,156(1-2):75-88
Toplis MJ and Carrol MR.1996.Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen:Implications for the Skaergaard intrusion and other natural systems.Journal of Petrology,37(4):837-858
Wang DH.1998.Mantle Plume and Mineralization.Beijing:Seismic Press,1-160(in Chinese with English abstract)
Wilmart E,Demaiffe D and Duchesne JC.1989.Geochemical constraints on the genesis of the Tellnes ilmenite deposit,Southwest Norway.Economic Geology,84(5):1047-1056
Xiao L,Xu YG and He B.2003.Emei mantle plume-subcontinental lithosphere interaction:Sr-Nd and O isotopic evidences from low-Ti and high-Ti basalts.Geological Journal of China Universities,9(2):207-217(in Chinese with English abstract)
Xiao L,Xu YG,Mei HJ,Zheng YF,He B and Pirajno F.2004.Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province,SW China:Implications for plume-lithosphere interaction.Earth and Planetary Science Letters,228(3-4):525-546
Xu YG and Zhong SL.2001.The Emeishan large igneous province:Evidence formantle plume activity and melting conditions.Geochimica,30(1):1-9(in Chinese with English abstract)
Xu YG,Chung SL,Jahn BM and Wu GY.2001.Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China.Lithos,58(3-4):145-168
Xu YG,Mei HJ,Xu JF,Huang XL,Wang YJ and Chung SL.2003.Origin of two differentiation trends in the Emeishan flood basalts.Chinese Science Bulletin,48(4):383-387(in Chinese)
Xu YG,He B,Chung SL,Menzies MA and Frey FA.2004.Geologic,geochemical,and geophysical consequences of plume involvement in the Emeishan flood-basalt province.Geology,32(10):917-920
Zhang XQ,Zhang JF,Song XY,Deng YF,Guan JX and Zheng WQ.2011.Implications of compositions of plagioclase and olivine on the formation ofthe Panzhihua V-Timagnetite deposit,Sichuan Province.Acta Petrologica Sinica,27(12):3675-3688(in Chinese with English abstract)
Zhang ZC,Mahoney JJ,Mao JW and Wang FS.2006.Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province,China.Journal of Petrology,47(10):1997-2019
Zhang ZC,Zhi XC,Chen L,Saunders AD.and Reichow MK.2008.Re-Os isotopic compositions of picrites from the Emeishan flood basalt province,China.Earth and Planetary Science Letters,276(1-2):30-39
Zhang ZC,Mao JW,Saunders AD,Ai Y,Li Y and Zhao L.2009.Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province,SW China,based on isotopic and bulk chemical constraints.Lithos,113(3-4):369-392
Zhang ZC,Hou T,Santosh M,Li HM,Li JW,Zhang ZH,Song XY and Wang M.2014.Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview.Ore Geology Reviews,57:247-263
Zhong H,Yao Y,Hu SF,Zhou XH,Liu BG,Sun M,Zhou MF and Viljeon MJ.2003.Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Hongge layered intrusion,southwestern China.International Geology Review,45(4):371-382
Zhong H and Zhu WG.2006.Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province,SW China.Mineralium Deposita,41(6):599-606
Zhou MF,Malpas J,Song XY,Robinson PT,Sun M,Kennedy AK,Lesher CM and Keays RR.2002.A temporal link between the Emeishan large igneous province(SW China)and the end-Guandalupian mass extinction.Earth and Planetary Science Letters,196(3-4):113-122
Zhou MF,Robinson PT,Lesher CM,Keays RR,Zhang CJ and Malpas JM.2005.Geochemistry,petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits,Sichuan Province,SW China.Journal of Petrology,46(11):2253-2280
附中文參考文獻(xiàn)
范蔚茗,王岳軍,彭頭平,苗來成,郭鋒.2004.桂西晚古生代玄武巖Ar-Ar和U-Pb年代學(xué)及其對峨眉山玄武巖省噴發(fā)時代的約束.科學(xué)通報,49(18):1892-1900
郝艷麗,張招崇,王福生,Mahonet JJ.2004.峨眉山大火成巖省“高鈦玄武巖”和“低鈦玄武巖”成因探討.地質(zhì)論評,50(6):587-592
侯增謙,盧記仁,林盛中.2005.峨眉地幔柱軸部的榴輝巖-地幔巖源區(qū):主元素、痕量元素及Sr、Nd、Pb同位素證據(jù).地質(zhì)學(xué)報,79(2):200-219
胡瑞忠,陶琰,鐘宏,黃智龍,張正偉.2005.地幔柱成礦系統(tǒng):以峨眉山地幔柱為例.地學(xué)前緣,12(1):42-54
宋謝炎,胡瑞忠,張成江,鐘宏,周美夫,馬潤則,李佑國.2005.峨眉火成巖省巖漿礦床成礦作用與地幔柱動力學(xué)過程的耦合關(guān)系.礦物巖石,25(4):35-44
王登紅.1998.地幔柱及其成礦作用.北京:地震出版社,1-160
肖龍,徐義剛,何斌.2003.峨眉地幔柱-巖石圈的相互作用:來自低鈦和高鈦玄武巖的Sr-Nd和O同位素證據(jù).高校地質(zhì)學(xué)報,9(2):207-217
徐義剛,鐘孫霖.2001.峨眉山大火成巖省:地幔柱活動的證據(jù)及其熔融條件.地球化學(xué),30(1):1-9
徐義剛,梅厚鈞,許繼峰,黃小龍,王岳軍,鐘孫霖.2003.峨眉山大火成巖省兩類巖漿分異趨勢及其成因.科學(xué)通報,48(4):383-387
張曉琪,張加飛,宋謝炎,鄧宇峰,官建祥,鄭文勤.2011.斜長石和橄欖石成分對四川攀枝花釩鈦磁鐵礦床成因的指示意義.巖石學(xué)報,27(12):3675-3688