苑春方,彭蘇萍,唐申強(qiáng),孫 喆,江微娜
(1.中國(guó)礦業(yè)大學(xué)(北京)地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083;2.中國(guó)礦業(yè)大學(xué)(北京)煤炭資源與安全開(kāi)采國(guó)家重點(diǎn)試驗(yàn)室,北京100083)
薄層復(fù)合波振幅與厚度函數(shù)關(guān)系的改進(jìn)
苑春方1,2,彭蘇萍1,2,唐申強(qiáng)1,孫 喆1,江微娜1
(1.中國(guó)礦業(yè)大學(xué)(北京)地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083;2.中國(guó)礦業(yè)大學(xué)(北京)煤炭資源與安全開(kāi)采國(guó)家重點(diǎn)試驗(yàn)室,北京100083)
薄層厚度的定量預(yù)測(cè)方法一直是地球物理學(xué)家研究的熱點(diǎn)問(wèn)題之一。預(yù)測(cè)主要是通過(guò)建立薄層厚度與地震反射波振幅、頻譜、地震屬性之間的關(guān)系,進(jìn)而直接或間接地預(yù)測(cè)薄層厚度。這種函數(shù)關(guān)系依賴于選取的地震子波的特性。已有的研究成果中選用的地震子波基本上是實(shí)際地震子波的近似,由于子波的誤差不可避免地會(huì)影響函數(shù)關(guān)系的精度。選取更為接近實(shí)際情況的黏彈性波解作為地震子波,建立了薄層頂?shù)追瓷涞膹?fù)合波振幅與厚度的一階近似關(guān)系,與Widess的近似關(guān)系相比具有更高的精度。
復(fù)合波振幅;厚度預(yù)測(cè);薄層;地震;黏彈性介質(zhì)
薄層厚度的定量預(yù)測(cè)一直是地球物理學(xué)家們的研究熱點(diǎn)問(wèn)題之一。Widess[1]利用諧波研究了地層厚度與頂?shù)追瓷浞喜ㄕ穹P(guān)系,在厚度小于λ/8 (λ為地震波波長(zhǎng))時(shí),給出了薄層的諧波振幅與厚度的一階近似函數(shù);Neidell等[2]研究表明當(dāng)層厚小于λ/4時(shí),利用頂?shù)追瓷浞喜ㄕ穹坑?jì)算薄層厚度;Meckel等[3]研究了入射子波的相位譜對(duì)分辨率的影響,提出了在有測(cè)井信息的條件下,利用反射波振幅定量計(jì)算薄層的厚度;Koefoed等[4]給出了楔形體諧波振幅和薄層的厚度近似呈線性關(guān)系;Kallweit等[5]利用可控震源研究了薄層響應(yīng)的頻譜及地震波分辨極限;程增慶等[6]構(gòu)建了楔形煤層地質(zhì)模型,研究了煤厚在0~λ/2之間時(shí)薄層諧波的振幅變化規(guī)律;劉震等[7]提出了根據(jù)反射波特征點(diǎn)計(jì)算薄層厚度的方法;Partyka等[8]研究了頂?shù)追瓷鋸?fù)合波中薄層對(duì)地震子的陷頻作用,提出了薄層預(yù)測(cè)的譜分解方法[9-10];姚陳等[11]利用正演研究了P波和PS波振幅和厚度的關(guān)系;孫魯平等[12]研究了幾種子波條件下薄層地震峰值頻率與厚度的關(guān)系;鄧小娟等建立了各向異性的薄煤層的AVO正演模型[13]和薄煤層P-SV轉(zhuǎn)換波AVO正演[14],研究了薄煤層厚度等因素對(duì)不同入射角反射波振幅的影響;張鐵強(qiáng)[15]研究了薄煤層厚度與其AVO振幅、截距/梯度以及頻譜之間的關(guān)系。薄層定量預(yù)測(cè)方法主要是通過(guò)建立薄層厚度與地震反射波振幅[16-18]、頻譜[19-20]、地震屬性[21]之間的關(guān)系,進(jìn)而直接或間接[22-23]預(yù)測(cè)薄層厚度。顯然,這種函數(shù)關(guān)系依賴于選取的地震子波的特性。事實(shí)上,地下介質(zhì)更接近于黏彈性體,地震子波更接近于黏彈性波。然而,已有的研究成果中選用的地震子波基本上是實(shí)際地震子波的近似(注:瑞克子波來(lái)源于黏彈性波近似解的零相位化之后的結(jié)果[24]),由于子波的誤差不可避免地會(huì)影響函數(shù)關(guān)系的精度。文獻(xiàn)[25]研究了地震波在Kelvin-Voigt均勻黏彈性介質(zhì)中傳播時(shí)的瞬態(tài)響應(yīng),推導(dǎo)出了黏彈性地震波解。筆者利用文獻(xiàn)[25]中給出的均勻黏彈性介質(zhì)條件下具有吸收特征的地震波解作為地震子波,建立了薄層頂?shù)追瓷涞膹?fù)合波振幅與厚度的函數(shù)關(guān)系,并給出了一階近似條件下,薄層頂?shù)追瓷涞膹?fù)合波振幅與厚度的線性關(guān)系;并通過(guò)地質(zhì)模型計(jì)算和誤差分析,驗(yàn)證了改進(jìn)后的黏彈性近似公式與Widess的彈性近似公式相比具有更高的精度。
當(dāng)?shù)叵陆橘|(zhì)視為Kelvin-Voigt均勻黏彈性體時(shí),均勻黏彈性介質(zhì)中傳播的地震波[25]可寫成
式中,A為地震波的初始時(shí)刻的振幅;α為地震波振幅隨時(shí)間的衰減因子;ω為圓頻率,與頻率f的關(guān)系為ω=2πf。
由于內(nèi)摩擦的存在,在瞬態(tài)小擾動(dòng)條件下,地下介質(zhì)中傳播的地震波為黏彈性波。將反射波褶積模型中的子波替換為形如式(1)的黏彈性子波,褶積模型更接近于反射地震波的實(shí)際情況。
假設(shè)3層介質(zhì)條件下,上、下介質(zhì)相同且中間薄層厚度為b,黏彈性地震波在薄層中的傳播速度為v,垂直穿越薄層的旅行時(shí)間為τ0=b/v。若薄層頂界面的反射波記為f(t-τ0),則薄層底界面的反射波可記為-f(t+τ0)。在垂直入射和反射的情況下,接收到的薄層頂?shù)捉缑娴姆瓷鋸?fù)合波Rd可以寫成
Widess在文獻(xiàn)[1]給出薄層復(fù)合波振幅和厚度的函數(shù)關(guān)系為
采用鹽巖中的泥巖夾層地質(zhì)模型來(lái)檢驗(yàn)和評(píng)估薄層復(fù)合波振幅與厚度函數(shù)關(guān)系的改進(jìn)效果。數(shù)據(jù)來(lái)源于金壇勘探區(qū)域的鹽巖層段測(cè)井資料。地質(zhì)模型中泥巖頂?shù)讕r層為鹽巖,巖性一致。泥巖夾層的波速為3 200 m/s。假設(shè)薄層頂界面反射振幅A=1。分別考慮泥巖夾層地震子波主頻為35,45,55 Hz,并對(duì)每種地震子波主頻在泥巖層衰減因子分別為20,30, 40的情況下,運(yùn)用Widess的彈性近似振幅式(12)、黏彈性近似振幅方法式(11)、黏彈性理論振幅式(6),對(duì)不同厚度泥巖層(厚度小于λ/8)近似估算了頂?shù)追瓷浣缑娣瓷鋸?fù)合波振幅。圖1為Widess的彈性近似振幅曲線和黏彈性近似振幅曲線與黏彈性理論振幅曲線對(duì)比。
圖1 地震子波主頻為35,45,55 Hz、衰減系數(shù)為20,30,40時(shí)頂?shù)捉缑娣瓷鋸?fù)合波振幅與泥巖層厚度的關(guān)系曲線Fig.1 Main-frequency 35,45,55 Hz of the seismic wavelet, attenuation coefficient 20,30,40,the curves of the composite amplitude and thickness of mudstone bed
由圖1可以看出:黏彈性近似振幅曲線均介于由Widess的彈性近似振幅曲線和黏彈性理論振幅曲線之間,黏彈性近似振幅曲線更接近于黏彈性理論振幅曲線;對(duì)同一主頻子波而言,隨著夾層衰減因子的增大,黏彈性近似振幅曲線和Widess的彈性近似振幅曲線偏離黏彈性理論振幅曲線的程度增大。
表1是在泥巖層厚度小于λ/8的情況下,計(jì)算的上述地質(zhì)模型Widess的彈性近似振幅與黏彈性理論振幅的均方根誤差,以及黏彈性近似振幅與黏彈性理論振幅的均方根誤差對(duì)比。
表1 子波主頻為35,45,55 Hz時(shí)兩種振幅近似公式計(jì)算的均方根誤差對(duì)比Table 1 Wavelet main-frequency 35,45,55 Hz,root-meansquare error
由振幅的均方根誤差對(duì)比表(表1)可觀察到:黏彈性近似振幅與黏彈性理論的均方根誤差要小于Widess的彈性近似振幅與黏彈性理論振幅的均方根誤差。子波主頻越低,衰減系數(shù)越大,Widess的彈性近似振幅計(jì)算的結(jié)果均方根誤差越大。因此,黏彈性近似公式在預(yù)測(cè)薄層厚度時(shí)有更高的精度。
地震波在地下介質(zhì)中傳播時(shí),介質(zhì)對(duì)地震波的吸收作用是不可忽視的,將地下介質(zhì)看作黏彈性體更接近實(shí)際地質(zhì)情況。本文以具有衰減特征的黏彈性地震波解為地震子波,在垂直入射與反射的情況下,薄夾層厚度小于λ/8波長(zhǎng)時(shí),推導(dǎo)出薄夾層頂?shù)追瓷鋸?fù)合波振幅和厚度的近似關(guān)系:薄夾層頂?shù)追瓷鋸?fù)合波振幅是關(guān)于子波頻率﹑衰減因子﹑層速度和薄夾層厚度的函數(shù)。理論模型計(jì)算結(jié)果表明,黏彈性近似公式的精度要優(yōu)于Widess的彈性近似公式。
[1] Widess M B.How thin is a thin bed[J].Geophysics,1973,38(6):1176-1181.
[2] Neidell N S,Poggiagliolmi E.Stratigraphic modeling and interpretation-Geophysical principals and techniques[J].AAPG Special Memoir,1977,26:389-416.
[3] Meckel L D,Nath A K.Geologic considerations for stratigraphic modeling and interpretation[J].AAPG Special Memoir,1977,26:417-438.
[4] Koefoed O,de Voogd N.The linear properties of thin layers,with an application to synthetic seismograms over coal seam[J].Geophysics, 1980,45(8):1254-1268.
[5] Kallweit R S,Wood L C.The limits of resolution of zero-phase wavelet[J].Geophysics,1982,47(7):1035-1046.
[6] 程增慶,吳奕峰,趙忠清,等.用地震反射波定量解釋煤層厚度的方法[J].地球物理學(xué)報(bào),1991,34(5):657-662.
Cheng Zengqing,Wu Yifeng,Zhao Zhongqing,et al.Quantitaive interpretating method of coal using seisimic reflected wave[J].Chinese Journal of Geophysics,1991,34(5):657-662.
[7] 劉 震,張萬(wàn)選,張厚福,等.儲(chǔ)層厚度定量解釋方法研究[J].石油地球物理勘探,1991,26(6):777-784.
Liu Zhen,Zhang Wanxuan,Zhang Houfu,et al.A research into quantitative interpretation of reservoir thickness[J].Oil Geophysical Prospecting,1991,26(6):777-784.
[8] Partyka G A,Gridley J A,Lopez J A.Interpret ational aspects of spectral decomposition in reservoir characterization[J].The Leading Edge,1999,18(3):353-360.
[9] Marfurt K J,Kirlin R L.Narrow-band spectral analysis and thin-bed tuning[J].Geophysics,2001,66(4):1274-1283.
[10] 黃緒德.薄層陷頻法[J].勘探地球物理進(jìn)展,2002,25(5):1-6.
Huang Xude.Discussion on notches-in-thin-bed[J].Progress in Exploration Geophysics,2002,25(5):1-6.
[11] 姚 陳,蔡明剛,王 赟.各向同性薄層反射理論地震圖[J].地球物理學(xué)報(bào),2010,53(1):164-170.
Yao Chen,Cai Minggang,Wang Yun.Synthetic seismograms of reflection from isotropic thin layer[J].Chinese Journal of Geophysics,2010,53(1):164-170.
[12] 孫魯平,鄭曉東,首 皓,等.薄層地震峰值頻率與厚度關(guān)系研究[J].石油地球物理勘探,2010,45(2):254-259,271.
Sun Luping,Zheng Xiaodong,Shou Hao,et al.The studies on relationship between thin-layer seismic peak frequency and its thickness[J].Oil Geophysical Prospecting,2010,45(2):254-259, 271.
[13] 鄧小娟,彭蘇萍,林慶西,等.基于各向異性薄煤層的AVO正演方法研究[J].煤炭學(xué)報(bào),2010,35(12):2053-2058.
Deng Xiaojuan,Peng Suping,Lin Qingxi,et al.AVO forward method of anisotropic thin coal bed[J].Journal of China Coal Society, 2010,35(12):2053-2058.
[14] 鄧小娟,彭蘇萍,杜文鳳,等.薄煤層P-SV轉(zhuǎn)換波AVO正演研究[J].煤炭學(xué)報(bào),2012,37(1):62-66.
Deng Xiaojuan,Peng Suping,Du Wenfeng,et al.Converted wave AVO forward method of P-SV thin coal bed[J].Journal of China Coal Society,2012,37(1):62-66.
[15] 張鐵強(qiáng),孫鵬遠(yuǎn),錢忠平,等.薄煤層AVO響應(yīng)特征分析[J].石油地球物理勘探,2013,48(4):597-603.
Zhang Tieqiang,Sun Pengyuan,Qian Zhongping,et al.AVO analysis on thin coal bed[J].Oil Geophysical Prospecting,2013, 48(4):597-603.
[16] 蔡希玲,刁文川,周興元,等.薄層反射波非零炮檢距的屬性特征[J].石油地球物理勘探,2007,42(3):277-282,321.
Cai Xiling,Diao Wenchuan,Zhou Xingyuan,et al.Attribute features of reflection on non-zero offsets in thin layers[J].Oil Geophysical Prospecting,2007,42(3):277-282,321.
[17] 李國(guó)發(fā),岳 英,郭春香,等.基于模型的薄互層地震屬性分析及其應(yīng)用[J].石油物探,2011,50(2):144-150.
Li Guofa,Yue Ying,Guo Chunxiang,et al.Seismic attributes analysis based on model in thin interbedded layers and its application [J].Geophysical Prospecting for Petroleum,2011,50(2):144-150.
[18] 黃文鋒,姚逢昌,李宏兵.薄互層調(diào)諧規(guī)律研究與凈厚度估算[J].石油地球物理勘探,2012,47(4):584-591.
Huang Wenfeng,Yao Fengchang,Li Hongbing.Regularities of tuning effects of thin interbedded layer and their net thicknes determination[J].Oil Geophysical Prospecting,2012,47(4):584-591.
[19] 周開(kāi)明.薄層的二階功率譜特征研究及厚度預(yù)測(cè)[J].石油物探,2008,47(1):30-34.
Zhou Kaiming.Research on featres of thin layer and its thickness estimation by second order power spectrum[J].Geophysical Prospecting for Petroleum,2008,47(1):30-34.
[20] 李雪英,陳樹(shù)民,王建民,等.薄層時(shí)頻特征的正演模擬[J].地球物理學(xué)報(bào),2012,55(10):3410-3419.Li Xueying,Chen Shumin,Wang Jianmin,et al.Forward modeling studies on the the time-frequency characteristics of thin layer[J].Chinese Journal of Geophysics,2012,55(10):3410-3419.
[21] 孟召平,郭彥省,王 赟,等.基于地震屬性的煤層厚度預(yù)測(cè)模型及其應(yīng)用[J].地球物理學(xué)報(bào),2006,49(2):512-517.
Meng Zhaoping,Guo Yansheng,Wang Yun,et al.Prediction models of coal thickness based on seismic attributions and their applications[J].Chinese Journal of Geophysics,2006,49(2):512-517.
[22] 黃捍東,趙 迪,任敦占,等.基于貝葉斯理論的薄層反演方法[J].石油地球物理勘探,2011,46(6):919-924.
Huang Handong,Zhao Di,Ren Dunzhan,et al.A thin bed inversion method based on bayes theory[J].Oil Geophysical Prospecting,2011,46(6):919-924.
[23] 楊 昊,鄭曉東,李勁松,等.基于匹配追蹤的薄層自動(dòng)解釋方法[J].石油地球物理勘探,2013,48(3):429-435.
Yang Hao,Zheng Xiaodong,Li Jinsong,et al.Thin-bed automatic interpretation based on matching pursuit[J].Oil Geophysical Prospecting,2013,48(3):429-435.
[24] Richer N H.Transient waves in visco-elastic media[M].New York: Amsterdam Elsevier Scientific Pub.Co.,1977:1-278.
[25] 苑春方,彭蘇萍,張忠杰,等.Kelvin-Voigt均勻黏彈性介質(zhì)中傳播的地震波[J].中國(guó)科學(xué)D輯,2005,35(10):957-962.
Yuan Chunfang,Peng Suping,Zhang Zhongjie,et al.Seismic wave propagatinginKelvin-Voigthomogeneousvisco-elasticmedia [J].Science in China Series D,2005,35(10):957-962.
Improvement of function between thin-bed composite amplitude and its thickness
YUAN Chun-fang1,2,PENG Su-ping1,2,TANG Shen-qiang1,SUN Zhe1,JIANG Wei-na1
(1.School of Geoscience and Surveying Engineering,China University of Mining&Technology(Beijing),Beijing 100083,China;2.State Key Laboratory of Coal Resources and Safe Mining,China University of Mining&Technology(Beijing),Beijing 100083,China)
The quantitative prediction of thin-bed thickness is the one of important problems of the geophysicist’s research.These methods is often implemented through establishing the relationships between thin-bed thickness and seismic dominant amplitude,frequency or other attributes,and then used to directly or indirectly predict thin-bed thickness.These relationships are always dependent on the characteristics of selected seismic wavelet,which is an approximation of realistic wavelet.However,the calculation of selected wavelets is subject to the influence of seismic data quality and its accuracy is not sufficient.A more realistic wavelet was presented in this paper using the solution of viscoelastic wave equations.The first order approximation formula was established to describe the relationship between the thin-bed thickness and the amplitude of compound seismic waves reflected from top and bottom of thin-bed.Compared with the Widess’s method,the proposed method has a higher precision.
amplitude of composite wave;thickness prediction;thin-bed;seismic;viscoelastic medium
P631.4
A
0253-9993(2014)10-2083-04
2013-10-25 責(zé)任編輯:韓晉平
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)資助項(xiàng)目(2009CB724601);國(guó)家自然科學(xué)青年基金資助項(xiàng)目(4120223B);國(guó)家科技支撐計(jì)劃課題資助項(xiàng)目(2012BAB13B01)
苑春方(1958—),男,遼寧開(kāi)原人,教授,博士。E-mail:yuanchf@cumtb.edu.cn
苑春方,彭蘇萍,唐申強(qiáng),等.薄層復(fù)合波振幅與厚度函數(shù)關(guān)系的改進(jìn)[J].煤炭學(xué)報(bào),2014,39(10):2083-2086.
10.13225/j.cnki.jccs.2013.1548
Yuan Chunfang,Peng Suping,Tang Shenqiang,et al.Improvement of function between thin-bed composite amplitude and its thickness[J].Journal of China Coal Society,2014,39(10):2083-2086.doi:10.13225/j.cnki.jccs.2013.1548