• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      預(yù)應(yīng)力膠合木梁的受彎性能試驗(yàn)研究

      2014-06-12 12:17:44誠(chéng)楊會(huì)峰劉偉慶陸偉東凌志彬郝建東
      結(jié)構(gòu)工程師 2014年1期
      關(guān)鍵詞:木梁預(yù)應(yīng)力承載力

      林 誠(chéng)楊會(huì)峰,*劉偉慶陸偉東凌志彬郝建東

      (1.南京工業(yè)大學(xué)土木工程學(xué)院,南京210009;2.東南大學(xué)土木工程學(xué)院,南京210096)

      預(yù)應(yīng)力膠合木梁的受彎性能試驗(yàn)研究

      林 誠(chéng)1楊會(huì)峰1,*劉偉慶1陸偉東1凌志彬2郝建東1

      (1.南京工業(yè)大學(xué)土木工程學(xué)院,南京210009;2.東南大學(xué)土木工程學(xué)院,南京210096)

      對(duì)21根膠合木梁的受彎性能進(jìn)行了試驗(yàn)研究,其中包括螺紋鋼筋增強(qiáng)、預(yù)應(yīng)力膠合木梁和未增強(qiáng)膠合木梁。通過試驗(yàn)分析了構(gòu)件的破壞形態(tài)與破壞機(jī)理,對(duì)比分析了不同構(gòu)件的極限荷載與抗彎剛度等受彎性能。試驗(yàn)結(jié)果表明:增強(qiáng)或預(yù)應(yīng)力構(gòu)件的破壞形式主要表現(xiàn)為受壓區(qū)屈服破壞;相比未增強(qiáng)膠合木梁,非預(yù)應(yīng)力鋼筋增強(qiáng)膠合木梁的受彎極限承載能力提高了14%,而預(yù)應(yīng)力增強(qiáng)膠合木梁則提高了19%~50%;梁內(nèi)無粘結(jié)預(yù)應(yīng)力配筋對(duì)構(gòu)件的物理剛度貢獻(xiàn)不大;在木梁受壓區(qū)配置適當(dāng)?shù)姆穷A(yù)應(yīng)力鋼筋,能進(jìn)一步提高其結(jié)構(gòu)性能。

      膠合木梁,預(yù)應(yīng)力,試驗(yàn)研究,受彎性能

      1 引 言

      膠合木梁的彎曲破壞形態(tài)大受是受拉脆性破壞,木材強(qiáng)度尤其是其抗壓強(qiáng)度利用率不足。為改善和提高膠合木梁的受彎性能,學(xué)者不斷嘗試和探索利用金屬材料和纖維增強(qiáng)復(fù)合材料(FRP)等對(duì)膠合木梁進(jìn)行增強(qiáng)[1-4],并取得了較好的效果。然而經(jīng)增強(qiáng)后的膠合木梁依然存在如下問題:①增強(qiáng)材料價(jià)格較高,且其高強(qiáng)度通常得不到充分利用;②木梁的承載能力主要受變形控制,增強(qiáng)后木梁的剛度雖有提高,但依然存在變形大的問題。鑒于此,有學(xué)者開始研究利用預(yù)應(yīng)力對(duì)膠合木梁進(jìn)行增強(qiáng)。

      20世紀(jì)中期,Bohanna[5]和Person[6]提出利用對(duì)金屬材料施加預(yù)應(yīng)力的方法來增強(qiáng)膠合木梁;Saucier和Holman[7]采用預(yù)應(yīng)力FRP來增強(qiáng)木構(gòu)件。Triantafillo[8]、Dolan[9]、Brunner[10]和Vincenzo[11]等分別通過試驗(yàn)研究,分析了預(yù)應(yīng)力材料、預(yù)應(yīng)力施加方法等對(duì)膠合木梁受彎性能的影響。研究表明:施加預(yù)應(yīng)力不僅可提高膠合木梁的承載能力、改善其剛度性能,還可使木梁的破壞形態(tài)從受拉脆性破壞轉(zhuǎn)變?yōu)槭軌貉有云茐?。Pevris[12]、Brunner[13]、Moayyed[14]利用數(shù)值模擬方法研究施加預(yù)應(yīng)力對(duì)膠合木梁的影響,還對(duì)其預(yù)應(yīng)力損失問題進(jìn)行了較深入的研究。Guan[15]、Anshari[16]、Valiqour[17]采用有限元方法研究多個(gè)參數(shù)對(duì)其受彎性能的影響。綜上所述,通過對(duì)膠合木梁施加預(yù)應(yīng)力,可有效提高其受彎性能,并可提高材料的利用率。

      本文將通過試驗(yàn)研究,探討預(yù)應(yīng)力膠合木梁的受力機(jī)理,分析其破壞形態(tài),研究其極限承載力和剛度等短期結(jié)構(gòu)性能。為預(yù)應(yīng)力膠合木在大跨木結(jié)構(gòu)建筑及橋梁結(jié)構(gòu)中的加工設(shè)計(jì)與工程應(yīng)用提供參考。

      2 試驗(yàn)概況

      2.1 材料性能

      木梁采用花旗松膠合木,預(yù)應(yīng)力鋼筋為精軋螺紋鋼筋,受壓區(qū)鋼筋與膠合木之間膠粘劑采用雙組份環(huán)氧樹脂植筋膠。材料的物理力學(xué)性能見表1和表2,其中膠合木與鋼筋的數(shù)據(jù)通過試驗(yàn)獲得,膠合木抗拉強(qiáng)度為其中的指接層板試驗(yàn)數(shù)據(jù);預(yù)應(yīng)力鋼筋和膠粘劑的力學(xué)性能由生產(chǎn)單位提供,表中所有數(shù)據(jù)均為平均值。

      表1 材料的物理力學(xué)性能Table 1 M aterial properties

      表2 鋼筋的物理力學(xué)性能Table 2 Material properties of steel bars

      2.2 試件設(shè)計(jì)

      本次試驗(yàn)設(shè)計(jì)6組共21根膠合木梁,試件截面尺寸均為75 mm×300 mm×6 000 mm,試件截面形式如圖1所示,具體試件參數(shù)見表3。

      圖1 梁截面形式Fig.1 Beam section types

      表3 試件參數(shù)Table 3Details of tested beam s

      2.3 試驗(yàn)加載裝置與量測(cè)方案

      試驗(yàn)裝置如圖2所示,采用三分點(diǎn)加載,且采取了防止側(cè)向失穩(wěn)的措施;在支座及跨中設(shè)置3個(gè)位移計(jì),錨固端設(shè)置20 t壓力傳感器,在梁跨中側(cè)面沿高度均勻設(shè)置應(yīng)變片。預(yù)應(yīng)力筋張拉時(shí)主要測(cè)試預(yù)應(yīng)力鋼筋的應(yīng)變和木梁反拱值。試驗(yàn)加載時(shí)主要測(cè)試構(gòu)件的撓度值、極限荷載、跨中截面應(yīng)變值、預(yù)應(yīng)力鋼筋及普通鋼筋應(yīng)變。加載時(shí)采用位移控制連續(xù)加載方式,所有測(cè)量數(shù)據(jù)均由3 816 N靜態(tài)應(yīng)變測(cè)試系統(tǒng)同步采集。

      表4 各組試件破壞形態(tài)及破壞機(jī)理Table 4 Failuremodes and failuremechanism of the beams

      圖2 試驗(yàn)裝置Fig.2 Test set up

      3 試驗(yàn)結(jié)果及分析

      3.1 破壞形態(tài)與破壞機(jī)理

      在膠合木梁受拉區(qū)設(shè)置增強(qiáng)材料,可使木梁受壓區(qū)木材得到充分利用,而其破壞形態(tài)也發(fā)生相應(yīng)變化,從原來的受拉區(qū)木材脆性破壞變成可預(yù)計(jì)的受壓延性破壞。而對(duì)增強(qiáng)材料施加預(yù)應(yīng)力,可通過反拱形式進(jìn)一步減小木梁的變形。各類構(gòu)件的詳細(xì)破壞形態(tài)及破壞機(jī)理見表4和圖3。

      圖3 破壞形態(tài)Fig.3 Failuremodes

      3.2 荷載位移曲線

      圖4給出了各組試件的荷載-跨中位移曲線,圖5為各組代表試件的典型荷載位移曲線對(duì)比圖。由圖可知,經(jīng)預(yù)應(yīng)力增強(qiáng)構(gòu)件的極限承載力得到了較大提高,而增強(qiáng)及預(yù)應(yīng)力木梁的延性性能也得到顯著提高。

      圖4 荷載-跨中位移曲線Fig.4 Load-deflection curves

      3.3 結(jié)構(gòu)性能對(duì)比分析

      圖6對(duì)各組試件的極限承載力和抗彎剛度(平均值)做了詳細(xì)對(duì)比,由圖可知:非預(yù)應(yīng)力增強(qiáng)構(gòu)件的極限承載能力比未增強(qiáng)構(gòu)件提高了14%,剛度提高了11%;預(yù)應(yīng)力增強(qiáng)構(gòu)件的極限承載力相比未增強(qiáng)構(gòu)件提高了19%~50%,但剛度提高幅度不大。預(yù)應(yīng)力增強(qiáng)構(gòu)件相比非預(yù)應(yīng)力增強(qiáng)構(gòu)件極限承載力提高了4%~31%。若在構(gòu)件的受壓邊配置了非預(yù)應(yīng)力鋼筋,構(gòu)件極限承載力會(huì)進(jìn)一步提高,如試件P4比試件P1承載能力高15.4%,剛度提高14.6%。

      圖5 代表性試件的荷載-跨中位移曲線Fig.5 Load-deflection curves of the typical specimens

      圖6 各組構(gòu)件的結(jié)構(gòu)性能對(duì)比Fig.6 Comparison of structural performances of different test groups

      若按照木結(jié)構(gòu)相關(guān)規(guī)范規(guī)定,在圖4中按照撓度限值[w]=l/250進(jìn)行承載力界定,則在跨中位移達(dá)到設(shè)計(jì)要求撓度限值時(shí),預(yù)應(yīng)力增強(qiáng)構(gòu)件的極限承載力,相比未增強(qiáng)構(gòu)件提高了47%~78%,相比非預(yù)應(yīng)力增強(qiáng)構(gòu)件提高了30%~58%。

      4 結(jié) 論

      經(jīng)鋼筋增強(qiáng)或施加預(yù)應(yīng)力后,膠合木梁的極限承載力和抗彎剛度等結(jié)構(gòu)性能得到了顯著提高。預(yù)應(yīng)力增強(qiáng)構(gòu)件還具有能夠充分利用高強(qiáng)增強(qiáng)材料、減小使用過程中木梁變形等優(yōu)點(diǎn)。因此,預(yù)應(yīng)力膠合木在木結(jié)構(gòu)中具有良好的發(fā)展前景。

      根據(jù)試驗(yàn)結(jié)果,可得到如下結(jié)論:

      (1)增強(qiáng)及預(yù)應(yīng)力鋼筋避免或延緩了膠合木梁的受拉脆性破壞,降低了木材缺陷對(duì)受彎性能的影響,取代以延性的受壓屈服破壞形式;

      (2)充分利用了木材的抗壓強(qiáng)度并提高了構(gòu)件的延性性能,預(yù)應(yīng)力增強(qiáng)構(gòu)件的極限承載力相比未增強(qiáng)構(gòu)件提高了19%~50%;而預(yù)應(yīng)力增強(qiáng)構(gòu)件相比非預(yù)應(yīng)力增強(qiáng)構(gòu)件極限承載力提高了4%~31%;

      (3)若在構(gòu)件的受壓邊配置了非預(yù)應(yīng)力鋼筋,預(yù)應(yīng)力木梁的極限承載力和抗彎剛度均會(huì)得到再提高;

      (4)本文研究表明,無粘結(jié)預(yù)應(yīng)力筋與木梁變形協(xié)調(diào)性能稍差,建議今后采用有粘結(jié)預(yù)應(yīng)力工藝;

      (5)蠕變對(duì)木梁結(jié)構(gòu)性能及預(yù)應(yīng)力損失均有影響,后續(xù)研究中尚需開展預(yù)應(yīng)力膠合木梁的蠕變性能研究。

      [1] 中華人民共和國(guó)住房和城鄉(xiāng)建設(shè)部.GB/T 50708—2012膠合木結(jié)構(gòu)技術(shù)規(guī)范[S].北京:中國(guó)建筑工業(yè)出版社,2012.Ministry of Construction of the People’s Republic of China.GB/T 50708—2012 Technical code of glued laminated timber structures[S].Beijing:China Architecture and Building Press,2012.(in Chinese)

      [2] 樊承謀,聶圣哲,陳松來,等.現(xiàn)代木結(jié)構(gòu)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2007.Fan Chengmou,Nie Shengzhe,Chen Songlai,et al.Modern timber structures[M].Harbin:Harbin Institute of Technology Press,2007.(in Chinese)

      [3] 楊會(huì)峰.速生樹種復(fù)合木梁的受彎性能研究[D].南京:南京工業(yè)大學(xué),2007.Yang Huifeng.Study on the flexural behavior ofwood composite beams made from fast-growing timber[D].Nanjing:Nanjing University of Technology,2007.(in Chinese)

      [4] 薛偉辰.現(xiàn)代預(yù)應(yīng)力結(jié)構(gòu)設(shè)計(jì)[M].北京:中國(guó)建筑工業(yè)出版社,2003.Xue Weichen.Modern prestressed-structures design[M].Beijing:China Architecture and Building Press,2003.(in Chinese)

      [5] Bohannan B.Prestressed wood member[J].Forest Product Journal,1962,12(12):596-602.

      [6] Person J.Wood beams prestressed with bonded tension elements[J].Journalof the Structural Division,ASCE,1965,91(1):103-120.

      [7] Saucier JR,Holman J A.Structural particle board reinforced with glass fiber-progress in its development[J].Forest Products Journal,1975,25(9):69-72.

      [8] Triantafillou,T C,Deskovic N.Prestressed FRP sheets as external reinforcement of wood members[J].Journal of Structural Engineering,ASCE,1992,118(5):1270-1284.

      [9] Dolan CW,Galloway T L,Tsunemori A.Prestressed glued-laminated beam:pilot study[J].Journal of Composites for Construction,ASCE,1997,1(1):10-16.

      [10] Brunner M,Schnueriger M.Timber beams strengthened by attaching prestressed carbon FRP laminates with a gradiented anchoring device[C].Proceedings of the International Symposium on Bond Behaviour of FRP in Structures(BBFS 2005),2005:465-471.

      [11] De Luca V,Marano C.Prestressed glulam timbers reinforced with steel bars[J].Construction and Building Materials,2012,30:206-217.

      [12] Plevris N,Triantafillou T C.Creep behavior of FRP-reinforced wood members[J].Journal of Structural Engineering,1995,121(2):174-186.

      [13] Brunner M,Lehmann M.FRP-prestressed timber:losses in prestressing force due to elastic,creep and shrinkage deformations of the timber[C].FRPRCS-9 Sydney,Australia,2009.

      [14] Moayyed M Y,Taheri F.Creep response of gluedlaminated beam reinforced with pre-stressed sub-laminated composite[J].Construction and Building Materials,2011,25(8):2495-2506.

      [15] Guan ZW,Rodd P D,Pope D J.Study of glulam beams pre-stressed with pultruded GRP[J].Computers and Structures,2005,83(28):2476-2487.

      [16] Anshari B,Guan ZW,Komatsu K.Finite element modeling of the pre-camber of glulam beams reinforced by compressed wood[C].Proceedings of the World conference on Timber Engineering(WCTE 2010),Italy,2010.

      [17] Valipour H R,Crews K.Efficient finite elementmodeling of timber beams strengthened with bonded fiber reinforced polymers[J].Construction and Building Materials,2011,25(8):3291-3300.

      Experimental Study on the Flexural Behavior of Prestressed Glulam Beams

      LIN Cheng1YANG Huifeng1,*LIUWeiqing1LUWeidong1LING Zhibin2HAO Jiandong1
      (1.College of Civil Engineering,Nanjing University of Technology,Nanjing 210009,China;2.College of Civil Engineering,Southeast University,Nanjing 210096,China)

      A total of21 glued laminated timber(glulam)beamswere tested to failure to determine the flexural behaviors,which includes deformed steel bar reinforced beams,prestressed glulam beams and unreinforced control glulam beams.Through the experimental work,the failure modes and failure mechanism were discussed.The ultimate load and the flexural stiffness were compared with those of unreinforced control beams.The test results showed that the typical failuremode is the timber yield failure in compressive zone.Compared to the unreinforced control glulam beams,the ultimate load of deformed steel bar reinforced beams increased by 14%and the ultimate load of the prestressed glulam beams increased by 19%~50%.The introduction of the unbounded prestressing tendons has no obvious influence on the physical stiffness of glulam beams.Moreover,itwas found that themoderate reinforcement in compressive zonemay make further improvement on the structural performance of glulam beams.

      glulam beam,prestressed,experimental study,flexural behavior

      2013-04-22

      國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)(2012AA03A204)

      *聯(lián)系作者,Email:yhfbloon@163.com

      猜你喜歡
      木梁預(yù)應(yīng)力承載力
      采用UHPC實(shí)現(xiàn)無預(yù)應(yīng)力的簡(jiǎn)支變連續(xù)設(shè)計(jì)分析
      無黏結(jié)預(yù)應(yīng)力框架結(jié)構(gòu)的拆改加固設(shè)計(jì)
      鋼夾板-螺栓連接膠合木梁疲勞壽命預(yù)測(cè)
      預(yù)應(yīng)力混凝土橋梁檢測(cè)及其加固
      活力(2019年19期)2020-01-06 07:35:56
      BFRP筋增強(qiáng)膠合木梁受力性能分析
      仿古建筑中混凝土柱與木梁連接技術(shù)研究
      江西建材(2018年4期)2018-04-10 12:37:04
      CFRP-PCP板加固混凝土梁的抗彎承載力研究
      CFRP-PCPs復(fù)合筋預(yù)應(yīng)力損失分析及其計(jì)算
      耐火鋼圓鋼管混凝土柱耐火極限和承載力
      FRP加固木梁受彎承載力與撓度研究
      家居| 大港区| 高州市| 都江堰市| 高陵县| 无极县| 丽水市| 宁波市| 英山县| 凤山县| 乡城县| 曲靖市| 边坝县| 准格尔旗| 东丽区| 贵港市| 平昌县| 沅江市| 醴陵市| 临澧县| 湖南省| 信丰县| 武夷山市| 南安市| 五寨县| 松潘县| 邢台市| 上林县| 石台县| 宜兰县| 宁德市| 北辰区| 阜宁县| 乐东| 宜宾市| 温州市| 江西省| 安陆市| 陆河县| 桃园市| 巴里|