陳莉萍,王雅文,樊文梅,肖 漓,石炳毅解放軍第309醫(yī)院 器官移植研究所ICU,北京 0009;國(guó)家食品藥品監(jiān)督管理總局醫(yī)療器械技術(shù)評(píng)審中心,北京 00044
基礎(chǔ)研究
5-羥色胺在膽管上皮細(xì)胞與門管成纖維細(xì)胞自分泌/旁分泌中的作用
陳莉萍1,王雅文2,樊文梅1,肖 漓1,石炳毅11解放軍第309醫(yī)院 器官移植研究所ICU,北京 100091;2國(guó)家食品藥品監(jiān)督管理總局醫(yī)療器械技術(shù)評(píng)審中心,北京 100044
目的 探討5-羥色胺(5-hydroxytryptamine,5-HT)在膽管上皮細(xì)胞(biliary epithelia cells,BECs)與門管區(qū)成纖維細(xì)胞(portal fibroblasts,PFs)之間自分泌/旁分泌效應(yīng)中的意義,闡述兩種細(xì)胞之間的相互作用。方法 體外細(xì)胞培養(yǎng)分為6組:1)BECs組單獨(dú)培養(yǎng);2)BECs + TGF-β1組,BECs單獨(dú)培養(yǎng),用2 ng/ml重組TGF-β1干預(yù)24 h后更換培養(yǎng)液;3)BECs + 5-HT組,BECs單獨(dú)培養(yǎng),以60 ng/ml的5-HT干預(yù)48 h后更換培養(yǎng)液;4)PFs組單獨(dú)培養(yǎng);5)PFs + 5-HT組,PFs單獨(dú)培養(yǎng),以60 ng/ml的5-HT干預(yù)48 h后更換培養(yǎng)液;6)BECs + PFs,共同培養(yǎng)。各組均在培養(yǎng)72 h后,以酶聯(lián)免疫吸附分析法(ELISA)檢測(cè)培養(yǎng)介質(zhì)內(nèi)5-HT、TGF-β1含量;實(shí)時(shí)熒光定量多聚酶鏈反應(yīng)(QRT-PCR)檢測(cè)BECs內(nèi)色氨酸羥化酶(TPH1、TPH2)和5-HT受體1A、1B表達(dá);以BrdU、α-SMA分別作為BECs增殖及PFs轉(zhuǎn)化為肌纖維母細(xì)胞(myofibroblasts,MFs)的標(biāo)志,免疫細(xì)胞化學(xué)檢測(cè)。結(jié)果 單獨(dú)培養(yǎng)的BECs表達(dá)5-HT合成限速酶TPH1、TPH2及5-HTR1A、5-HTR 1B,5-HT分泌較高而BECs增殖不明顯;經(jīng)TGF-β1處理或與PFs共培養(yǎng)后,TPH1、TPH2表達(dá)各減少80%和87%,5-HTR1A、5-HTR 1B表達(dá)分別減少75%和85%,BECs增殖明顯。單獨(dú)培養(yǎng)的PFs分泌TGF-β1,部分呈α-SMA陽(yáng)性的MFs;經(jīng)5-HT處理或與BECs共培養(yǎng)后,TGF-β1表達(dá)及MFs顯著增加。結(jié)論 BECs來源的5-HT以及PFs來源的TGF-β1介導(dǎo)BECs與PFs之間的自分泌與旁分泌效應(yīng),維持BECs增殖和PFs向MFs的轉(zhuǎn)化,在膽管病發(fā)病機(jī)制中可能具有重要意義。
5-羥色胺;膽管上皮細(xì)胞;門管成纖維細(xì)胞;自分泌;旁分泌
膽管病是以肝內(nèi)膽管樹慢性炎癥及其導(dǎo)致的以膽汁淤積、膽管增生或喪失、膽管纖維化或膽管細(xì)胞的惡性轉(zhuǎn)化為病理表現(xiàn)的疾病,臨床治療效果不佳,常因肝功能衰竭需要行肝移植術(shù)[1]。即便如此,肝移植術(shù)后的膽管纖維化、膽管狹窄以及原發(fā)病的復(fù)發(fā)依然是導(dǎo)致移植肝功能喪失和患者死亡的重要原因。膽管上皮細(xì)胞(biliary epithelia cells,BECs)是膽管病的首要靶點(diǎn),在受到損傷時(shí)啟動(dòng)細(xì)胞的再生修復(fù)機(jī)制,發(fā)生細(xì)胞增殖。近年發(fā)現(xiàn)增殖的BECs能獲得神經(jīng)內(nèi)分泌細(xì)胞表型,分泌單胺類神經(jīng)遞質(zhì)5-羥色胺(5-hydroxytryptamine,5-HT)[2]。色氨酸先被色氨酸羥化酶(hydroxylase,TPH)催化生成5-羥色氨酸,再經(jīng)5-羥色氨酸脫羧酶催化成5-HT,因此TPH是5-HT合成的限速酶,包括TPH1、TPH2亞型。某種細(xì)胞產(chǎn)生的細(xì)胞因子作用于該細(xì)胞本身稱為自分泌,作用于鄰近細(xì)胞則稱為旁分泌。研究表明BECs來源的5-HT與BECs上的5-HT受體1A(5-HT receptor 1A,5-HTR1A)結(jié)合后,抑制BECs增殖,發(fā)揮自分泌作用;另一方面,研究發(fā)現(xiàn)5-HT也促進(jìn)肝星狀細(xì)胞(hepatic stellate,HSC)分化為肌纖維母細(xì)胞(myofibroblasts,MFs)并分泌轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF-β1),發(fā)揮旁分泌作用,在肝纖維化病理過程中起重要作用[3-4]。門管區(qū)成纖維細(xì)胞(portal fibroblasts,PFs)是近年來引起關(guān)注的另一類肝內(nèi)間質(zhì)細(xì)胞,在鄰近肝門區(qū)域分布更多,而此處是肝移植術(shù)后膽管狹窄的多發(fā)部位[5]。雖有較多研究證實(shí)PFs向MFs的大量轉(zhuǎn)化并分泌TGF-β1是介導(dǎo)膽管纖維化的重要機(jī)制,但此過程中是否涉及5-HT介導(dǎo)的自分泌與旁分泌作用,目前未見報(bào)道。本研究通過建立原代大鼠BECs與PFs共培養(yǎng)體系,觀察BECs增殖及PFs向MFs的轉(zhuǎn)化,探討5-HT和TGF-β1在兩種細(xì)胞之間自分泌與旁分泌中的作用,為膽管病尤其膽管纖維化、肝移植術(shù)后缺血型膽病的發(fā)病機(jī)制提供細(xì)胞學(xué)依據(jù)。
1 主要試劑與儀器 大鼠5-HT ELISA試劑盒購(gòu)于南京森貝佳生物科技有限公司(SBJ-R0128);TGF-β1ELISA試劑盒購(gòu)于江蘇普諾生生物科技有限公司(PK-EL-63506R);溴化去氧尿苷(5'bromo-2'-deoxyuridine BrdU)購(gòu)于美國(guó)Sigma-Aldrich公司(B5002);5-HT(ab120528)、重組人TGF-β1(ab50036)、鼠抗α-SMA(ab28052)、HTR1A(ab79230)、HTR1B (ab13896)、TGF-β1(sc-52893)抗體購(gòu)自美國(guó)abcam公司;兔抗TPH1抗體(SAB1105052)、TPH2抗體(SAB1105053)、CK-19(SAB4501670)、鼠抗Elastin (E4013)抗體購(gòu)自美國(guó)Sigma-Aldrich公司;ChemMate TM Envision免疫組織化學(xué)試劑盒為丹麥Dako公司產(chǎn)品;ECFTM Western blot試劑盒式購(gòu)于美國(guó)Amersham公司;Light Cycler定量PCR儀由美國(guó)Roche公司制造。
2 大鼠原代BECs和PFs分離與培養(yǎng) 肝內(nèi)BECs分離與培養(yǎng)按文獻(xiàn)方法:大鼠腹腔注射硫噴妥鈉50 mg/kg麻醉,用不含Ca2+/Mg2+的Hanks液灌注肝,然后以含有0.04%膠原酶S-1和胰蛋白酶抑制劑的Ham's F-12液消化10 min[6]。用柔軟毛刷輕輕刷除肝實(shí)質(zhì)細(xì)胞,將殘余組織轉(zhuǎn)移至離心管中,用移液管適當(dāng)吹打,之后將懸液過200目網(wǎng)篩,分離出白色的肝內(nèi)膽管樹置于15 ml離心管中,加入5 ml混合消化液(0.25%胰蛋白酶+ 0.1%Ⅳ型膠原酶),37℃振蕩消化1 h后加入血清終止消化,待未完全消化的較大組織塊沉降至管底后,吸取上層懸液轉(zhuǎn)移至另一離心管中,1 000 r/min離心5 min,棄去上清液,無血清培養(yǎng)基重懸離心管底的沉淀,以50%與30% Percoll非連續(xù)密度梯度法離心(1 800 r/min 30 min),吸取中間層細(xì)胞,用含雙抗的1×PBS(pH=7.4)清洗后,1 000 r/min離心5 min,棄去上清液,用完全的上皮培養(yǎng)基重懸細(xì)胞,轉(zhuǎn)移至用膠原包被的T-25培養(yǎng)瓶中,置于37℃、5% CO2的培養(yǎng)箱中培養(yǎng)培養(yǎng)72 h。
3 門管成纖維細(xì)胞分離與培養(yǎng) 按文獻(xiàn)方法:肝原位灌注、消化方法同原代BECs分離,其后取沉降至管底未完全消化的組織,用含雙抗的1×PBS(pH=7.4)清洗后均勻貼在未包被的T-25培養(yǎng)瓶的培養(yǎng)面上,加入2 ml成纖維細(xì)胞培養(yǎng)基后倒置于37℃、5% CO2的培養(yǎng)箱中2 h,之后輕輕地翻轉(zhuǎn)培養(yǎng)瓶,使培養(yǎng)基浸沒貼于瓶中的組織塊培養(yǎng)72 h,在2 d時(shí)換液一次[7]。待爬出的細(xì)胞數(shù)量較多時(shí)(鋪瓶率30% ~ 40%),吹起組織塊后將之吸棄,第2天將細(xì)胞重鋪一次,細(xì)胞長(zhǎng)滿即可正常傳代。細(xì)胞傳代1次后,1×105/ml的PFs和BECs分別接種在Transwell插入式共培養(yǎng)系統(tǒng)的上層和下層。分別采用CK-19免疫細(xì)胞化學(xué)法鑒定BECs、Elastin免疫熒光染色法鑒定PFs[8]。
4 實(shí)驗(yàn)分組 1)BECs組:BECs單獨(dú)培養(yǎng)3 d;2)BECs + TGF-β1組:BECs單獨(dú)培養(yǎng),以2 ng/ml重組TGF-β1干預(yù)24 h;3)BECs + 5-HT組:BECs單獨(dú)培養(yǎng),以60 ng/ml的5-HT干預(yù)48 h;4)PFs組:PFs單獨(dú)培養(yǎng);5)PFs + 5-HT組:PFs單獨(dú)培養(yǎng),以60 ng/ml的5-HT干預(yù)48 h;6)BECs + PFs:BECs和PFs培養(yǎng)[9]。
5 ELISA法測(cè)定培養(yǎng)介質(zhì)中5-HT和TGF-β1含量 細(xì)胞培養(yǎng)3d后,采用ELISA法測(cè)定各組培養(yǎng)介質(zhì)內(nèi)5-HT和TGF-β1含量,具體操作按試劑盒說明書要求。
6 實(shí)時(shí)熒光定量多聚酶鏈反應(yīng)(QRT-PCR) 采用QRT-PCR法測(cè)定TPH1、TPH2、5-HTR1A、5-THR1B mRNA在BECs內(nèi)的表達(dá)。RNA抽提及逆轉(zhuǎn)錄均按照試劑說明書操作,以實(shí)時(shí)熒光定量PCR法在Light Cycler儀上對(duì)目的基因進(jìn)行擴(kuò)增。對(duì)含有靶基因已知拷貝數(shù)的cDNA進(jìn)行倍比稀釋,構(gòu)建標(biāo)準(zhǔn)曲線。樣本拷貝數(shù)通過標(biāo)準(zhǔn)曲線來計(jì)算,采用與β-actin的相對(duì)比值作為靶基因的表達(dá)量。各靶基因的引物序列見表1。
表1 各基因引物擴(kuò)增序列Tab. 1 Amplification sequences of various primers
7 免疫細(xì)胞化學(xué)檢測(cè) 分別以BrdU、α-SMA作為BECs增殖及PFs轉(zhuǎn)化為MFs的標(biāo)志,BrdU在檢測(cè)前4 h加入BECs培養(yǎng)介質(zhì)。將鼠尾膠原包被的蓋玻片放入6孔培養(yǎng)板內(nèi),待培養(yǎng)的細(xì)胞鋪滿玻片80%時(shí)取出,用4%多聚甲醛室溫固定20 min,以0.1%的Triton-X穿透10 min,之后按照二步法免疫組化試劑盒說明書操作。增殖BEC細(xì)胞核BrdU染色陽(yáng)性,MFs胞質(zhì)α-SMA染色陽(yáng)性,采用平均光密度作為陽(yáng)性細(xì)胞表達(dá)程度的半定量工具。
8 統(tǒng)計(jì)學(xué)處理 所有數(shù)據(jù)應(yīng)用SPSS10.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料以±s表示,多組均數(shù)間的比較采用單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 大鼠原代BECs與PFs鑒定 錐蟲藍(lán)染色證實(shí)分離出的原代BECs和PFs活細(xì)胞率>97%,細(xì)胞純度>98%。BECs呈CK-19免疫組化染色胞質(zhì)表達(dá)陽(yáng)性,PFs呈梭形,Elastin免疫熒光染色胞質(zhì)表達(dá)陽(yáng)性。傳至第2代的細(xì)胞用于后繼實(shí)驗(yàn),細(xì)胞純度100%,鑒定結(jié)果見圖1。
2 RT-qPCR檢測(cè)各組5-HT與TGF-β1含量5-HT在PFs單獨(dú)培養(yǎng)介質(zhì)中含量極微,在BECs單獨(dú)培養(yǎng)介質(zhì)中含量最高;BECs經(jīng)TGF-β1處理或與PFs共培養(yǎng)后,培養(yǎng)介質(zhì)內(nèi)5-HT含量明顯下降。BECs單獨(dú)培養(yǎng)時(shí)分泌少量TGF-β1,在5-HT刺激下分泌略增加;TGF-β1在PFs單獨(dú)培養(yǎng)介質(zhì)中以一定水平存在,當(dāng)受到5-HT刺激或與BECs共培養(yǎng)時(shí)TGF-β1分泌明顯增加。見圖2。
圖 1 BECs與PFs鑒定(×400) A: BECs胞質(zhì)棕染,為CK-19染色陽(yáng)性; B: 綠色熒光顯示PFs胞質(zhì)elastin表達(dá)陽(yáng)性Fig. 1 Identification of BECs (A) and PFs (B) A: BECs cytoplasm showing CK-19 positive staining; B: green fluorescence showing PFS cytoplasm as elastin positive staining
圖 2 各組培養(yǎng)介質(zhì)中5-HT及TGF-β1含量 (aP<0.05, vs BECs組,bP< 0.05, vs PFs組)Fig. 2 Production of 5-HT and TGF-β1in various culture medium (aP<0.05, vs BECs,bP< 0.05, vs PFs)
圖 3 RT-qPCR檢測(cè)各組BECs內(nèi)5-HTR1A、 5-HTR1B、 TPH1、TPH2 mRNA表達(dá)(aP<0.05, vs BECs組)Fig. 3 Expression of 5-HTR1A, 5-HTR1B, TPH1, TPH2 mRNA in BECs by RT-qPCR (aP<0.05, vs BECs)
圖 4 BECs增殖和PFs向MFs轉(zhuǎn)化的免疫細(xì)胞化學(xué)檢測(cè)(×400) A:?jiǎn)为?dú)培養(yǎng)的BECs僅有少量細(xì)胞增殖; B:與PFs共培養(yǎng)體系中,BECs增殖明顯; C:PFs在單獨(dú)培養(yǎng)3 d時(shí)部分細(xì)胞轉(zhuǎn)化為α-SMA表達(dá)陽(yáng)性的肌纖維母細(xì)胞(MFs); D:與BECs共培養(yǎng)時(shí)PFs向MFs轉(zhuǎn)化顯著增多; E ~ F:各組BECs增殖及PFs向MFs轉(zhuǎn)化水平以BrdU和α-SMA表達(dá)的MOD值來表示(aP<0.05, vs BECs組,bP< 0.05, vs PFs組)Fig. 4 BECs proliferation and PF myofibroblastic transdifferentiation were evaluated by immunocytochemisry A: Monocultured BECs showing small amount of proliferation; B: BECs showing significant proliferation when co-cultured with PFs; C: Mono-cultured PFs showing some MFs with α-SMA positive staining; D: Abundant of MFs were showed when co-cultured with BECs; E-F: Presentation of BECs proliferation and MFs was quantified by the mean optical density (MOD) of expression of BrdU and α-SMA (aP<0.05, vs BECs,bP< 0.05, vs PFs)
3 各組BECs內(nèi)5-HTR1A,5-HTR1B,TPH1,TPH2mRNA表達(dá) 單獨(dú)培養(yǎng)的BECs較高水平地表達(dá)5-HT1A和5-HT1B受體,外源性5-H處理對(duì)二者的表達(dá)無顯著影響;與PFs混合培養(yǎng)或給予TGF-β1處理后,BECs內(nèi)5-HT1A mRNA表達(dá)分別約下調(diào)75%,5-HT1B mRNA表達(dá)約下調(diào)85%,差異有統(tǒng)計(jì)學(xué)意義。在單獨(dú)培養(yǎng)時(shí),BECs內(nèi)5-HT合成限速酶TPH1、TPH2 mRNA表達(dá)較高,經(jīng)5-HT處理后TPH1表達(dá)約減少80%,TPH2約減少87%,差異有統(tǒng)計(jì)學(xué)意義。BECs + PFs組與BECs + TGF-β1組之間的TPH及5-HTR表達(dá)差異無統(tǒng)計(jì)學(xué)意義。見圖3。
4 免疫細(xì)胞化學(xué)檢測(cè)各組BECs增殖及PFs向MFs的轉(zhuǎn)化 BECs在單獨(dú)培養(yǎng)時(shí)僅有少量細(xì)胞增殖,給予5-HT處理后細(xì)胞增殖進(jìn)一步減少;與此相反,在和PFs共同培養(yǎng)或受TGF-β1刺激時(shí)增殖明顯。PFs單獨(dú)培養(yǎng)3 d時(shí)有部分細(xì)胞轉(zhuǎn)化為α-SMA表達(dá)陽(yáng)性的肌纖維母細(xì)胞,在與BECs共培養(yǎng)或5-HT刺激時(shí)MFs數(shù)量明顯增多(圖3A ~圖3D)。各組BEC增殖以及PFs向MFs的轉(zhuǎn)化以BrdU和α-SMA表達(dá)的平均光密度來量化(圖3E ~圖3F)。
膽管上皮細(xì)胞與肝內(nèi)間質(zhì)細(xì)胞之間的交互作用與膽管病密切相關(guān),而器官纖維化的本質(zhì)是實(shí)質(zhì)細(xì)胞再生以及間質(zhì)細(xì)胞纖維化之間失衡[10]。在膽管病早期,BECs的增殖可來自多種膽管刺激,與此相關(guān)的顯著而持久的間質(zhì)細(xì)胞活化是膽管纖維化進(jìn)展最重要的原因[11]。BECs與肝星狀細(xì)胞(hepatic stellate,HSC)之間的自分泌與旁分泌作用曾被認(rèn)為是介導(dǎo)膽源性肝纖維化的機(jī)制[12]。然而隨著PFs分離技術(shù)的成熟,越來越多的研究證實(shí)在膽源性纖維化或膽管纖維化中,PFs向肌纖維母細(xì)胞的持續(xù)轉(zhuǎn)化(活化)才是關(guān)鍵因素[13]。因此廓清BECs與PFs之間的交互作用,對(duì)探討膽管病的發(fā)病機(jī)制是至關(guān)重要的。文獻(xiàn)報(bào)道5-HT抑制BECs增殖,本研究也發(fā)現(xiàn)正常情況下BECs表達(dá)5-HT合成與利用的成分TPH1、TPH2以及5-HT1A、5-HT1B受體亞型,分泌較多5-HT,但僅有少量細(xì)胞增殖[2]。盡管抑制BECs增殖,本研究卻顯示5-HT有促進(jìn)PFs向MFs轉(zhuǎn)化的作用:不僅在給予5-HT刺激時(shí)有較多的PFs分化成MFs,在PFs和BECs共同培養(yǎng)體系中MFs也明顯增多。作為促纖維化的關(guān)鍵因子,TGF-β1在多個(gè)組織中均被證實(shí)是成纖維細(xì)胞向肌纖維母細(xì)胞轉(zhuǎn)化的關(guān)鍵因子,并且是MFs分泌的主要細(xì)胞因子之一[14]。我們發(fā)現(xiàn)在給予5-HT處理或與BECs共同培養(yǎng)時(shí),PFs分泌TGF-β1較單獨(dú)培養(yǎng)時(shí)顯著增加,在共培養(yǎng)體系中BECs來源的5-HT作用于PFs,上調(diào)TGF-β1的表達(dá)并促進(jìn)PFs向MFs轉(zhuǎn)化,呈現(xiàn)旁分泌效應(yīng)。
本研究還觀察到TGF-β1有利于BECs增殖:在給予TGF-β1干預(yù)或與PFs共同培養(yǎng)時(shí),培養(yǎng)介質(zhì)內(nèi)5-HT濃度較之前顯著降低,TPH1和TPH2的表達(dá)減少80%以上,BrdU陽(yáng)性的BECs顯著增加。因此,PFs來源的TGF-β1通過抑制5-HT合成限速酶TPH1和TPH2的表達(dá)來減少BECs分泌5-HT,伴隨著5-HT1受體表達(dá)的減少,從而消除5-HT抑制BECs增殖的自分泌效應(yīng),BECs得以增殖從而成為“活化的膽管細(xì)胞”,在膽管病理中可能具有重要意義:作為對(duì)膽道損傷的代償性反應(yīng),BECs增殖和小膽管的增生一方面有利于膽汁引流從而減輕膽汁淤積,另一方面也通過5-HT促進(jìn)管周MFs的活化與聚集;而MFs也可通過TGF-β1消除5-HT的自分泌效應(yīng),維持BECs的增殖狀態(tài)[3,15]。
綜上所述,本研究顯示:增殖的BEC通過分泌5-HT而促進(jìn)PFs向MFs的轉(zhuǎn)化而發(fā)揮旁分泌效應(yīng),同時(shí)BEC來源的5-HT抑制自身增殖而發(fā)揮自分泌效應(yīng);PFs來源的TGF-β1一方面繼續(xù)促進(jìn)細(xì)胞向MFs的轉(zhuǎn)化,發(fā)揮自分泌效應(yīng),另一方面TGF-β1也抑制BECs分泌5-HT,從而消除5-HT對(duì)BECs的自分泌效應(yīng),此時(shí)TGF-β1又發(fā)揮了旁分泌效應(yīng)。增殖的BECs繼續(xù)通過5-HT與PFs發(fā)生交互作用,以自分泌與旁分泌的方式和PFs之間構(gòu)成了一個(gè)閉合的環(huán)路,維持BECs的增殖和PFs向MFs的轉(zhuǎn)化。由于TGF-β1信號(hào)通路的廣泛存在,以TGF-β1為治療靶點(diǎn)的抗器官纖維化常常效果不佳[16]。本研究提示5-HT合成酶或5-HT受體可能作為潛在的干預(yù)靶點(diǎn)以延緩膽管纖維化的病理進(jìn)展,尚待今后的深入研究。
1 Park SM. The crucial role of cholangiocytes in cholangiopathies[J]. Gut Liver, 2012, 6(3): 295-304.
2 Marzioni M, Glaser S, Francis H, et al. Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin[J]. Gastroenterology, 2005, 128(1): 121-137.
3 Jensen K, Marzioni M, Munshi K, et al. Autocrine regulation of biliary pathology by activated cholangiocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(5): G473-G483.
4 Kim DC, Jun DW, Kwon YI, et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis[J]. Liver Int, 2013, 33(4): 535-543.
5 Demetris AJ, Fontes P, Lunz JG, et al. Wound healing in the biliary tree of liver allografts[J]. Cell Transplant, 2006, 15 Suppl 1:S57-S65.
6 Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis[J]. Hepatology, 2010, 51(4):1438-1444.
7 Bosselut N, Housset C, Marcelo P, et al. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts[J]. Proteomics, 2010, 10(5): 1017-1028.
8 Omenetti A, Yang L, Gainetdinov RR, et al. Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(2):G303-G315.
9 Wen JW, Olsen AL, Perepelyuk M, et al. Isolation of rat portal fibroblasts by in situ liver perfusion[J]. J Vis Exp, 2012, (64):pii: 3669.
10 Carlson MA, Longaker MT. The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence[J]. Wound Repair Regen, 2004, 12(2): 134-147.
11 Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets[J]. Dig Liver Dis, 2004, 36(4): 231-242.
12 Fabris L, Strazzabosco M. Epithelial-mesenchymal interactions in biliary diseases[J]. Semin Liver Dis, 2011, 31(1):11-32.
13 Beaussier M, Wendum D, Schiffer E, et al. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries[J]. Lab Invest, 2007, 87(3): 292-303.
14 Li Z, Dranoff JA, Chan EP, et al. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture[J]. Hepatology, 2007, 46(4): 1246-1256.
15 Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis[J]. World J Gastrointest Pathophysiol,2010, 1(2): 30-37.
16 Yabanoglu S, Akkiki M, Seguelas MH, et al. Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors[J]. J Mol Cell Cardiol, 2009, 46(4): 518-525.
Role of serotonin in the autocrine / paracrine between cholangiocytes and portal fibroblasts
CHEN Li-ping1, WANG Ya-wen2, FAN Wen-mei1, XIAO Li1, SHI Bing-yi11Institute of Organ Transplantation, the 309th Hospital of Chinese PLA, Beijing 100091, China;2Center for Medical Device Evaluation, Beijing 100044, China
SHI Bing-yi. Email: shibingyi@medmail.com.cn
Objective To evaluate the role of serotonin (5-HT) in the crosstalk between cholangiocytes (biliary epithelia cells, BECs) and portal fibroblasts (PFs). Methods Cells were cultured and divided into 6 groups. 1) BECs were cultured alone; 2) BECs + TGF-β1: BECs were cultured alone and then were treated with 2 ng/ml of recombinant transforming growth factor β1(TGF-β1) for 24 h; 3) BECs + 5-HT: BECs were cultured alone and then were treated with 60 ng/ml of 5-HT for 48 h; 4) PFs were cultured alone; 5) PFs + 5-HT: PFs were cultured alone and then were treated with 60 ng/ml of 5-HT for 48 h; 6) BECs + PFs: BECs and PFs were co-cultured. After culturing for 72 h, the concentration of 5-HT or TGF-β1in culture medium was detected by ELISA. Expressions of TPH1, TPH2, 5-HTR1A, 5-HTR1B mRNA in BECs were detected by real-time QRT-PCR. BrdU and α-SMA as the marker of BECs proliferation and myofibroblastic transdifferentiation of PFs were evaluated by immunocytochemistry. Results Mono-cultured BECs expressed TPH1, TPH2, 5-HTR1A, 5-HTR1B mRNA with hypersecretion of 5-HT and slight proliferation of BECs. After being treated by TGF-β1or co-cultured with PFs, BECs reduced the expression of TPH1 by 80% and TPH2 by 87%. Moreover, 5-HTR1A and HTR1B mRNA expression in BECs also dropped by 75% and 85% respectively, companied by the increasment of BECs proliferation. Mono-cultured PFs produced TGF-β1with some MFs showing positive staining. However, after being treated by 5-HT or co-cultured with BECs, TGF-β1secretion and α-SMA-positive cells were significantly increased. Conclusion 5-HT derived from BECs and TGF-β1produced by PFs can mediate the autocrine and paracrine effects between BECs and PFs, and maintain the proliferation of BECs and the conversion of PFs to MFs, which may be meaningful to the pathogenesis of cholangiopathies.
5-hydroxytryptamine; cholangiocyte; portal fibroblast; autocrine; paracrine
R 575.7
A
2095-5227(2014)10-1044-05
10.3969/j.issn.2095-5227.2014.10.020
時(shí)間:2014-06-05 09:53
http://www.cnki.net/kcms/detail/11.3275.R.20140605.0953.001.html
2014-04-18
國(guó)家自然科學(xué)基金項(xiàng)目(81100322;81270509;81370572)
Supported by the National Natural Science Foundation of China(81100322; 81270509; 81370572)
陳莉萍,女,博士,副主任醫(yī)師。研究方向:器官移植及外科重癥監(jiān)護(hù)的基礎(chǔ)與臨床。Email: paradiselily@163.com
石炳毅,男,主任醫(yī)師。Email: shibingyi@medmail.com.cn