張恒,李青山,張克舟,范江濤
(中國(guó)人民解放軍63891部隊(duì),河南 洛陽(yáng) 471003)
多路徑效應(yīng)對(duì)目標(biāo)的檢測(cè)與跟蹤具有不可忽視的影響,是主動(dòng)制導(dǎo)武器中雷達(dá)導(dǎo)引頭無(wú)法避免的問(wèn)題。脈沖多普勒雷達(dá)導(dǎo)引頭廣泛應(yīng)用于尋的制導(dǎo)式導(dǎo)彈中,它工作在末制導(dǎo)階段,由于受低空條件限制,接收到的信號(hào)是直接信號(hào)與經(jīng)地面、海面或其他物體反射后形成的多路徑信號(hào)的疊加信號(hào),接收信號(hào)電平出現(xiàn)閃爍現(xiàn)象,使得雷達(dá)的距離、角度、速度等測(cè)量誤差增大,導(dǎo)致導(dǎo)彈脫靶量加大[1-2]。因此研究多路徑效應(yīng)對(duì)脈沖多普勒雷達(dá)導(dǎo)引頭工作性能的影響,對(duì)尋求解決問(wèn)題的途徑是有意義的。
基于多路徑效應(yīng)的研究多集中在多路徑效應(yīng)的抑制算法上。文獻(xiàn)[3]研究建立了鏡反射和漫反射的多徑效應(yīng)理論模型,文獻(xiàn)[4-8]研究了多路徑效應(yīng)對(duì)雷達(dá)檢測(cè)與跟蹤的影響,文獻(xiàn)[9-10]從高分辨技術(shù)出發(fā),提出了用“時(shí)間-頻率碼合成高距離分辨率”和“線性調(diào)頻步進(jìn)雷達(dá)信號(hào)(Chirp-SF信號(hào))”新的信號(hào)形式來(lái)解決多路徑效應(yīng)影響的方法。
本文從脈沖多普勒雷達(dá)導(dǎo)引頭的工作原理出發(fā),分析了多路徑效應(yīng)對(duì)脈沖多普勒雷達(dá)導(dǎo)引頭產(chǎn)生影響的條件,并根據(jù)多路徑效應(yīng)中的直射波與反射波具有路程差的固有特性,從導(dǎo)引頭與目標(biāo)的空間幾何關(guān)系入手,建立了多路徑效應(yīng)產(chǎn)生影響的多普勒頻差模型,并仿真分析了導(dǎo)引頭彈目參數(shù)之間的影響關(guān)系。
由于雷達(dá)電磁波在非自由空間傳播時(shí),除直射波外,還有地面或水面的反射波存在,由于直達(dá)波和反射波是天線不同方向所產(chǎn)生的輻射,而且其路程不同,導(dǎo)致最終到達(dá)目標(biāo)的信號(hào)幅度和相位發(fā)生變化:
直達(dá)波的信號(hào)可表示為
(1)
反射波的信號(hào)可表示為
(2)
則到達(dá)目標(biāo)的總信號(hào)為
E=Ed+Ei=
(3)
式中:Ed,Ei分別為目標(biāo)處入射波和反射波的場(chǎng)強(qiáng)(mV/m);Rd,Ri分別為直達(dá)波和反射波的波程(km);ρ,φ分別為地表粗糙度引起的信號(hào)幅度和相位偏移,由反射面的性質(zhì)、擦地角、工作頻率以及電波極化等因素決定,目前已經(jīng)有一些曲線供查用[11]。
受多路徑效應(yīng)的影響,電磁波在導(dǎo)引頭和目標(biāo)之間主要存在4條傳播路徑,如圖1所示。
圖1 多路徑效應(yīng)產(chǎn)生示意圖Fig.1 Illustration of multipath effect production
在某一時(shí)刻,第2,3條傳播路徑的長(zhǎng)度相等,其變化的速率也相同,即具有相同的多普勒頻移。因此,4條傳播路徑構(gòu)成的回波頻譜將由3條譜線組成,3條譜線的多普勒頻率為分別為:
路徑1方向上的多普勒頻率為
(4)
路徑2,路徑3方向上的多普勒頻率為
(5)
路徑4方向上的多普勒頻率為
(6)
式中:導(dǎo)引頭速度為vm;目標(biāo)速度為vt。
一般來(lái)說(shuō),多路徑效應(yīng)形成的基本原理有鏡水面反射和漫反射2種[3],本文基于鏡面反射模型下路徑2、路徑3形成的多路徑效應(yīng)來(lái)研究其對(duì)脈沖多普勒雷達(dá)導(dǎo)引頭性能影響。
多路徑效應(yīng)下導(dǎo)引頭彈目相對(duì)運(yùn)動(dòng)模型如圖2所示。導(dǎo)引頭M的飛行高度為hs,目標(biāo)T的飛行高度為ht,導(dǎo)引頭和目標(biāo)的直射波距離為Rd,導(dǎo)引頭和目標(biāo)的反射波距離為Ri,ψg為掠射角。S是多路徑效應(yīng)的地面反射點(diǎn),彈目相對(duì)飛行速度為v。
圖2 多路徑效應(yīng)下導(dǎo)引頭彈目相對(duì)運(yùn)動(dòng)模型圖Fig.2 Missile-target relative motion model by multipath effect
多路徑效應(yīng)下彈目運(yùn)動(dòng)模型求解步驟如下:
第1步:求多路徑回波和直接回波信號(hào)的路徑差
(7)
(8)
因此,多路徑回波Ri為
(9)
可知,多路徑回波和直接回波信號(hào)的路徑差為
(10)
第2步:求多路徑回波和直接回波信號(hào)的速度差
令彈目距離為:Rd=R0-vt,將其代入距離差公式:
(11)
將距離差公式對(duì)t求導(dǎo),即可得到多路徑回波和直接回波信號(hào)的速度差:
(12)
第3步:求多路徑回波和直接回波信號(hào)的多普勒頻差
(13)
式(13)反映了多普勒頻差與導(dǎo)引頭波長(zhǎng)、高度、彈目距離、目標(biāo)高度和彈目相對(duì)速度的關(guān)系。
脈沖多普勒雷達(dá)導(dǎo)引頭利用其多普勒頻率(徑向速度)選擇能力來(lái)檢測(cè)運(yùn)動(dòng)目標(biāo)[12],因此,對(duì)于脈沖多普勒雷達(dá)導(dǎo)引頭來(lái)說(shuō),只有當(dāng)多路徑回波信號(hào)落入其速度波門(mén)內(nèi)才會(huì)對(duì)導(dǎo)引頭檢測(cè)和跟蹤目標(biāo)產(chǎn)生影響,當(dāng)多路徑回波信號(hào)落在速度波門(mén)之外時(shí),將不會(huì)對(duì)導(dǎo)引頭產(chǎn)生影響。
由式(13)還可以推導(dǎo)出導(dǎo)引頭彈目距離與其他因素之間的關(guān)系:
(14)
以及導(dǎo)引頭高度與其他因素之間的關(guān)系:
(15)
本文著重以多普勒頻差模型為對(duì)象,仿真分析其在不同導(dǎo)引頭飛行高度、波長(zhǎng)、彈目距離、目標(biāo)高度和彈目相對(duì)速度下的影響。
相關(guān)仿真參數(shù)設(shè)置如下:導(dǎo)引頭取典型的毫米波波段、Ku波段和X波段,波長(zhǎng)分別取3 mm,8 mm,2 cm和3 cm,彈目距離取20 km,導(dǎo)引頭高度取10 km,目標(biāo)高度取4 km,彈目相對(duì)速度取1 600 m/s。仿真結(jié)果如圖3所示。
從仿真結(jié)果可以看出:在其他參數(shù)不變的條件下,隨著脈沖多普勒雷達(dá)導(dǎo)引頭波長(zhǎng)的變?。簩?dǎo)引頭高度一定時(shí),對(duì)應(yīng)的多普勒頻差越大;彈目距離一定時(shí),對(duì)應(yīng)的多普勒頻差越大。
也就是說(shuō),脈沖多普勒雷達(dá)導(dǎo)引頭的波長(zhǎng)越小,當(dāng)脈沖多普勒雷達(dá)導(dǎo)引頭的速度波門(mén)一定時(shí),其不受多路徑效應(yīng)影響的飛行高度變小、彈目距離變大,有利于導(dǎo)引頭突防和在遠(yuǎn)距離發(fā)現(xiàn)目標(biāo)。
圖3 不同波長(zhǎng)的多普勒頻差Fig.3 Doppler frequency difference with different wavelength
相關(guān)仿真參數(shù)設(shè)置如下:導(dǎo)引頭飛行高度分別取1,2.5,5,10 km,波長(zhǎng)取2 cm,彈目距離取20 km,目標(biāo)高度取10 km,彈目相對(duì)速度取1 600 m/s。仿真結(jié)果如圖4所示。
從仿真結(jié)果可以看出:在其他參數(shù)不變的條件下,隨著脈沖多普勒雷達(dá)導(dǎo)引頭飛行高度的變大:彈目距離一定時(shí),對(duì)應(yīng)的多普勒頻差越大;目標(biāo)高度一定時(shí),對(duì)應(yīng)的多普勒頻差越大。
也就是說(shuō),脈沖多普勒雷達(dá)導(dǎo)引頭飛行高度越大,當(dāng)脈沖多普勒雷達(dá)導(dǎo)引頭的速度波門(mén)一定時(shí),其不受多路徑效應(yīng)影響的彈目距離變大、目標(biāo)高度變小,有利于導(dǎo)引頭發(fā)現(xiàn)遠(yuǎn)距離低空目標(biāo)。
圖4 不同導(dǎo)引頭飛行高度的多普勒頻差Fig.4 Doppler frequency difference with different height of the radar seeker
相關(guān)仿真參數(shù)設(shè)置如下:彈目相對(duì)速度分別取500,800,1 200,1 800 m/s。導(dǎo)引頭飛行高度取5 km,波長(zhǎng)分別取2 cm,彈目距離取20 km,目標(biāo)高度取10 km。仿真結(jié)果如圖5所示。
從仿真結(jié)果可以看出:在其他參數(shù)不變的條件下,隨著彈目相對(duì)速度的變大:彈目距離一定時(shí),對(duì)應(yīng)的多普勒頻差越大;目標(biāo)高度一定時(shí),對(duì)應(yīng)的多普勒頻差越大。
也就是說(shuō),脈沖多普勒雷達(dá)導(dǎo)引頭和目標(biāo)的相對(duì)速度越大,當(dāng)脈沖多普勒雷達(dá)導(dǎo)引頭的速度波門(mén)一定時(shí),其不受多路徑效應(yīng)影響的彈目距離變大、目標(biāo)高度變小,有利于導(dǎo)引頭發(fā)現(xiàn)遠(yuǎn)距離低空目標(biāo)。
圖5 不同彈目相對(duì)速度的多普勒頻差Fig.5 Doppler frequency difference with different relative speed of missile-target
還可以對(duì)式(14),(15)進(jìn)行仿真,研究在不同導(dǎo)引頭彈目運(yùn)動(dòng)參數(shù)下,如何對(duì)脈沖多普勒導(dǎo)引頭速度波門(mén)進(jìn)行設(shè)置,以更好地規(guī)避多路徑效應(yīng)的影響。
多路徑效應(yīng)是尋的制導(dǎo)式導(dǎo)彈中雷達(dá)導(dǎo)引頭的重要研究?jī)?nèi)容。本文從脈沖多普勒雷達(dá)導(dǎo)引頭的工作原理出發(fā),指出只有當(dāng)多路徑回波信號(hào)落入導(dǎo)引頭速度波門(mén)內(nèi)才會(huì)對(duì)其檢測(cè)和跟蹤目標(biāo)產(chǎn)生影響,并從導(dǎo)引頭彈目運(yùn)動(dòng)關(guān)系著手,推導(dǎo)了多路徑回波和目標(biāo)回波的多普勒頻差數(shù)學(xué)模型,通過(guò)仿真,較為詳細(xì)地分析了多普勒頻差受導(dǎo)引頭波長(zhǎng)、飛行高度、彈目距離、彈目相對(duì)速度等因素的綜合影響。該研究能為脈沖多普勒雷達(dá)導(dǎo)引頭規(guī)避多路徑效應(yīng)的影響提供參考作用。
參考文獻(xiàn):
[1] 劉潔慧,鄭學(xué)合,孫麗. 主動(dòng)雷達(dá)導(dǎo)引頭低空多路徑效應(yīng)的數(shù)學(xué)仿真分析[J]. 現(xiàn)代防御技術(shù), 2007,35(3): 82-85.
LIU Jie-hui, ZHENG Xue-he, SUN Li. Analysis of Simulation on the Active Seeker Low Altitude Multi-Path Problem[J]. Modern Defence Technology, 2007,35(3): 82-85.
[2] 安紅,楊莉. 脈沖多普勒雷達(dá)導(dǎo)引頭仿真研究[J]. 中國(guó)電子科學(xué)研究院學(xué)報(bào), 2009,4(6): 625-629.
AN Hong, YANG Li. Simulation Research on Pulse Doppler Radar Seeker[J]. Journal of CAEIT, 2009,4(6): 625-629.
[3] 張瑜,李玲玲. 低角雷達(dá)跟蹤時(shí)的多路徑散射模型[J]. 電波科學(xué)學(xué)報(bào), 2004,19(1): 83-86.
ZHANG Yu, LI Ling-ling. Multipath Scatting Model of Low Angle Radar Tracking[J]. Chinese Journal of Radio Science, 2004,19(1): 83-86.
[4] 段世忠,周蔭清,張孟,等. 主動(dòng)雷達(dá)導(dǎo)引頭多路徑效應(yīng)的數(shù)字仿真[J]. 北京航空航天大學(xué)學(xué)報(bào), 2002,28(4): 447-450.
DUAN Shi-zhong, ZHOU Yin-qing, ZHANG Meng, et al. Numerical Simulation of Multipath Effect of Active Radar Seeker[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002,28(4): 447-450.
[5] 任子西. 多路徑效應(yīng)對(duì)反輻射導(dǎo)彈被動(dòng)雷達(dá)導(dǎo)引頭性能的影響分析[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù), 2009(3): 1-5.
REN Zi-xi. Analysis of the Influence of Multi-path Effect on the Performance of Passive Radar Seeker of Anti-Radiation Missile[J]. Tactical Missile Technology, 2009(3): 1-5.
[6] 陳鑫,王浩丞,唐勇,等. 多徑環(huán)境中被動(dòng)雷達(dá)導(dǎo)引頭測(cè)向性能分析[J]. 電子信息對(duì)抗技術(shù), 2011, 26(4): 1-4.
CHEN Xin, WANG Hao-cheng, TANG Yong, et al. Angle Characteristic Analysis of PRS in Multipath Environment[J]. Electronic Information Warefare Technology, 2011, 26(4): 1-4.
[7] DELAURENTIS I. Multipath Synthetic Aperture Radar Imaging[J]. Proceedings-IET Radar, Sonar & Navigation,2011,5(5):561-572.
[8] KENT H, MICHAEL T. Comparison of Predicted and Measured Multipath Impulse Responses[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011,47(3):1696-1702.
[9] 吳海,劉艷蘋(píng). 一種解決多路徑效應(yīng)影響的方法[J]. 現(xiàn)代雷達(dá),2007,29 (5): 26-31.
WU Hai, LIU Yan-ping. A Method to Avoid the Multipath Effect[J]. Modern Radar, 2007,29 (5): 26-31.
[10] 張媛,張林讓,馬劍英. 超寬帶雷達(dá)低空多路徑回波建模與仿真[J].信號(hào)處理,2005,21 (4A): 571-574.
ZHANG Yuan, ZHANG Lin-rang, MA Jian-ying. Modeling and Simulation for Low Altude Multi-Path Echo of UWB Radar[J]. Signal Processing,2005,21 (4A): 571-574.
[11] Bassem R Mahafza.雷達(dá)系統(tǒng)分析與設(shè)計(jì) [M].2版.陳志杰,羅群,沈齊,譯.北京:電子工業(yè)出版社,2008:241-254.
Bassem R Mahafza. Radar Systems Analysis and Design[M].2nd Ed. CHEN Zhi-jie,LUO Qun,SHEN Qi,Translated. Beijing: Publishing House of Electronics Industry, 2008.241-254.
[12] 高烽.多普勒雷達(dá)導(dǎo)引頭信號(hào)處理技術(shù)[M].北京:國(guó)防工業(yè)出版社, 2001.
GAO Feng. Signal Processing Technology for Doppler Radar Seeker[M]. Beijing: National Defense Industry Press, 2001.