鐘春暉
(1.北京科技大學(xué)土木與環(huán)境工程學(xué)院,北京 100083;2.江西理工大學(xué)資源與環(huán)境工程學(xué)院,江西 贛州 341000 )
·安全與環(huán)?!?/p>
銀山礦邊坡滑坡類型分析及邊坡角優(yōu)化
鐘春暉1,2
(1.北京科技大學(xué)土木與環(huán)境工程學(xué)院,北京 100083;2.江西理工大學(xué)資源與環(huán)境工程學(xué)院,江西 贛州 341000 )
以銀山礦為工程背景,通過(guò)現(xiàn)場(chǎng)區(qū)域地質(zhì)情況及滑坡類型的調(diào)查,根據(jù)邊坡失穩(wěn)的力學(xué)理論,分析了銀山礦高陡邊坡滑坡模式及其失穩(wěn)破壞原因。在此基礎(chǔ)上,利用強(qiáng)度折減方法,借助三維數(shù)值計(jì)算軟件,同時(shí)考慮水滲透作用,分別對(duì)各個(gè)坡面的整體穩(wěn)定性進(jìn)行了對(duì)比分析。結(jié)果表明,銀山礦的北東邊坡中的剖面1、剖面2和剖面8經(jīng)過(guò)優(yōu)化后能達(dá)到的最優(yōu)邊坡角分別為44°、46°和45°,西北邊坡中的剖面3和剖面4經(jīng)過(guò)優(yōu)化后能達(dá)到的最優(yōu)邊坡角分別為45°和48°,西邊坡中的剖面5和剖面6經(jīng)過(guò)優(yōu)化后能達(dá)到的最優(yōu)邊坡角分別為46°和44°,南邊坡中的剖面7經(jīng)過(guò)優(yōu)化后能達(dá)到的最優(yōu)邊坡角為44°。對(duì)礦山整體設(shè)計(jì)45°的邊坡角進(jìn)行了整體系統(tǒng)的優(yōu)化,通過(guò)本次邊坡角的優(yōu)化對(duì)礦山整體邊坡的穩(wěn)定性具有一定的實(shí)際意義,同時(shí)能為礦山的安全生產(chǎn)提供一定指導(dǎo)。
高陡邊坡 強(qiáng)度折減法 坡角 優(yōu)化
銀山九區(qū)銅金礦露采5 000 t/d一期設(shè)計(jì)最低標(biāo)高-192 m,封閉圈標(biāo)高72 m,前期初步設(shè)計(jì)最終邊坡角為45°,露天采場(chǎng)最終境界邊坡最高達(dá)到420 m,屬超高邊坡。由于邊坡巖體工程地質(zhì)特性復(fù)雜,并且邊坡下潛伏大量空區(qū),邊坡在擴(kuò)幫過(guò)程特別是北東邊坡局部發(fā)生了滑坡、崩落、塌陷等較為嚴(yán)重的地質(zhì)災(zāi)害。現(xiàn)有的礦山工程巖體特性調(diào)查只是基于邊坡出露地表的巖體進(jìn)行,沒(méi)有進(jìn)行過(guò)專門(mén)的工程地質(zhì)鉆探,邊坡設(shè)計(jì)資料不充分。因此,通過(guò)工程地質(zhì)鉆探,查明邊坡工程地質(zhì)、水文地質(zhì)及巖體力學(xué)參數(shù)等基礎(chǔ)資料,對(duì)最終邊坡角優(yōu)化設(shè)計(jì)及穩(wěn)定性分析保證礦山正常安全生產(chǎn)具有重要意義。
影響邊坡穩(wěn)定性的因素較多,如巖體中的斷層、節(jié)理、層理等不連續(xù)結(jié)構(gòu)特征;雨水沖刷、人工削坡等改變斜坡外形,引起坡體應(yīng)力分布的變化;風(fēng)化作用等引起斜坡巖土體的力學(xué)性質(zhì),使坡體強(qiáng)度發(fā)生變化;此外,區(qū)域構(gòu)造應(yīng)力的變化、地震、爆破、地下靜水壓力和動(dòng)水壓力,以及施工荷載等都對(duì)斜坡穩(wěn)定具有直接影響。在這些因素的綜合作用下,邊坡可能發(fā)生整體或局部的失穩(wěn)破壞,巖坡的失穩(wěn)破壞模式主要有平面剪切滑坡破壞、圓弧型旋轉(zhuǎn)剪切滑坡破壞、傾倒與崩塌破壞。
(1)平面剪切滑坡破壞。平面滑動(dòng)的特點(diǎn)是塊體沿著平面滑移。它的產(chǎn)生是由于這一平面上的抗剪力與邊坡形狀不相適應(yīng)。這種滑動(dòng)往往發(fā)生在地質(zhì)軟弱面的走向平行于坡面,產(chǎn)狀向坡外傾斜的地方。根據(jù)滑面的空間幾何組成,平面滑動(dòng)存在簡(jiǎn)單平面剪切滑坡破壞、階梯式滑坡破壞、三維楔體滑坡破壞等。
(2)圓弧型旋轉(zhuǎn)剪切滑坡破壞。旋轉(zhuǎn)剪切滑動(dòng)的滑面通常成弧形狀,巖體沿此弧形滑面滑移。圓弧形破壞發(fā)生的條件是:當(dāng)巖體中的單個(gè)顆粒與邊坡尺寸相比是極其小的,且這些顆粒由于它們的形狀關(guān)系不是互相咬合的,因而破壞就以圓弧形的模式出現(xiàn)。在均質(zhì)的巖體中極易產(chǎn)生近圓弧形滑面;當(dāng)巖體節(jié)理異常發(fā)育或已破碎,也常常表現(xiàn)為圓弧狀滑動(dòng);高度蝕變和風(fēng)化的巖石也傾向于以這種方式破壞。因而按圓弧破壞假定來(lái)設(shè)計(jì)露天采礦場(chǎng)周?chē)采w層中的邊坡是合適的。通過(guò)現(xiàn)場(chǎng)調(diào)查,現(xiàn)狀邊坡中未見(jiàn)明顯的具有一定規(guī)模的圓弧型滑坡破壞。
(3)傾倒與崩塌破壞。傾倒與崩塌是指塊狀巖體與巖坡分離向前翻滾而下在崩塌過(guò)程中,巖體無(wú)明顯滑移面,同時(shí)下落巖塊或未經(jīng)阻擋而直接墜落于坡腳。產(chǎn)生傾倒與崩塌破壞的原因,從力學(xué)機(jī)理分析,可認(rèn)為是巖體在重力與其他外力共同作用下超過(guò)巖體強(qiáng)度而引起的破壞現(xiàn)象。巖坡的傾倒與崩塌常發(fā)生于既高又陡的邊坡前緣地段。
2.1 邊坡角優(yōu)化方法
強(qiáng)度折減法,即不斷折減巖體的強(qiáng)度直至邊坡失穩(wěn),強(qiáng)度折減的倍數(shù)就是邊坡安全系數(shù)。這種強(qiáng)度折減理論應(yīng)用到有限元或有限差分法中可以表述為:在保持外載荷不變的條件下,將黏聚力c和內(nèi)摩擦角φ同時(shí)除以折減系數(shù)Fs,獲得一組新的材料參數(shù)c′、φ′:
(1)
然后將新的材料參數(shù)進(jìn)行數(shù)值模擬分析,借助三維有限差分?jǐn)?shù)值計(jì)算軟件FLAC3D,從塑性區(qū)貫通和計(jì)算不收斂2種判據(jù)來(lái)求解邊坡臨界失穩(wěn)破壞的安全系數(shù)。經(jīng)過(guò)循環(huán)計(jì)算直至邊坡達(dá)到臨界失穩(wěn)狀態(tài),此時(shí)的強(qiáng)度折減系數(shù)Fs視為邊坡安全系數(shù)。將邊坡安全系數(shù)介于1.15~1.25視為邊坡角優(yōu)化設(shè)計(jì)的目標(biāo);邊坡安全系數(shù)介于1.15~1.25,認(rèn)為邊坡角優(yōu)化設(shè)計(jì)達(dá)到最優(yōu)狀態(tài);當(dāng)安全系數(shù)小于1.15時(shí),認(rèn)為邊坡角比最優(yōu)邊坡角偏大,應(yīng)適當(dāng)減小邊坡角;當(dāng)安全系數(shù)大于1.25,認(rèn)為邊坡角比最優(yōu)邊坡角偏小,應(yīng)適當(dāng)增大邊坡角,如表1所示。
表1 滑坡穩(wěn)定性狀態(tài)劃分
2.2 邊坡角模擬及結(jié)果分析2.2.1 計(jì)算剖面
銀山九區(qū)銅金礦前期初步設(shè)計(jì)最終邊坡角為45°,臺(tái)階高度為12 m。露天采場(chǎng)各邊坡中,最終境界邊坡最高為420 m,屬超高邊坡,位于北東邊坡,即圖1(a)中剖面1位置,西北邊坡、西邊坡和南邊坡最高位置分別位于圖1(a)中剖面3、剖面5和剖面7位置,最終邊坡的高度對(duì)邊坡穩(wěn)定性具有重要影響,因此選取這些剖面作為最終邊坡角優(yōu)化的計(jì)算剖面。此外,適當(dāng)增加計(jì)算坡面,可使計(jì)算結(jié)果精細(xì)化,更精確確定各邊坡的最終邊坡角,且各邊坡含有不同的巖體組成及其結(jié)構(gòu)特征,而這也是影響邊坡穩(wěn)定性的重要因素,因此增加剖面2、剖面4、剖面6和剖面8作為計(jì)算剖面。結(jié)合前期完成的邊坡工程地質(zhì)分區(qū)可知,西邊坡共有剖面5和剖面6兩個(gè)計(jì)算剖面,西北邊坡共有剖面3和剖面4兩個(gè)計(jì)算剖面,北東邊坡共有剖面1、剖面2和剖面8三個(gè)計(jì)算剖面,南邊坡有剖面7一個(gè)計(jì)算剖面。根據(jù)上述選取的各計(jì)算剖面位置特征及前期建立的反映各類型巖組空間分布的三維模型,確定各剖面上的巖體分布特征,基于此,分別建立各計(jì)算剖面的模型,鑒于篇幅,只給出了剖面1的計(jì)算模型,見(jiàn)圖1(b)。模型計(jì)算所需參數(shù)參見(jiàn)表2。
表2 巖體相關(guān)力學(xué)參數(shù)
(a)剖面位置
(b)剖面1計(jì)算模型
2.2.2 結(jié)果分析
(1)邊坡安全性分析。對(duì)建立的各計(jì)算剖面模型進(jìn)行45°邊坡角模擬計(jì)算,計(jì)算得到各剖面的未考慮滲流前的安全系數(shù),再運(yùn)用Geostudio軟件,通過(guò)對(duì)比滲流前后的邊坡安全系數(shù),求得平均滲流折減系數(shù),將此系數(shù)乘未考慮滲流求得的邊坡安全系數(shù),從而得出45°邊坡角邊坡各剖面考慮滲流后的安全系數(shù),見(jiàn)表3 。圖2為剖面1數(shù)值計(jì)算結(jié)果。
表3 各剖面的邊坡安全系數(shù)計(jì)算結(jié)果
(2)邊坡角度優(yōu)化。按照前述邊坡角優(yōu)化方法,根據(jù)各剖面45°邊坡角模擬計(jì)算結(jié)果,確定相應(yīng)的邊坡角調(diào)整方案。其中剖面4、剖面5和剖面2安全系數(shù)均大于1.25,因此應(yīng)適量增大邊坡角后重新進(jìn)行計(jì)算;剖面3和剖面8安全系數(shù)分別為1.255和1.258,與安全系數(shù)優(yōu)化范圍上限值1.25接近,此處不再對(duì)其邊坡角進(jìn)行調(diào)整,以45°作為該剖面的最優(yōu)邊坡角;剖面1、剖面6和剖面7安全系數(shù)分別為1.145、1.131和1.129,接近并略小于安全系數(shù)優(yōu)化范圍下限值1.15,因此不再進(jìn)行邊坡角的模擬計(jì)算,以44°作為其最優(yōu)邊坡角。根據(jù)上述各剖面邊坡角調(diào)整方案,剖面4安全系數(shù)最大,為1.880,將邊坡角調(diào)整為48°時(shí),其安全系數(shù)為1.274,介于安全系數(shù)優(yōu)化范圍內(nèi),因此以48°作為其最優(yōu)邊坡角。
(a)剖面1位移矢量圖
(b)剖面1剪應(yīng)變?cè)隽吭茍D
根據(jù)上述計(jì)算結(jié)果,得出北東邊坡剖面1、剖面2和剖面8最優(yōu)邊坡角分別為44°、46°、45°,西北邊坡剖面3和剖面4的最優(yōu)邊坡角分別為45°、48°,西邊坡剖面5和剖面6最優(yōu)邊坡角分別為46°、44°,南邊坡剖面7最優(yōu)邊坡角為44°,邊坡角優(yōu)化模型如圖3。
圖3 優(yōu)化后的邊坡角三維示意
(1)北東邊坡剖面1、剖面2和剖面8最優(yōu)邊坡角分別為44°、46°、45°,西北邊坡剖面3和剖面4的最優(yōu)邊坡角分別為45°、48°,西邊坡剖面5和剖面6最優(yōu)邊坡角分別為46°、44°,南邊坡剖面7最優(yōu)邊坡角為44°。
(2)計(jì)算的8個(gè)剖面中,剖面1、剖面2、剖面5、剖面6和剖面8滑坡面由邊坡坡頂貫通至坡腳;剖面3、剖面4和剖面7滑坡面的潛在剪出口位于邊坡坡腳上方,其中剖面3的潛在剪出口約位于-170~-150 m標(biāo)高位置,剖面4的潛在剪出口約位于-145~-120 m標(biāo)高位置,剖面7的潛在剪出口約位于-95~-75 m標(biāo)高位置。在相應(yīng)的潛在剪出位置要進(jìn)行邊坡加固,并布置位移監(jiān)測(cè)點(diǎn)。
(3)在結(jié)構(gòu)面發(fā)育、巖體破碎等位置,應(yīng)采取局部邊坡加固措施,在大斷層位置,需適當(dāng)減緩邊坡角,如南邊坡的大斷層位置,采用42°邊坡角。
[1] 鄭穎人,趙尚毅,時(shí)衛(wèi)民,等.邊坡穩(wěn)定分析的一些進(jìn)展[J].地下空間,2001,21(4):262-271. Zheng Yingren,Zhao Shangyi,Shi Weimin et al.Progress in analysis of slope stability[J].Underground Space,2001,21(4):262-271.
[2] 蔡美峰,喬 蘭,李長(zhǎng)洪,等.深凹露天礦高陡邊坡穩(wěn)定性分析與設(shè)計(jì)優(yōu)化[J].北京科技大學(xué)學(xué)報(bào),2004,26(5):465-470. Cai Meifeng,Qiao Lan,Li Changhong,et al.Stability analysis and design optimization of high and steep slope in Shuichang Open-Pit Mine[J].Journal of University of Science and Technology Beijing,2004,26(5):465-470.
[3] 張國(guó)新,趙 妍,彭校初.考慮巖橋斷裂的巖質(zhì)邊坡傾倒破壞的流形元模擬[J].巖石力學(xué)與工程學(xué)報(bào),2007,26(9):1773-1780. Zhang Guoxin,Zhao Yan,Peng Xiaochu.Simulation of toppling failure of rock slope by numerical manifold method considering fracture of rock bridges[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(9):1773-1780.
[4] 李仲奎,戴 榮,姜逸明.FLAC3D分析中的初始應(yīng)力場(chǎng)生成及在大型地下洞室群計(jì)算中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2002,21(2):2387-2392. Li Zhongkui,Dai Rong,Jiang Yiming.Improvement of the generation of the initial stress field by using FLAC3Dand application in a huge underground cavern group[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(2):2387-2392.
[5] 常 春,馮夏庭,王泳嘉,等.露天礦邊坡角的優(yōu)化設(shè)計(jì)[J].東北大學(xué)學(xué)報(bào):自然科學(xué)版,1996,17(5):470-474. Chang Chun,Feng Xiating,Wang Yongjia,et al.Optimal design of slope angle for open-pit mines[J].Journal of Northeastern University:Natural Science, 1996,17(5):470-474.
[6] 鄭穎人,趙尚毅.有限元強(qiáng)度折減法在土坡與巖坡中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2004,23(29):3382-3555. Zheng Yingren,Zhao Shangyi.Application of strength reduction FEM in soil and rock slope[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(29):3382-3555.
[7] 劉煥新,蔡美峰,郭奇峰.滲流作用下邊坡穩(wěn)定性模糊評(píng)判與邊坡角優(yōu)化[J].有色金屬:礦山部分,2013,65(3):66-69. Liu Huanxin,Cai Meifeng,Guo Qifeng.Fuzzy judgment on slope stability and slope angle optimization under the seepage action[J].Nonferrous Metals:Mining Section,2013,65(3):66-69.
[8] 李 云,楊 珊,鐘福生.基于有限元與極限平衡分析的露天礦邊坡角優(yōu)化[J].中國(guó)安全科學(xué)學(xué)報(bào),2012,22(2):145-150. Li Yun,Yang Shan,Zhong Fusheng.Rock slope angle optimization based on finite element method and limit equilibrium theory[J].China Safety Science Journal,2012,22(2):145-150.
[9] 孫樹(shù)海,曹蘭柱,張立新.露天礦邊坡穩(wěn)定性的模糊綜合評(píng)判[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào),2007,26(2):177-179. Sun Shuhai,Cao Lanzhu,Zhang Lixin.Fuzzy comprehensive judgment method used in slope stability of strip mine[J].Journal of Liaoning Technical University,2007,26(2):177-179.
[10] 徐衛(wèi)亞,蔣中明,石安池.基于模糊集理論的邊坡穩(wěn)定性分析[J].巖土工程學(xué)報(bào),2003,25(4):409-413. Xu Weiya,Jiang Zhongming,Shi Anchi.Slope stability analysis using fuzzy sets theory[J].Chinese Journal of Geotechnical Engineering,2003,25(4):409-413.
[11] 趙靜波,李 莉,高 謙.邊坡變形預(yù)測(cè)的灰色理論研究與應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(S2):5799-5802. Zhao Jingbo,Li Li,Gao Qian.Research and application of the grey theory to slope deformation prediction[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(S2):5799-5802.
(責(zé)任編輯 石海林)
Analysis of Slope Sliding Type and the Slope Angle Optimization in Yinshan Mine
Zhong Chunhui1,2
(1.SchoolofCivilandEnvironmentEngineering,UniversityofScienceandTechnologyBeijing,Beijing100083,China;2SchoolofResources&EnvironmentEngineering,JiangxiUniversityofScienceandTechnology,Ganzhou341000,China)
With Yinshan mine as engineering background,and based on the field investigation of regional geology and the slope sliding type,the sliding mode of high steep slope in Yinshan Mine and the factors for destabilization were analyzed according to the theory of mechanics for slope sliding.Based on this,the integrated stability of each slope were contrasted and analyzed by strength reduction method and FLAC3Dnumerical method,meanwhile considering the water permeation.The results showed that:the optimal slope angle at section 1,section 2 and section 8 of North-East slope can reach 44°,46°and 45° respectively after optimization.The optimal slope angle at section 3 and section 4 of North-West slope reach 45°and 48°.The optimal slope angle at section5 and section 6 of Western slope is 46°and 44°,and the optimal slope angle at section 7 of southern slope is 44°.The mine design with slope angle of 45° is wholly optimized,which has practical significance on keeping slope stability.Meanwhile,the research provides guidance to safety production of Yinshan mine.
High slope,Strength reduction,Slope angle,Optimization
2014-05-21
鐘春暉(1968—),男,講師,博士研究生。
TD854.6
A
1001-1250(2014)-08-116-04