王 麗
(上海電機(jī)學(xué)院 數(shù)理教學(xué)部,上海201306)
一維等溫歐拉方程組可以寫(xiě)為如下形式:
式中,ρ為流體的密度;u為流體的速度;p為流體的壓強(qiáng);e為流體的內(nèi)能;t為時(shí)間;x為變量。
式(1)中,壓強(qiáng)和音速c分別滿足p=ρ和c=1,且內(nèi)能滿足如下關(guān)系:
式中,S為流體的熵;R為常數(shù)[1]。
在流體動(dòng)力學(xué)的研究中,一般假定流體是定常、等熵或無(wú)旋的。然而,對(duì)流體做等溫的假設(shè)在工業(yè)上應(yīng)用廣泛,如通過(guò)安裝制冷設(shè)備使得管道流等溫,以減少壓縮的成本[2]。等溫歐拉方程組的重要性不僅體現(xiàn)在生產(chǎn)實(shí)踐中,它在理論上的應(yīng)用也頗為廣泛[3-6]。
在非線性雙曲守恒律的研究領(lǐng)域,黎曼問(wèn)題是非?;镜膯?wèn)題之一。不同學(xué)者借助不同的模型(如歐拉方程組、壓力-梯度方程、零壓氣體等)研究了黎曼問(wèn)題。一般來(lái)講,黎曼問(wèn)題的解包含中心波、激波和接觸間斷。本文將構(gòu)造另一種形式的黎曼解,即式(1)黎曼問(wèn)題的Delta激波解。關(guān)于Delta激波解,可以參見(jiàn)文獻(xiàn)[7-13] 中的結(jié)果以及其中的參考文獻(xiàn)。
式(1)的矩陣形式為
式(3)中的3個(gè)特征值為
故式(1)是嚴(yán)格雙曲的。式(3)相應(yīng)的右特征向量為
由式(4)、(5)知,
考慮式(1)帶有如下初值的黎曼問(wèn)題:
式中,l、r表示初值的左、右狀態(tài)。
黎曼問(wèn)題式(1)、(6)的解包含中心波、激波和接觸間斷,此處不做贅述。
考慮如下形式的Delta激波解:
式中,δ(x-x(t))為帶有支集x=x(t)的標(biāo)準(zhǔn)狄利克雷測(cè)度;ω(t)為Delta激波x=x(t)的權(quán)重。若式(7)、(8)是式(1)的一個(gè)測(cè)度解,則需滿足如下形式的Rankine-Hugoniot條件:
式中,p=ρ。
式(9)的初值條件為
若(ρi,ui,ei)(i=1,r)是常狀態(tài),通過(guò)求解式(9)、(10),若ρr≠ρl時(shí)可得:
若ρr=ρl,可得:
除滿足式(11)、(12),Delta激波解還需滿足如下的熵條件:
圖1所示為Delta激波解示意圖。
圖1 Delta激波解Fig.1 Delta shock wave solution
等溫歐拉方程組在工業(yè)實(shí)際中應(yīng)用廣泛,黎曼問(wèn)題是流體動(dòng)力學(xué)中非常重要的基本問(wèn)題。本文重點(diǎn)研究了Delta激波解的結(jié)構(gòu),這也是目前研究的熱門(mén)領(lǐng)域。因此,本文在研究對(duì)象和研究的問(wèn)題上都頗具意義。
[1] Chen Guiqiang,Christoforou C,Zhang Yongqian.Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number[J] .Archive for Rational Mechanics and Analysis,2008,189(1):97-130.
[2] Osiadacz A J,Chaczykowski M.Comparison of isothermal and non-isothermal pipeline gas flow models[J] .Chemical Engineering Journal,2001,81(1-3):41-51.
[3] Poupaud F,Rascle M,Vila J P.Global solutions to the isothermal Euler-poisson system with arbitrarily large data[J] .Journal of Differential Equations,1995,123(1):93-121.
[4] Yuen M.Analytical blowup solutions to the 2-dimensional isothermal Euler-poisson equations of gaseous stars[J] .Journal of Mathematical Analysis and Applications,2008,341(1):445-456.
[5] Huang Feimin,Wang Zhen.Convergence of viscosity solutions for isothermal gas dynamics[J] .SIAM Journal on Mathematical Analysis,2002,34(3):595-610.
[6] Bhat H S,F(xiàn)etecau R C.On a regularization of the compressible Euler equations for an isothermal gas[J] .Journal of Mathematical Analysis and Applications,2009,358(1):168-181.
[7] Korchinski D J.Solutions of a Riemann Problem for a System of Conservation Laws Possessing No Classical Weak Solution[M] .Thsis:Adelphi University,1977:123-150.
[8] Li Jiequan,Zhang Tong,Yang Shuili.The Two-dimensional Riemann Prolem in Gas Dynamics[M] .[S.L.] :CRC Press Inc.,1998:151-190.
[9] Nedeljkov M,Oberguggenberger M.Interactions of delta shock waves in a strictly hyperbolic system of conservation laws[J] .Journal of Mathematical Analysis and Applications,2008,344(2):1143-1157.
[10] Shen Chun,Sun M.Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model[J] .Journal of Differential Equations,2010,249(12):3024-3051.
[11] Tan D C,Zhang T,Chang T,et al.Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws[J] .Journal of Differential Equations,1994,112(1):1-32.
[12] Wang Zhen,Zhang Qingling.The Riemann problem with delta initial data for the one-diemensional Chaplygin gas equations[J] .Acta Mathematica Scientia,2012,3(2):825-841.
[13] Shen Chun,Sun M.Interactions of delta shock waves for the transport equations with split delta functions[J] .Journal Mathematical Analysis and Applications,2009,351(2):747-755.