• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady thermal hydraulic characteristics of nuclear steam generatorsbased on the drift flux code model?

    2014-08-05 09:13:26ZHANGXiaoYing張小英CHENHuanDong陳煥棟BAINing白寧ZHUYuanBing朱元兵RENZhiHao任志豪andHUANGKai黃凱
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:志豪

    ZHANG Xiao-Ying(張小英),CHEN Huan-Dong(陳煥棟),BAI Ning(白寧),ZHU Yuan-Bing(朱元兵),REN Zhi-Hao(任志豪),and HUANG Kai(黃凱),

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    Steady thermal hydraulic characteristics of nuclear steam generators
    based on the drift flux code model?

    ZHANG Xiao-Ying(張小英),1CHEN Huan-Dong(陳煥棟),1BAI Ning(白寧),2ZHU Yuan-Bing(朱元兵),2REN Zhi-Hao(任志豪),2and HUANG Kai(黃凱)2,?

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG),a 1D simulation code based on the four-equation drift flux model is developed.The U-tube channels presumably consist mainly of the primary channel,secondary channel,and tube wall.In the sub-cooling regions of the primary and secondary channels,flow is simulated using the single-phase flow model,whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model.The first-order equations of upwind difference are derived based on the staggered grid.Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement.The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%,75%,50%,30%,and 15%power conditions.Analysis results are then compared with the simulation results obtained using RELAP5.

    U-tube steam generator,Thermal hydraulic characteristic,Steady simulation,Four-equation drift flux model

    I.INTRODUCTION

    The U-tube steam generator(SG)is a heat exchanger that connects the primary and secondary coolant loops in a nuclear power plant(NPP).According to worldwide statistics, operational accidents of SG-related pressurized water reactor(PWR)account for a large proportion of all PWR accidents[1].Approximately 1/4 of the unplanned outage cases in PWR NPPs are caused by SG failure.Given that the flow and heat transfer in the primary and secondary loops are closely connected to the safety and stable operation of the SG,it is of importance to understand their thermal hydraulic characteristics.

    The U-tube SG can presumably be a nonlinear,complex system with many flowing parameters.Studies on the thermal hydraulic behavior of SGs have achieved greatly.The followings are examples of SG simulation codes.The THEDA2 code developed in the U.S.uses 3D conservation equations of mass,momentum,and energy for a homogeneous equilibrium mixture(HEM)model[2].The ATHOS code applies either the three-equation HEM model or the four-equation drift flux model with options for 1D,2D,and 3D analyses[3].The THIRST code developed by AECL for 700MWe SG,is a 1D thermal hydraulic[4].Several thermal hydraulic codes for NPP SGs were developed in China.Based on the 1D separated fluid model,the SGTH-2 performs steady analysis of the U-tube SG[5].The MOFS is based on the 1D HEM model[6],while the SG code for high-temperature gas cooling reactors follows the 2D HEM model[7].

    Most of the existing thermal hydraulic codes for NPP SGs utilize the classical HEM model,which treats the two-phaseflow of steam and water as a uniform mixture.However,it usually simulates the flow in the secondary loop with areaaveraged variables.Given that coolant temperature varies significantly from the top to bottom of the U-tube bundles, both temperature and heat transfer coefficients vary considerably in the two flows.To examine the thermal-hydraulic characteristics of NPP SGs thoroughly,a code with a detailed model shall be developed.

    In this paper,we present a thermal hydraulic code for NPP SGs in a geometric model composed of the primary and secondary loops,U-tube,and steam room.The unique secondary loop model is divided into hot and cold sides,and the flow in it is simulated using the four-equation drift flux model and is analyzed thermal-hydraulically through coupling with heat transfer of the tube wall.Finally,the code is used to implement and verify the Qinshan NPP SG.The thermal hydraulic parameters are computed at 100%,75%,50%,30%,and 15% power rates.

    II.GEOMETRIC MODEL

    Given the complicated actual structure,the geometry of the nuclear SG should be simplified in modeling and thermal hydraulic simulation.This work considers the U-tube NPP SG. The primary loop of the SG is assumed as a straight tube of equal length.The secondary loop is circular and consists of the water supply chamber and the descending and ascending channels.The ascending channel consists of the sub-cooling, boiling,and ascent sections.In the secondary loop,the division of hot and cold sides is defined by the flow direction in the primary loop.The side with the primary inlet flow(the hot side)is hotter than the side with the primary outlet flow (the cold side).The SG structure is composed of the primary and secondary loops,heat transfer tube,and steam room,as shown in Fig.1.The straight section of the two loops is 7-mlong.The U-tubes are 0.022m in diameter,with a total length of 16m.

    Fig.1.Simplified geometric frame of the SG.

    III.FIELD EQUATIONS

    In the U-tube SG,the flow types are of the single-and two-phase regions.Specifically,the flow in the primary loop and in sub-cooling sections of the secondary loop remains single-phase,whereas the two-phase region is illustrated by the flow in the boiling sections of the secondary loop.The two-phase regions are complicated in terms of flow and heat transfer.Thus,two sets of governing equations are established to model the single-and two-phase flows.

    A.Balance equations for single-phase regions

    In the sub-cooling sections of the U-tube SG,the singlephase region covers the primary loop,descending channel, and sub-cooling sections of the secondary loop.These regions utilize the single-phase flow model,and the respective balance equations of mass,energy,and momentum are as follows:

    B.Balance equations for two-phase regions

    The two-phase flow is mainly observed in the boiling section of the secondary loop of the U-tube SG.The equation of the four-equation drift flux model governs this region.This equation considers the velocity slipurat the two-phase interface and the variation in void fraction along the flow path.In our work,the 1D,area-averaged governing equations of the four-equation drift flux model used are expressed as[8]:

    where the subscript“m”pertains to fluid mixture parameters;ρmis density;Gmis mass rate;umis velocity;hmis enthalpy; andur=ug?ufis the relative velocity of the liquid and gaseous phases.

    C.Heat transfer model

    We model the heat transfer between the primary and secondary loops in the U-tube SG through the heat conduction of the tube wall.The heat transfer of the U-tube wall can then be simulated through 1D conduction in the cylindrical geometry.The convection heat transfer rate between the wall and the coolant is the source term,and the heat conduction equation is given by

    D.Correlations

    To close the field equations discussed above,we must determine the correlations in the thermal property of the fluid and wall materials,as well as the criteria for the different flow structures,resistances,heat,and mass transfers.Theunknown variables that must be derived from correlations includeρm,cp,m,Γg,hf,hg,τwf,τwg,Uwf,Uwg,Uhf,Uhg,q,ρf, andρg.

    To identify the thermal property of water and steam,we apply the formulas provided by the industrial standard IAPWSIF97[9].The property of the Incoloy-800 alloy is considered for the tube wall.Moreover,we apply the model of Taitel and Dukler in the structural criteria for flow[10].According to their model,bubble flow transitions to slug flow when bubble speedubis greater than Taylor bubble speedutbgiven a low flow rate in the tube with a small diameter tube(Gm<2000kg/(m2s)).This transition occurs when the void fraction is greater than 0.5 at an increased flow rate (Gm>3000kg/(m2s)),as shown by

    The transition from slug flow to annular flow can be determined through the superficial velocity and the Kutateladze (Ku)number of the flow[11].The transition is observed in the flow in the channels with small diameters when gaseous superficial velocity exceeds the critical superficial velocityjg,crit.However,the transition is initiated when the gaseous Ku number is greater than the critical Ku number,as expressed by

    The flow resistance in the U-tube SG considers the resistance to both gravitation and friction.The Darcy formula is applied in relation to the friction resistance of the singlephase flow.The split-phase friction model of Martinelli is employed[11]in relation to the friction resistance in the twophase flow as:

    The convective heat transfer coefficient of the single-phase flow is calculated using the D–B formula with regard to flow in the primary loop and in the pre-heating section of the secondary loop.The D–B formula is calculated according to Chen’s equation for the boiling section of the secondary loop [12],

    The onset of nucleate boiling is computed using the model developed by Bergles and Rohsenow[13]:

    IV.NUMERICAL SCHEMES

    A.Numerical schemes of the flow field

    In our solution,we apply the semi-implicit difference scheme.We treat the convection terms in the mass and energy equations,the pressure gradient,and the two-phase mass transfer in the momentum equation implicitly,whereas all other differential terms are examined explicitly.The staggered grids are applied in discretization,and two groups of control volumes are established in the same flow channel. The control volumes for pressure,void,density,and enthalpy are arranged in a staggered formation along with those for velocity.The mass and energy equations are discretized given thecontrolvolumegroupsi?1,i,andi+1,whicharealsoimplemented by control volume groupsj?1,j,andj+1 given the momentum equation.The values of the flow parameter are presumably uniform in all control volumes.Fig.2 depicts the established staggered grids and control volumes.

    Fig.2.Staggered grids for the discretization of flow conservation equations.

    In relation to the four-equation drift flux model used in the secondary loop,the semi-implicit discretization equations are listed below[13]:

    The discretization equations of the single-phase flow in the primary loop are similar in form to those given above. To solve these discretization equations,we adopt a velocity–pressure correction scheme.First,the unknown pressure of the new time step is assigned a value equal to that of the old time step.Subsequently,the momentum equation is solved to estimate the velocity value of the new time step.Once the mixture mass,gaseous mass,and mixture energy equationsarerearranged,weobtainthefollowingmatrixequations for

    We apply a large time step,such as Δt=106s,for the steady state analysis.In this case,the time-derivative term is very small and can be disregarded in the discretization equations.Thus,the balance equations above can then be applied to the steady-state solution.

    B.Solution for the U-tube wall conduction

    Equation(8)is integrated into cylindrical volume 2πrdrdlat the time step Δtin relation to the heat conduction of the U-tube wall to generate the discretization equation for wall temperature.

    C.Cross-iteration of heat balance and the natural circulation condition

    In the U-tube SG,heat transfer is simultaneous in the primaryandsecondaryloops;thus,flowandheattransferinboth loops must be coupled for solving.We adopt a coupled iteration scheme that converges these factors when both heat balance and the natural circulation condition are satisfied.In heat balance,the heat transfer in the primary loop is equal to that in the secondary loop.In the natural circulation condition,the head of driving pressure must meet the total pressure drop of the entire system,that is,

    In the iteration of heat balance,the heat fluxes in the primary and secondary loops are initially assumed to be a group of values.Subsequently,matrix Eq.(18)is solved to determine the flow parameters.The heat fluxes in the two loops are then computed in turn.In addition,the heat balance condition is validated.If the difference in heat flux between the primary and secondary loops is greater than a preset limit, the temperature of the coolant that enters the primary loop is corrected and a new iteration of heat balance is initiated.

    In the iteration of natural circulation,the dichotomy scheme is applied.First,the value of flow rateWis set,and the difference in pressure head and resistance is computed asf(W)=DH?D.The flow rate is then modified slightly to flip the sign off(W′).The value of the flow rate is updated byWn+1=(W+W′)/2.The corrective iteration ofWcontinues untilf(W)meets a pre-set limit.Based on the theoretical model above,we therefore develop a code for the steady-state thermal hydraulic simulation of the nuclear U-tube SG.A numerical scheme is also established using MATLAB software.

    V.SIMULATION RESULTS

    The steady-state thermal hydraulic characteristics of the SG in the Qinshan 300MW PWR are investigated with respect to the thermal hydraulic code presented for nuclear U-tube SGs.The grid gap measures 1.2m along the U-tube length.Moreover,this study considers five cases under different power conditions,namely,100%,75%,50%, 30%,and 15%.The results at the 100%power condition are compared with those simulated using the RELAP5 code[14]. Table 1 lists the required computation parameters given this power condition.

    Figures 3–7 show the computed steady-state thermal hydraulic parameters at the100%power level.The tube lengths are 0–8m and 8–16m for the hot and cold sides of the secondary loop,respectively.The results of the primary loop are plotted according to full tube length,whereas those of the secondary loop are plotted based on half tube length.Fig.3 presents the temperatures of the coolant in the primary and secondary loops and of the tube wall.The coolant temperature decreases along the tube in the primary loop;in the secondary loop,however,the inlet coolant is slightly sub-cooled.Thus,the coolant temperature increases to saturation level after a short distance.

    TABLE 1.Condition parameters for 100%power.

    Fig.3.Temperatures of the primary fluid(■,□),secondary fluid(?,?),andU-tubewall(▲,△)intheSG.Thesolidsymbolsrepresentsthe results of the current work,and the blank symbols denote the results obtained from RELAP5.

    The simulation results with our code differ only slightly from those obtained with RELAP5.With respect to the coolant temperature of the secondary loop,our results are slightly lower than those derived from RELAP5.This may be attributed to different correlations assigned to the convection coefficient.In RELAP5,a modified correlation of the convection heat transfer coefficient(Nu=2.0+ 0.74Re1/2Pr1/3)is applied to the single-phase liquid and sub-cooled boiling regions[14],whereas our study utilizes the D–B correlation.So,our technique generates a convection coefficient value that is smaller than that obtained with RELAP5.Temperature of the U-tube wall varies along the lengths in a manner that is almost similar to the coolant in the primary loop.This is ascribed to the fact that the heat resistance of the primary loop is much smaller than that of the secondary loop because the latter displays a noticeable fouling resistance.

    Fig.4.Phase velocity in the hot((■,□)and cold((▲,△)channels of the secondary loop under the 100%power condition.The solid symbols represent the results of this work,and the blank symbols denote the results obtained from RELAP5.

    Fig.5.Enthalpy of the fluid in the primary and secondary loops.

    Figure 4 displays the gaseous and liquid velocities of the flow in the secondary loop under the 100%power rate.Both velocities increase continually in the secondary loop from the lower room to the steam room with tube heating and coolant boiling.The two-phase velocities increase in the steam room as a result of the expanding area.Furthermore,gas velocity is always higher than that of liquid because gas phase flow is affected by buoyancy.Nonetheless,the RELAP5 results are 5%higher than those of our code.

    Fig.6.Heat flux on the interior of the U-tube wall.

    Figure 5 exhibits the variation in coolant enthalpy along the tube lengths in the primary and secondary loops.Fig.6 shows the heat flux on the interior of the U-tube wall,which is equal to that of the exterior of the U-tube in steady-state analysis.The coolant enthalpy in the primary loop continues to decrease along the tube length with heat transfer from the primary to the secondary loops,whereas that in the secondary loop continually increases throughout the process as depicted in Fig.5.The heat flux on the interior of the U-tube decreases with tube length as the temperature difference between the tube wall and the coolant decreases along the tube(Fig.6).

    Fig.8.Fluid pressure in the primary and secondary loops under the 100%power.

    Fig.9.Fluid temperature in the primary and secondary loops under the 100%power rate.

    Figure 7 displays the void fraction and the heat transfer coefficient along the tube lengths in the secondary loop.The coolant void fraction is higher in the hot side of secondary loop than that in the cold side given that the heat flux in the hot side is higher.However,the coolant void fractions that enter the steam room from both sides of the secondary loop are similar as a result of lateral mixing.

    Figure 8 depicts the variation in the pressure of the primary and secondary loops.The pressure of the primary loop continually decreases in the ascending part but increases in the descending part with the increase in gravitational potential energy.The pressures are similar at both sides of the secondary loop and continue to progress downward along the tube length.

    Fig.10.Variation in the circulation ratio and in circulation flow with power rate.

    Fig.11.Void fractions inthe cold and hot channels of the secondary loop given different power.

    Figure 9 displays coolant temperatures at five power rates in the primary and secondary loops.In the primary loop,inlet,outlet,and average coolant temperatures increase with the increase in power rate.The temperature of the inlet coolant increases more quickly than that of the outlet coolant.Hence, the variation amplitude of temperature in the primary loop increases with power rate.Fig.10 indicates that the saturation temperature of the coolant decreases when power rate increases.This finding suggests that the cooling capability of the secondary loop has been strengthened.

    Figure 10 presents the variations in circulation ratio and in circulation flow with power rate with regard to the SG.With the increase in power rate from 15%to 100%,the SG circulation flow initially increases at the small power rate but decreases when the power rate exceeds 50%.This result is induced by the coupled effect of driving pressure and circulation resistance.As the boiling length in the secondary loop increases with increasing power rate,the void fraction and driving pressure increase as well.Moreover,the circulation resistance increases with increasing flow rate;hence,the circulation flows downward along the tube length.The circulation ratio continually increases with power rate,as shown in Fig.9.Furthermore,the mass flow of the vapor in the SG continually increases.

    Fig.12.Enthalpy in the(a)primary and(b)secondary loops under different power rates.

    Figure 11 shows the gaseous void fractions in both sides of the secondary loop at 75%,50%,30%and 15%power rates. This fraction increases along the tube lengths of both sides of the secondary loop.In addition,the gaseous void fraction is higher in the hot side than that in the cold side because boiling length is longer in the former.

    Figure 12 depicts the variation in coolant enthalpy with tube length in the primary and secondary loops under15%–75%power rate.The coolant temperature in primary loop decreases along the tube length,where as that in the secondary loop is maximized.The enthalpy variation between the inlet and outlet of the two loops increases with high power rate.This result proves that the heat transfer process from the primary loop to the secondary loop is strengthened.In the secondary loop,coolant enthalpy increases more in the hot side than in the cold side.

    VI.CONCLUSION

    This study presents a steady-state thermal hydraulic code that was developed to thoroughly investigate the thermal hydraulic characteristics of the nuclear U-tube SG.This code is based on the two-zone geometry model of secondary loop. Thermal hydraulic analysis was conducted using the fourequation flux model,and a cross-iteration solution was established to meet the conditions of heat balance and natural circulation.This solution is based on the staggered grids and the first-order scheme of explicit–implicit difference.The steady state thermal hydraulic characteristics of the SG were thus identified using the developed code for the QINSHAN I PWR under 100%,75%,50%,30%and 15%power rates. Moreover,some important thermal and hydraulic parameters were identified for the primary and secondary loops.The results obtained under the100%power rate agree well with the results simulated using RELAP5.Hence,the established theoretical model and numerical scheme can guide the design and safe operation of a nuclear U-tube SG.

    SYMBOL LIST

    ρdensity,kg/m3;

    uvelocity,m/s;

    ttime,s;

    zdistance,m;

    henthalpy,kJ/(kgK);

    Hheat transfer coef fi cient,W/(m2K);

    qheat fl ux,W/m2;

    qvvolume heat,W/m3;

    ggravity,m/s2;

    τwall shearing,Pa;

    Uheat perimeter,m;

    Deequivalent diameter,m;

    ξresistance coef fi cient;

    Φ2two-phase coef fi cient;

    cpspeci fi c heat,J/(kgK);

    Ttemperature,?C;

    rradius,m;

    Ddiameter,m;

    Across section,m2;

    Wmass fl flow,kg/s;

    αvoid fraction;

    xsteam quality;

    λconductivity,W/(m2K);

    Hpressure head,Pa;

    jg,critcritical super fi cial velocity,m/s;

    Tsatsaturation temperature of secondary loop;

    Tpooutlet temperature of primary loop;

    Tpiinlet temperature of primary loop;

    Taveaverage temperature of primary loop;

    SUBSCRIPT

    f liquid;

    g gas;

    p primary loop;

    s secondary loop;

    m mixture;

    w wall;

    b bubble;

    tb Taylor bubble;

    onb bubble onset;

    i,jvolume index;

    a acceleration;

    c Form resistance;

    SUPERSCRIPT

    n,n+1 time step

    [1]James C S and James K A.Nuel Eng Inter,1986,31,83–86.

    [2]Moskal T E,Childerson M T,Carter H R.Amer Contr Conf, 1984,1:85–92.

    [3]Heistand J W and Thakkar J G.ATHOS and FLOW3 simulation of the FRIGG heated rod bundle experiment,Technical Report NP-3541,EPRI,1984.

    [4]Yetisir M,Pietralik J,Mirzai M.Pres Ves P,2003,2:61–69.

    [5]Xue H J and Yan J Q.Nucl P Eng,1989,10:47–50.(in Chinese)

    [6]Xie H,Zhang J L,Jia D N,et al.Nucl P Eng,1998,19:413–418.(in Chinese)

    [7]Yu Y and Ju H M.J Tsinghua Univ(Sci&Tech),2004,44: 1202–1204.(in Chinese)

    [8]Kazimi M and Massoud M.A condensed review of nuclear reactor thermal-hydraulic computer codes for two-phase fl ow analysis.Energy Laboratory Report No.MIT-EL 79-018, February 1980,37–40.

    [9]IAPWS,Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam [OL].Aug.2007,available at http://www.iapws.org.

    [10]Taitel Y,Bornea D,Dukler A E.Aiche J,1980,26:345–354.

    [11]Lockhart R W and Martinelli R C.Chem Eng Prog,1949,1: 39–48.

    [12]Chen J C.Ind Eng Chem Proc DD,1966,5:531–535.

    [13]Bergles A E and Rohsenow W M.J Heat Transf,1964,86: 365–372.

    [14]NUREG/CR-5535/RevP3-VolIV,Relap5mod3.3codemanual volume IV:models and correlations,prepared for the Of fi ce of Nuclear Regulatory Research,US NRC,Washington DC, 2006,42.

    10.13538/j.1001-8042/nst.25.050601

    (Received December 3,2013;accepted in revised form March 3,2014;published online September 20,2014)

    ?Supported by the National Natural Science Foundation of China(Nos. 51376065 and 51176052)

    ?Corresponding author,huangkai@ipp.ac.cn

    猜你喜歡
    志豪
    兵媽媽的腳步
    歌海(2022年4期)2023-01-02 13:29:52
    學(xué)生作品
    火之殤
    大眾攝影(2020年11期)2020-11-02 02:57:36
    黃志豪:尋常生活自有詩(shī)意
    戰(zhàn)友永在我心里
    歌海(2020年1期)2020-03-23 06:05:32
    第二次高考
    青秀山
    歌海(2019年1期)2019-06-11 07:02:15
    基于AHP的外賣商戶綜合評(píng)價(jià)模型
    考試周刊(2018年15期)2018-01-21 10:40:25
    Analyze On—line Star Economy Basing on Models of Entrepreneurship
    等我長(zhǎng)大了,天天背你
    一级av片app| 亚洲高清免费不卡视频| 一级毛片我不卡| 97精品久久久久久久久久精品| 热re99久久精品国产66热6| 精品人妻一区二区三区麻豆| 人人妻人人爽人人添夜夜欢视频 | 在线免费观看不下载黄p国产| 成人亚洲精品av一区二区| av专区在线播放| 最近中文字幕2019免费版| 久久99蜜桃精品久久| 啦啦啦在线观看免费高清www| 国产精品久久久久久av不卡| 麻豆精品久久久久久蜜桃| 又黄又爽又刺激的免费视频.| 成人高潮视频无遮挡免费网站| av网站免费在线观看视频| 亚洲国产精品专区欧美| 国产av国产精品国产| 久久人人爽人人片av| 亚洲av成人精品一区久久| 老司机影院毛片| 亚洲真实伦在线观看| 男女边吃奶边做爰视频| 人妻少妇偷人精品九色| 赤兔流量卡办理| 大话2 男鬼变身卡| 欧美少妇被猛烈插入视频| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 国产精品.久久久| 精品人妻视频免费看| 男女国产视频网站| 最近的中文字幕免费完整| 亚洲在线观看片| 国产av码专区亚洲av| www.色视频.com| 少妇猛男粗大的猛烈进出视频 | 97超视频在线观看视频| 在线 av 中文字幕| 国产精品人妻久久久久久| 国产乱人视频| 97在线视频观看| 精品一区二区三区视频在线| 波多野结衣巨乳人妻| 日韩不卡一区二区三区视频在线| 观看美女的网站| 建设人人有责人人尽责人人享有的 | 又粗又硬又长又爽又黄的视频| 国产成人免费无遮挡视频| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 国产精品av视频在线免费观看| 最近中文字幕高清免费大全6| 国产69精品久久久久777片| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 国产精品精品国产色婷婷| 亚洲精品成人av观看孕妇| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 边亲边吃奶的免费视频| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 黄色一级大片看看| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 别揉我奶头 嗯啊视频| 老司机影院毛片| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| 成人免费观看视频高清| 亚洲自拍偷在线| 欧美另类一区| 99热这里只有是精品在线观看| 中文资源天堂在线| 久久久久精品久久久久真实原创| 插阴视频在线观看视频| 男人添女人高潮全过程视频| 国产爱豆传媒在线观看| 99九九线精品视频在线观看视频| 久久久久久久大尺度免费视频| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 国产成人a∨麻豆精品| 国产在线一区二区三区精| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久国产网址| 久久久久久久久大av| 99热这里只有是精品50| 久久久久久九九精品二区国产| 亚洲精品国产成人久久av| 国产乱来视频区| 国产成人一区二区在线| 亚洲国产av新网站| 国产美女午夜福利| 不卡视频在线观看欧美| 亚洲国产av新网站| 精品人妻熟女av久视频| 免费av观看视频| 国产真实伦视频高清在线观看| 亚洲精品久久午夜乱码| videos熟女内射| 肉色欧美久久久久久久蜜桃 | 人妻一区二区av| 成人一区二区视频在线观看| 国产极品天堂在线| 黄色怎么调成土黄色| 蜜桃亚洲精品一区二区三区| www.av在线官网国产| 99久久精品热视频| 熟女人妻精品中文字幕| 99久久九九国产精品国产免费| 国产精品秋霞免费鲁丝片| 插阴视频在线观看视频| 在线播放无遮挡| 精品人妻视频免费看| 91精品伊人久久大香线蕉| 新久久久久国产一级毛片| 亚洲电影在线观看av| 国产亚洲91精品色在线| 久久久久国产精品人妻一区二区| 看十八女毛片水多多多| 成人国产av品久久久| 免费观看av网站的网址| 在线观看国产h片| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 七月丁香在线播放| 在线免费十八禁| 国产成人午夜福利电影在线观看| 99久久精品热视频| 亚洲欧美日韩另类电影网站 | 亚洲电影在线观看av| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 大香蕉久久网| 欧美国产精品一级二级三级 | 最近2019中文字幕mv第一页| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线 | 五月天丁香电影| 国产精品不卡视频一区二区| 少妇人妻久久综合中文| 麻豆乱淫一区二区| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 午夜精品国产一区二区电影 | 少妇猛男粗大的猛烈进出视频 | 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看| 大片电影免费在线观看免费| 极品教师在线视频| 两个人的视频大全免费| 欧美zozozo另类| 丝袜喷水一区| 国产精品成人在线| 午夜福利视频1000在线观看| 国产成人freesex在线| 美女国产视频在线观看| 韩国av在线不卡| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 久久99热6这里只有精品| 免费av不卡在线播放| 精品久久久久久久久av| 成年av动漫网址| 成人毛片60女人毛片免费| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 在线观看免费高清a一片| 国产精品麻豆人妻色哟哟久久| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 国产精品国产av在线观看| 久久精品久久久久久噜噜老黄| 国内精品宾馆在线| 亚洲最大成人中文| 欧美国产精品一级二级三级 | 国产69精品久久久久777片| 欧美日韩综合久久久久久| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 大片免费播放器 马上看| 99久久精品一区二区三区| 97人妻精品一区二区三区麻豆| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 亚洲怡红院男人天堂| 国产黄色视频一区二区在线观看| 国产老妇女一区| 欧美少妇被猛烈插入视频| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 校园人妻丝袜中文字幕| 久久久久久久亚洲中文字幕| eeuss影院久久| 一本一本综合久久| 色综合色国产| 亚洲最大成人av| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| 男插女下体视频免费在线播放| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 少妇熟女欧美另类| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 老女人水多毛片| 国产极品天堂在线| 大香蕉97超碰在线| 久久女婷五月综合色啪小说 | 欧美97在线视频| 3wmmmm亚洲av在线观看| 国产视频内射| 成人毛片60女人毛片免费| 免费观看无遮挡的男女| 欧美老熟妇乱子伦牲交| 一级a做视频免费观看| 丝瓜视频免费看黄片| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 国产成人freesex在线| 2018国产大陆天天弄谢| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 99久国产av精品国产电影| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 国产极品天堂在线| 午夜福利视频1000在线观看| 免费av不卡在线播放| av在线天堂中文字幕| 日本色播在线视频| 国产老妇伦熟女老妇高清| 久久鲁丝午夜福利片| 一级片'在线观看视频| 色视频www国产| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 色5月婷婷丁香| 欧美精品国产亚洲| 高清在线视频一区二区三区| 免费看a级黄色片| 一本久久精品| 免费av不卡在线播放| 免费大片18禁| 欧美变态另类bdsm刘玥| 啦啦啦在线观看免费高清www| 超碰97精品在线观看| 交换朋友夫妻互换小说| 美女内射精品一级片tv| 日本熟妇午夜| 国产综合精华液| av专区在线播放| 一级毛片 在线播放| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 国语对白做爰xxxⅹ性视频网站| 色5月婷婷丁香| 国产黄a三级三级三级人| 极品少妇高潮喷水抽搐| 少妇丰满av| 国产视频内射| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 老司机影院毛片| 亚洲精品久久午夜乱码| 人妻一区二区av| 国产男女内射视频| 国产色婷婷99| 最近最新中文字幕免费大全7| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| 精品国产一区二区三区久久久樱花 | 有码 亚洲区| 在线观看人妻少妇| 日本wwww免费看| 亚洲精品456在线播放app| 亚洲一区二区三区欧美精品 | 91aial.com中文字幕在线观看| 好男人在线观看高清免费视频| 三级男女做爰猛烈吃奶摸视频| 午夜免费鲁丝| 国产毛片在线视频| 国产精品精品国产色婷婷| 欧美潮喷喷水| 精品久久国产蜜桃| 一级爰片在线观看| 最近最新中文字幕免费大全7| 99热这里只有精品一区| 99热国产这里只有精品6| 成人鲁丝片一二三区免费| 亚洲av中文av极速乱| 久久久久网色| 国产高潮美女av| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 国产黄片视频在线免费观看| 亚洲,欧美,日韩| 久久久久久久午夜电影| 欧美变态另类bdsm刘玥| 精品一区在线观看国产| 久久久欧美国产精品| 一级a做视频免费观看| 99热这里只有是精品50| 精品午夜福利在线看| 涩涩av久久男人的天堂| 七月丁香在线播放| 老女人水多毛片| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| 免费电影在线观看免费观看| videos熟女内射| 日本wwww免费看| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 亚洲图色成人| av国产免费在线观看| 男人爽女人下面视频在线观看| 精品酒店卫生间| 一级二级三级毛片免费看| 在线观看一区二区三区激情| 七月丁香在线播放| av在线老鸭窝| 国产精品人妻久久久影院| 久久久久久久久久久丰满| 欧美日韩精品成人综合77777| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| 建设人人有责人人尽责人人享有的 | 亚洲经典国产精华液单| 王馨瑶露胸无遮挡在线观看| 九九在线视频观看精品| 亚洲va在线va天堂va国产| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 男女无遮挡免费网站观看| 97超视频在线观看视频| 欧美97在线视频| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| av免费在线看不卡| 久久久a久久爽久久v久久| av免费在线看不卡| 免费少妇av软件| 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 99热网站在线观看| 在线观看人妻少妇| 国产男人的电影天堂91| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 国产一区有黄有色的免费视频| 一本色道久久久久久精品综合| 尤物成人国产欧美一区二区三区| 国产精品一及| 精品久久久噜噜| 啦啦啦在线观看免费高清www| 午夜精品一区二区三区免费看| 一本色道久久久久久精品综合| tube8黄色片| 一级毛片 在线播放| 亚洲人成网站在线播| 欧美bdsm另类| 久久精品国产亚洲av天美| 精品一区二区免费观看| 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| 成人综合一区亚洲| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 听说在线观看完整版免费高清| 亚洲精华国产精华液的使用体验| 黄色怎么调成土黄色| 日本熟妇午夜| 国产免费一区二区三区四区乱码| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 成年免费大片在线观看| 日韩伦理黄色片| 国产爽快片一区二区三区| 亚洲怡红院男人天堂| 国产日韩欧美亚洲二区| 午夜激情久久久久久久| 另类亚洲欧美激情| 日本av手机在线免费观看| 不卡视频在线观看欧美| 亚洲高清免费不卡视频| 永久网站在线| 人妻少妇偷人精品九色| 久久99蜜桃精品久久| 久热久热在线精品观看| 国产成人91sexporn| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 熟女av电影| 免费大片18禁| 亚洲经典国产精华液单| 国内精品宾馆在线| 亚洲精品自拍成人| 久久精品国产亚洲网站| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 亚州av有码| av专区在线播放| 舔av片在线| 日本熟妇午夜| 插阴视频在线观看视频| 久久久久久九九精品二区国产| 韩国av在线不卡| 久久国产乱子免费精品| 九九爱精品视频在线观看| 99久久精品热视频| 亚洲三级黄色毛片| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 日韩免费高清中文字幕av| 身体一侧抽搐| 三级国产精品片| 黄片wwwwww| 欧美潮喷喷水| 舔av片在线| 黄色配什么色好看| 美女cb高潮喷水在线观看| 欧美精品一区二区大全| 性色av一级| 精华霜和精华液先用哪个| 欧美老熟妇乱子伦牲交| av在线播放精品| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 亚洲精品乱码久久久久久按摩| 丝袜脚勾引网站| 久久99精品国语久久久| 亚洲不卡免费看| 国产欧美另类精品又又久久亚洲欧美| 人妻 亚洲 视频| 午夜免费鲁丝| 国产有黄有色有爽视频| 黄色视频在线播放观看不卡| 国产精品成人在线| 久久久久久久久久久丰满| 自拍欧美九色日韩亚洲蝌蚪91 | 国产综合懂色| 国产精品三级大全| 亚洲国产日韩一区二区| 性色avwww在线观看| 麻豆久久精品国产亚洲av| 久久久久国产精品人妻一区二区| 国产一区二区在线观看日韩| 一级爰片在线观看| 99九九线精品视频在线观看视频| 夫妻性生交免费视频一级片| 水蜜桃什么品种好| eeuss影院久久| 国产高清三级在线| 国产高清国产精品国产三级 | 99久久精品热视频| 国产欧美日韩精品一区二区| 69人妻影院| 精品国产一区二区三区久久久樱花 | 欧美xxxx黑人xx丫x性爽| 亚洲欧美一区二区三区黑人 | 亚洲精品日本国产第一区| av在线观看视频网站免费| 久久久久久久大尺度免费视频| 亚洲一级一片aⅴ在线观看| 80岁老熟妇乱子伦牲交| 一二三四中文在线观看免费高清| 免费观看av网站的网址| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 精品视频人人做人人爽| 国产高清有码在线观看视频| 永久网站在线| 成人二区视频| 亚洲精品色激情综合| 欧美日本视频| 嫩草影院入口| 欧美精品一区二区大全| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 日日摸夜夜添夜夜添av毛片| 美女内射精品一级片tv| 亚洲激情五月婷婷啪啪| 亚洲不卡免费看| 精品久久国产蜜桃| 色综合色国产| 国产 精品1| 精品人妻视频免费看| 老女人水多毛片| 久久影院123| 在线a可以看的网站| 最近2019中文字幕mv第一页| 亚洲欧洲国产日韩| 成年女人在线观看亚洲视频 | 国内精品美女久久久久久| 啦啦啦啦在线视频资源| 各种免费的搞黄视频| 国产伦理片在线播放av一区| 久久久久九九精品影院| 只有这里有精品99| 免费黄频网站在线观看国产| 舔av片在线| 亚洲成人av在线免费| 亚洲精品成人av观看孕妇| 日韩制服骚丝袜av| 欧美高清成人免费视频www| 亚洲,一卡二卡三卡| 欧美xxⅹ黑人| 欧美 日韩 精品 国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久大av| 国产精品人妻久久久久久| 一区二区三区免费毛片| 日产精品乱码卡一卡2卡三| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区 | 午夜免费鲁丝| 在线看a的网站| 国产精品久久久久久精品古装| 日韩三级伦理在线观看| 搞女人的毛片| 亚洲av免费高清在线观看| 亚洲天堂av无毛| 日韩视频在线欧美| 69av精品久久久久久| 国产永久视频网站| 国产爽快片一区二区三区| 久久久久久国产a免费观看| 一个人看的www免费观看视频| 少妇 在线观看| 久久久久久久久大av| 国产伦理片在线播放av一区| 99久久精品国产国产毛片| 深夜a级毛片| 日韩视频在线欧美| 亚洲aⅴ乱码一区二区在线播放| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| a级毛片免费高清观看在线播放| 国产男女超爽视频在线观看| 久久99热6这里只有精品| 国产成年人精品一区二区| 国产一区二区三区综合在线观看 | av专区在线播放| 嫩草影院入口| 亚洲精品,欧美精品| 国产成人精品一,二区| 免费大片18禁| 永久免费av网站大全| 中文字幕制服av| 久久久精品94久久精品| 99精国产麻豆久久婷婷| 女人被狂操c到高潮| 2018国产大陆天天弄谢| 波野结衣二区三区在线| 久久人人爽人人片av| 日韩三级伦理在线观看| 精品酒店卫生间| 秋霞在线观看毛片| 亚洲av免费在线观看| 免费大片黄手机在线观看| 欧美xxxx性猛交bbbb| 国产精品一及| 亚洲欧美日韩东京热| 亚洲人与动物交配视频| av免费在线看不卡| 免费看光身美女| 亚洲人与动物交配视频| 色吧在线观看| 成人高潮视频无遮挡免费网站| 亚洲成人久久爱视频| av免费在线看不卡| 亚洲最大成人中文| 少妇人妻精品综合一区二区| 七月丁香在线播放| 亚洲欧美日韩东京热| 少妇 在线观看| 各种免费的搞黄视频| 大香蕉久久网| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 精品酒店卫生间| 国产精品国产三级国产专区5o| 国产男人的电影天堂91| 国产精品一区二区在线观看99| 美女高潮的动态| 色哟哟·www| 在线a可以看的网站| 免费看日本二区| 国产一区二区亚洲精品在线观看| 国产有黄有色有爽视频| 久久久久久久大尺度免费视频| 久久ye,这里只有精品| av在线蜜桃|