孫亞喬+竇琳+段磊+喬曉霞+申圓圓
基金項(xiàng)目:國家自然科學(xué)基金(41102150,41002086,41372258);陜西省自然基金(2013JM5003);中央高??蒲袑m?xiàng)基金(2013G1291065,2013G1291067,2013G1502036)
作者簡介:孫亞喬(1977),女,浙江上虞人,副教授,博士,主要從事水文地球化學(xué)、水污染控制與生態(tài)環(huán)境保護(hù)方面研究。Email:sunyaqiao@126.comDOI:10.13476/j.cnki.nsbdqk.
摘要:通過渭河原水和客水的混合稀釋實(shí)驗(yàn)?zāi)M調(diào)水后受水區(qū)水環(huán)境的演化,價(jià)調(diào)水后水環(huán)境的重金屬污染特征、含變化規(guī)律及潛在的生態(tài)風(fēng)險(xiǎn)。研究結(jié)果表明:在pH、礦化度等其他因素和重金屬間相互作用下,渭南和咸陽段混合水體中重金屬Co、Cr、Mn、Mo、Pb和V的含量基本上隨客水混入量的增大而下降,水質(zhì)呈良性發(fā)展;客水匯入后,受混合稀釋作用的影響,混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合平均降低幅度達(dá)到60%左右,重金屬污染程度明顯降低;調(diào)水后受水區(qū)水環(huán)境中單個(gè)重金屬潛在生態(tài)風(fēng)險(xiǎn)系數(shù)和潛在生態(tài)危害指數(shù)RI明顯降低,重金屬Cr、Mn、Pb的潛在生態(tài)風(fēng)險(xiǎn)系數(shù)平均下降幅度分別達(dá)到50%、70%、56%左右,潛在生態(tài)危害指數(shù)RI的平均下降幅度為57%作用,說明調(diào)水的混合稀釋作用可以明顯降低重金屬的潛在生態(tài)風(fēng)險(xiǎn)。
關(guān)鍵詞:受水區(qū);重金屬污染;內(nèi)梅羅指數(shù);潛在生態(tài)風(fēng)險(xiǎn)指數(shù);潛在生態(tài)危害系數(shù);“引漢濟(jì)渭”工程
中圖分類號:X171,X53文獻(xiàn)標(biāo)志碼:A文章編號:16721683(2014)04005106
Water Environment Evolution and Heavy Metal Pollution Assessment
in the WaterReceiving Area after Water Transfer
SUN Yaqiao1,DUAN Lei1,DOU Lin1,QIAO Xiaoxia2,SHEN Yuanyuan1
(1School of Environmental Science and Engineering,Chang′an University,Key Laboratory of
Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education,Key Laboratory of
Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province,Xi′an 710054,China
2Road and Bridge Department,Sichuan Vocational and Technical College of Communications,Chengdu,611130,China)
Abstract:The mixture dilution experiment of Weihe River water andincoming water was performed to simulate the water environment evolution in the water receiving area after water transfer and to assess the pollution characteristics of heavy metals in the water environment and the potential ecological risk.The results showed that (1) the contents of Co,Cr,Mn,Mo,Pb,and V in the mixed water of Weihe River of the Weinan and Xianyang sections decrease with the increasing volume of incoming water due to the impacts of the interactions among pH,TDS,and heavy metals,and water quality of the mixed water improves;(2) thecomprehensive pollution index of heavy metal (Nemoro P綜合) of the mixed water reduces by about 60% in average due to mixture dilution,and the pollution degree of heavy metals decreases significantly;and (3) the potential ecological risk coefficient of single heavy metal and potential ecological risk index RI in the water environment of the waterreceiving area after water transfer reduce apparently.The average decline rates of the potential ecological risk coefficients of Cr,Mn,and Pb are 50%,70%,and 56% respectively,and the average decline rate of the potential ecological hazard index RI is 57%,which indicates that the mixture dilution can decrease the potential ecological risk of heavy metals significantly.
Key words:waterreceiving area;heavy metal pollution;Nemoro index;potential ecological risk coefficient;potential ecological hazard index;Hanjing River to Weihe River water transfer project
我國水資源嚴(yán)重短缺并且時(shí)空分布不均,隨著社會經(jīng)濟(jì)的高速發(fā)展,水資源供需矛盾加?。?]。近些年來,各種規(guī)模的跨流域調(diào)水工程如“引黃濟(jì)青”、“引碧入連”、“南水北調(diào)”、“引漢濟(jì)渭”等大量修改,用以調(diào)整水資源的時(shí)空分配,緩解缺水帶來的生態(tài)環(huán)境、工農(nóng)業(yè)生產(chǎn)、居民生活等方面的問題[2]。由于調(diào)水改變流域間水資源的地理分布,受水區(qū)的水文情勢將發(fā)生改變,河床周邊水體環(huán)境之間污染物吸收與釋放的動態(tài)平衡也被打破[37],直接影響周邊水環(huán)境質(zhì)量[811]。
endprint
渭河流域?qū)儆谫Y源型干旱地區(qū),水資源供需矛盾突出,如無跨流域調(diào)水,至2020年渭河流域缺水量達(dá)2496億m3[12]。渭河沿岸城市污水(點(diǎn)源污染)、工業(yè)廢水和四大灌區(qū)灌溉退水以及降雨徑流排入的污染物(非點(diǎn)源污染)量逐年增加,排污量遠(yuǎn)遠(yuǎn)超過渭河納污能力,使得渭河水量少、水質(zhì)差的問題更加突出,干流13個(gè)監(jiān)測段面除對照斷面外,水質(zhì)現(xiàn)狀均為V類或劣V類水,其中78%的斷面屬劣V類水質(zhì)[13]。渭河水環(huán)境污染嚴(yán)重制約了關(guān)中地區(qū)社會經(jīng)濟(jì)的發(fā)展,因此目前正在修建的引漢濟(jì)渭工程為破解陜西缺水問題意義重大。
“引漢濟(jì)渭”工程在2012年建成三河口水庫以下工程,年調(diào)水量5億m3,將在2015年完全竣工,屆時(shí)年調(diào)水量達(dá)15億m3,可有效增加渭河水量,緩解水資源的供需矛盾。為了評價(jià)調(diào)水后渭河水環(huán)境演化,特別是客水匯入對重金屬污染的影響,本文將進(jìn)行混合稀釋實(shí)驗(yàn),為客水調(diào)入后渭河水環(huán)境污染的防治提供科學(xué)依據(jù)。
1實(shí)驗(yàn)方法
11樣品采集
2010年12月6日-8日期間,對渭河流域進(jìn)行了現(xiàn)場調(diào)查,分別在渭河流域咸陽段(北緯34°21'23″,東經(jīng)108°46'29″)和渭南段(北緯34°31'47″,東經(jīng)109°31'47″)進(jìn)行了地表水采樣。
12實(shí)驗(yàn)方案
渭河陜西段水資源量為80~435億m3/a左右,平水年為6302億m3/a左右,2012年計(jì)劃調(diào)水量為的5億m3(豐枯水期渭河水量和調(diào)客水量的混合比例為14∶1~9∶1),2015年為15億m3(豐枯水期渭河水量和調(diào)客水量的混合比例為533∶1~3∶1)。據(jù)此,擬設(shè)定渭河水和客水的混合比例方案為16∶1、12∶1、10∶1、9∶1、8∶1、7∶1、6∶1、5∶1、4∶1、3∶1、2∶1、1∶1,其中包括了對豐水期、平水期、枯水期客水的混入比例。在燒杯中進(jìn)行混合稀釋實(shí)驗(yàn),用于確定渭河水質(zhì)在外來水源稀釋情況下水質(zhì)的變化狀況。
首先對采集的原水水樣進(jìn)行詳細(xì)測定(咸陽和渭南水樣為所取得地表原水,自來水代替客水),結(jié)果見表1。然后取按不同比例充分混合后的水量1 000 mL,采用電感耦合等離子發(fā)射光譜儀(ICP6300)測定主要污染渭河水環(huán)境的六種重金屬元素(Co、Cr、Mn、Mo、Pb、V)的含量Co、Cr、Mn、Mo、Pb、V。
13質(zhì)量控制
實(shí)驗(yàn)分析時(shí),所有樣品均進(jìn)行10%平行樣測試,相對標(biāo)
表1實(shí)驗(yàn)原水水化學(xué)組分分析結(jié)果
Table 1Chemical composition analysis
results of Weihe River water
(mg/L)
原水渭南水樣咸陽水樣自來水Ph757754796Eh/mv231502530024100電導(dǎo)率/(us·cm-1)569006810014690礦化度489635785712014總硬度(以碳酸鈣計(jì))1055699344178HCO327008278189121Cl89058905372SO2414388236972525K+1098912160Na+513500219Ca2+750971103521Mg2+30472824657Co000360003400000Cr000160001600009Mn002500000000004Mo002050016900008Pb000070002100000V000320001800003準(zhǔn)偏差(RSD)在03%~08%,滿足實(shí)驗(yàn)要求。重金屬測定的準(zhǔn)確性通過國家標(biāo)準(zhǔn)物質(zhì)進(jìn)行驗(yàn)證,回收率在92%~1013%之間,符合質(zhì)量控制要求。所有分析樣品時(shí)所用的儀器在檢定合格有效期內(nèi),因此實(shí)驗(yàn)數(shù)據(jù)結(jié)果準(zhǔn)確可靠。
2結(jié)果與分析
21重金屬濃度變化特征
經(jīng)過混合稀釋作用后,各重金屬濃度隨混合比例的變化規(guī)律見圖1。
從圖1可以看出,渭南和咸陽段混合水體中重金屬Co、Cr、V的濃度隨客水量的增加呈現(xiàn)波動式下降的變化趨勢;Mn濃度在渭南段混合水體中隨客水量的增加呈現(xiàn)緩慢下降的趨勢,在咸陽段混合水體中則變化趨勢不明顯;Mo濃度隨客水量的增加呈現(xiàn)顯著下降的趨勢;Pb濃度隨客水量的增加呈現(xiàn)先上升后下降的變化趨勢。
2.2pH值的變化特征
從圖2可以看出,隨著客水比例的增加,混合水pH值呈現(xiàn)上升趨勢。為了探討pH值對混合水中重金屬濃度影響,本文對混合溶液水中pH值與重金屬相關(guān)性進(jìn)行了分析,結(jié)果見表2、表3。
由表2可知,渭南段不同比例混合水中pH值與Co、Mn、Mo、V均呈負(fù)相關(guān),而與Cr、Pb呈正相關(guān),其中負(fù)相關(guān)程度為Mo>Mn>Co>V,正相關(guān)程度為Cr>Pb。特別是,pH值與Mn、Mo呈極顯著的負(fù)相關(guān)性(P≤001)。
由表3可知,咸陽段不同比例混合水中pH值與重金屬Co、Mo、V呈負(fù)相關(guān),而與Cr、Mn、Pb呈正相關(guān),其中負(fù)相關(guān)程度為Mo>V>Co,正相關(guān)程度為Mn>Cr>Pb。圖1重金屬隨混合比例的變化規(guī)律
Fig.1Variation of contents of heavy metals with mix ratio圖2pH值和礦化度隨混合比例的變化趨勢
Fig.2Variation of pH and TDS with mix ratio
總體上,渭南和咸陽不同比例混合水中pH值與各重金屬元素的變化規(guī)律基本吻合,除了部分混合水體中Mn、Cr、Pb的變化有所異常外大部分重金屬濃度皆隨著客水的混入而降低,說明外來優(yōu)質(zhì)客水的混入在改變原水pH值的同時(shí)也降低了重金屬的濃度,水體的混合稀釋作用使水質(zhì)向好的方向發(fā)展。
23礦化度變化特征
渭南和咸陽混合水的礦化度與重金屬的關(guān)系見表2和表3。
由表2可知,渭南不同比例混合水中礦化度與Cr負(fù)相關(guān),而與Co、Mn、Mo、Pb、V呈正相關(guān),且正相關(guān)程度為Mo>Mn>Co>V>Pb。特別是,礦化度與Co、Mn、Mo呈極顯著正相關(guān)(P≤001),礦化度與V呈顯著正相關(guān)(P≤005)。
由表3可知,咸陽不同比例混合水中礦化度與Cr、Mn負(fù)相關(guān),而與Co、Mo、Pb呈正相關(guān),且正相關(guān)程度為Mo>V>Co>Pb。特別是,礦化度與Mo呈極顯著正相關(guān)(P≤001),與Mn呈極顯著負(fù)相關(guān)(P≤001),與Co、V呈顯著正相關(guān)(P≤005)。
渭南和咸陽段不同比例混合水中礦化度與各重金屬的變化規(guī)律基本吻合。渭南和咸陽段混合水體中重金屬M(fèi)o的含量與礦化度都呈現(xiàn)出呈極顯著正相關(guān)(P≤001),說明優(yōu)質(zhì)低礦化度客水的混入可以使水質(zhì)變好。表2渭南水混合水中pH值、礦化度與重金屬相關(guān)性
Table 2Relativity of pH and TDS with heavy metals in mixed water (Weinan section)
pHTDSCoCrMnMoPbVpH1TDS1Co05270746**1Cr028014402111Mn0729**0954**0593*01131Mo0758**0991**0788**01040947**1Pb0097014701240014022601791V01790608*0701*01040604*0676*01611**.在 0.01 水平(雙側(cè))上顯著相關(guān),*.在 0.05 水平(雙側(cè))上顯著相關(guān)。
endprint
表3咸陽水混合溶液中pH值、礦化度與重金屬相關(guān)性
Table 3Relativity of pH and TDS with heavy metals in mixed water (Xianyang section)
pHTDSCoCrMnMoPbVpH1TDS1Co-00880601*1Cr0337-054401111Mn0395-0968**-0674*04211Mo-05640996**057-0542-0957**1Pb004702540033-0021-025802731V-02880621*0173-0329-0581*0629*03651**在 0.01 水平(雙側(cè))上顯著相關(guān),*.在 0.05 水平(雙側(cè))上顯著相關(guān)。2.4混合水體中重金屬元素的相互作用
不同混合比例水體中重金屬元素濃度的相關(guān)性見表2和表3。
從表2可以看出,渭南混合水中Co和Mo、Mn和Mo呈極顯著正相關(guān)(P≤001),說明溶液中Co和Mo、Mn和Mo的協(xié)同作用明顯;Co和Mn、V和Co、Mn、Mo顯著正相關(guān)(P≤005),Cr和Co、Mn、Mo、Pb呈負(fù)相關(guān),說明Cr和Co、Mn、Mo、Pb在混合水體中呈現(xiàn)拮抗作用。
從表3可以看出,咸陽混合水中重金屬M(fèi)n和Mo呈極顯著負(fù)相關(guān)(P≤001),說明溶液中Mn和Mo的具有明顯的拮抗作用;重金屬Co和Mn、Mn和V呈顯著負(fù)相關(guān)(P≤005),說明溶液中重金屬Co和Mn、Mn和V具有拮抗作用;混合水中重金屬V和Mo顯著正相關(guān)(P≤005),說明溶液中V和Mo具有協(xié)同作用;Cr和Mn、Mo、V呈負(fù)相關(guān),說明Cr和Mn、Mo、V在咸陽混合水體中呈現(xiàn)拮抗作用。
3調(diào)水后水環(huán)境重金屬污染評價(jià)
本文選擇內(nèi)梅羅綜合污染指數(shù)法進(jìn)行水環(huán)境質(zhì)量評價(jià),評價(jià)標(biāo)準(zhǔn)為《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB 38382002)[14]。另外,結(jié)合重金屬性質(zhì)及環(huán)境行為特點(diǎn),利用Hakanson(1980)潛在生態(tài)風(fēng)險(xiǎn)評價(jià)對調(diào)水后水環(huán)境中重金屬的生態(tài)危害程度進(jìn)行評價(jià)[15]。
3.1重金屬綜合污染評價(jià)
將渭南和咸陽混合水中重金屬測定值代入內(nèi)梅羅綜合污染指數(shù)的計(jì)算公式,評價(jià)結(jié)果見表4和圖3,可以看出:
(1)不同比例混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合<08,水質(zhì)優(yōu)良,而且混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合皆小于原水,渭南段平均下降5934%,咸陽段平均下降了6176%。
(2)隨客水混入量的增大,渭南段混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合逐漸下降,下降速率為每混入一份外來水源,P綜合下降0096;咸陽段的則波動式變化,在混合比例為8∶1時(shí),污染指數(shù)P綜合為最大值0066,說明在咸陽段的其它因素對重金屬濃度起到了重要的影響作用,如水體中的膠體含量等。
3.2重金屬潛在生態(tài)風(fēng)險(xiǎn)評價(jià)
3.2.1渭南混合水中重金屬的潛在生態(tài)風(fēng)險(xiǎn)
渭南不同比例混合水中重金屬潛在生態(tài)危害系數(shù)與危害指數(shù)計(jì)算結(jié)果見表5和圖4。
表4混合水中重金屬綜合污染指數(shù)
Table 4Comprehensive pollution index of
heavy metals in mixed water
混合比例樣品編號P綜合渭南原水0414客水001416∶1WM1017812∶1WM2018810∶1WM301849∶1WM401838∶1WM501817∶1WM601786∶1WM701775∶1WM801644∶1WM901623∶1WM1001482∶1WM1101441∶1WM120135混合比例樣品編號P綜合咸陽原水0088客水001416∶1XM1002912∶1XM2004210∶1XM300229∶1XM400338∶1XM500667∶1XM600206∶1XM700175∶1XM800324∶1XM900343∶1XM1000422∶1XM1100331∶1XM120033圖3混合水中重金屬內(nèi)梅羅綜合污染指數(shù)
隨混合比例的變化規(guī)律
Fig.3Variation of Nemoro comprehensive pollution index
of heavy metals with mix ratio
從表5中可以看出,渭南不同比例混合水中重金屬潛在
表5渭南混合水中重金屬潛在生態(tài)危害
系數(shù)Eir與危害指數(shù)(RI)
Table 5Potential ecological hazard coefficient and index
of heavy metals in mix water(Weinan secion)
混合比例EirCrMnPbRI16∶100480233012040112∶10040244024052410∶10032024201704449∶10072023701704798∶1008023302105237∶1009602280205246∶10048022603806545∶10048021401303924∶10052021101704333∶1004019301704032∶10072018401904461∶1006401740150388圖4混合水中重金屬的潛在生態(tài)危害指數(shù)
Fig.4Potential ecological hazard index of
heavy metals in mixed water
生態(tài)危害系數(shù)順序?yàn)镸n>Pb>Cr,受水后混合水比渭河原水中重金屬Cr、Mn、Pb的潛在生態(tài)危害系數(shù)分別平均下降了5194%、5958%、52018%,與渭南華縣地表水重金屬潛在生態(tài)危害系數(shù)的順序一致,而且不同比例混合水中重金屬潛在生態(tài)危害系數(shù)皆小于40,屬于輕微生態(tài)危害。
渭南不同比例混合水中重金屬潛在生態(tài)危害指數(shù)RI隨客水混入量增加呈現(xiàn)先上升后下降的變化趨勢,RI平均下降了5589%。在混合比例為6∶1時(shí),重金屬潛在生態(tài)危害指數(shù)RI為最大值0654(見圖4),而且不同比例混合水中重金屬潛在生態(tài)危害指數(shù)RI皆小于150,屬于輕微生態(tài)危害。
332咸陽混合水中重金屬的潛在生態(tài)風(fēng)險(xiǎn)
咸陽不同比例混合水中重金屬潛在生態(tài)危害系數(shù)與危害指數(shù)計(jì)算結(jié)果見表6和圖4。
從表6中可以看出咸陽不同比例混合水中重金屬潛在生態(tài)危害系數(shù)順序?yàn)镻b>Cr>Mn,受水后混合水比渭河原水中重金屬Cr、Mn、Pb的潛在生態(tài)危害系數(shù)分別平均下降了5353%、8160%、6096%,而且不同比例混合水中重金屬潛在生態(tài)危害系數(shù)皆小于40,屬于輕微生態(tài)危害。
咸陽不同比例混合水中重金屬潛在生態(tài)危害指數(shù)RI隨外來水源混入增加呈現(xiàn)先波動式升降的變化趨勢,平均下降了6054%,在混合比例為8∶1時(shí),重金屬潛在生態(tài)危害指數(shù)RI為最大值0478(見圖4),咸陽不同比例混合水中重金屬潛在生態(tài)危害指數(shù)RI低于渭南,而且不同比例混合水中重金屬潛在生態(tài)危害指數(shù)RI皆小于150,屬于輕微生態(tài)危害。
endprint
表6咸陽混合水中重金屬潛在生態(tài)危害系數(shù)與危害指數(shù)
Table 6Potential ecological hazard coefficient and index of
heavy metals in mix water (Xianyang section)
混合比例CrMnPbRI16∶100520018023212∶1004002703110∶100200140169∶10044002102548∶10048004304787∶10048001201686∶100400090135∶10064000401902584∶10016000902202453∶10076000502503312∶100560014030371∶10076002101302274結(jié)論
(1)在pH、礦化度等其他因素的對重金屬的作用及重金屬間相互作用下,受客水后渭南和咸陽段混合水環(huán)境中重金屬含量基本上是隨客水混入量的增大而下降,水質(zhì)呈良性發(fā)展。
(2)調(diào)水后,由于受客水匯入混合稀釋作用的影響,渭南段和咸陽段混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合平均降低幅度分別為5934%和6176%,重金屬污染程度明顯降低。
(3)調(diào)水后受水區(qū)后地表水中單個(gè)重金屬潛在生態(tài)風(fēng)險(xiǎn)系數(shù)和潛在生態(tài)危害指數(shù)RI明顯降低,重金屬Cr、Mn、Pb的潛在生態(tài)風(fēng)險(xiǎn)系數(shù)平均下降幅度分別達(dá)到50%,70%,56%左右,潛在生態(tài)危害指數(shù)RI的平均下降幅度為57%左右,說明混合稀釋作用明顯降低了重金屬的潛在生態(tài)風(fēng)險(xiǎn)。
參考文獻(xiàn)(References):
[1]夏軍,蘇人瓊,何希吾,等.中國水資源問題與對策建議[J].中國科學(xué)院院刊,2008,(2):116120.(XIA Jun,SU Rengqiong,HE Xiwu,et al.Water Resources Problems in China and Their Tountermeasures &Suggestions[J].Bulletin of Chinese Academy of Sciences,2008,(2):116120.(in Chinese))
[2]汪明娜, 汪達(dá).調(diào)水工程對環(huán)境利弊影響綜合分析[J].水資源保護(hù),2002,(2):1015.(WANG Minna,WANG Da.Analysis of Pros and Cons of Water Diversion Projects to Environment[J].Water Resources Protection,2002,(2):1015.(in Chinese))
[3]Alperin M J,Martens C S,Albert D B,et al.Benthic Fluxes and Pore Water Concentration Profiles of Dissolved Organic Carbon in Sediments From the North Carolina Continental Slope[J].Geochimica et Cosmochimica Acta,1999,(63):427-448.
[4]Covelli S,Faganeli J,Horvat M,et al.Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste(Northern Adriatic Sea) [J].Estuarine,Coastal and Shelf Science,1999.(48):415428.
[5]Choe K Y,Gill G A,Lehmall R D,et al.SedimentWater Exchange of Total Mercury and Monomethyl in the San Francisco BayDelta[J].Limnology and Oceanography,2004,(49):1512-1527.
[6]Azadeh Taghinia Hejabi,Basavarajappa H T,Karbassi A R,et al.Heavy Metal Pollution in Water and Sedimentsin the Kabini River,Karnataka[J].India.Environ Monit Assess.2011,(182):113.
[7]Allen H E,D J Hansen.The Importance of Trace Metal Speciation to Water Quality Crieria[J].Water Environment Research,1996,68(1):4254.
[8]Hicks,M B,Scott K J,Hansen,D.J,et al.Toxicity of Cadmium in Sediments:the Role of Acid Volatile Sulfide[J].Environmental Toxicology and Chemistry,1990,9(1):14871502.
[9]Kim Yeongkyoo,Kim ByoungKi,Kim Kangjoo.Distribution and Speciation of Heavy Metals and Their Sources in Kumho River Sediment,Korea[J].Environ Earth Sci,2010,60(5):943952.
[10]Schacht U,Wallmann K,Kutterolf S,et al.Volcanogenic SedimentSeawater Interactions and the Geochemistry of Pore Waters[J].Chemical Geology.,2008,249(34):321338.
[11]Haese R R,Hensen C,Lange G J.Pore Water Geochemistry of Eastern Mediterranean Mud Volcanoes:Implications for Fluid Transport and Fluid Origin[J].Marine Geology,2006,225(14):191208.
[12]薛亞莉.陜西省渭河流域水資源供需形勢分析[J].人民黃河,2009,(11):5657.(XUE Yali.Supply and Demand Situation Analysis About Shaanxi Weihe River water[J].Yellow River,2009,(11):5657.(in Chinese))
[13]吳立凱.陜西省渭河流域水質(zhì)調(diào)查及監(jiān)測措施[J].陜西水利,2008,(4):1920.(WU Likai.Water Quality Surveys and Monitoring Measures on Shaanxi Weihe River,Shaanxi Water Resources,2008,(4):1920.(in Chinese))
[14]國家環(huán)境保護(hù)總局.中華人民共和國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB 38382002)(SEPA.People's Republic of Surface Water Quality Standards.(GB 38382002)(in Chinese))
[15]Lars Hakanson.An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach.Water Research,1980,(8):9751001.
endprint
表6咸陽混合水中重金屬潛在生態(tài)危害系數(shù)與危害指數(shù)
Table 6Potential ecological hazard coefficient and index of
heavy metals in mix water (Xianyang section)
混合比例CrMnPbRI16∶100520018023212∶1004002703110∶100200140169∶10044002102548∶10048004304787∶10048001201686∶100400090135∶10064000401902584∶10016000902202453∶10076000502503312∶100560014030371∶10076002101302274結(jié)論
(1)在pH、礦化度等其他因素的對重金屬的作用及重金屬間相互作用下,受客水后渭南和咸陽段混合水環(huán)境中重金屬含量基本上是隨客水混入量的增大而下降,水質(zhì)呈良性發(fā)展。
(2)調(diào)水后,由于受客水匯入混合稀釋作用的影響,渭南段和咸陽段混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合平均降低幅度分別為5934%和6176%,重金屬污染程度明顯降低。
(3)調(diào)水后受水區(qū)后地表水中單個(gè)重金屬潛在生態(tài)風(fēng)險(xiǎn)系數(shù)和潛在生態(tài)危害指數(shù)RI明顯降低,重金屬Cr、Mn、Pb的潛在生態(tài)風(fēng)險(xiǎn)系數(shù)平均下降幅度分別達(dá)到50%,70%,56%左右,潛在生態(tài)危害指數(shù)RI的平均下降幅度為57%左右,說明混合稀釋作用明顯降低了重金屬的潛在生態(tài)風(fēng)險(xiǎn)。
參考文獻(xiàn)(References):
[1]夏軍,蘇人瓊,何希吾,等.中國水資源問題與對策建議[J].中國科學(xué)院院刊,2008,(2):116120.(XIA Jun,SU Rengqiong,HE Xiwu,et al.Water Resources Problems in China and Their Tountermeasures &Suggestions[J].Bulletin of Chinese Academy of Sciences,2008,(2):116120.(in Chinese))
[2]汪明娜, 汪達(dá).調(diào)水工程對環(huán)境利弊影響綜合分析[J].水資源保護(hù),2002,(2):1015.(WANG Minna,WANG Da.Analysis of Pros and Cons of Water Diversion Projects to Environment[J].Water Resources Protection,2002,(2):1015.(in Chinese))
[3]Alperin M J,Martens C S,Albert D B,et al.Benthic Fluxes and Pore Water Concentration Profiles of Dissolved Organic Carbon in Sediments From the North Carolina Continental Slope[J].Geochimica et Cosmochimica Acta,1999,(63):427-448.
[4]Covelli S,Faganeli J,Horvat M,et al.Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste(Northern Adriatic Sea) [J].Estuarine,Coastal and Shelf Science,1999.(48):415428.
[5]Choe K Y,Gill G A,Lehmall R D,et al.SedimentWater Exchange of Total Mercury and Monomethyl in the San Francisco BayDelta[J].Limnology and Oceanography,2004,(49):1512-1527.
[6]Azadeh Taghinia Hejabi,Basavarajappa H T,Karbassi A R,et al.Heavy Metal Pollution in Water and Sedimentsin the Kabini River,Karnataka[J].India.Environ Monit Assess.2011,(182):113.
[7]Allen H E,D J Hansen.The Importance of Trace Metal Speciation to Water Quality Crieria[J].Water Environment Research,1996,68(1):4254.
[8]Hicks,M B,Scott K J,Hansen,D.J,et al.Toxicity of Cadmium in Sediments:the Role of Acid Volatile Sulfide[J].Environmental Toxicology and Chemistry,1990,9(1):14871502.
[9]Kim Yeongkyoo,Kim ByoungKi,Kim Kangjoo.Distribution and Speciation of Heavy Metals and Their Sources in Kumho River Sediment,Korea[J].Environ Earth Sci,2010,60(5):943952.
[10]Schacht U,Wallmann K,Kutterolf S,et al.Volcanogenic SedimentSeawater Interactions and the Geochemistry of Pore Waters[J].Chemical Geology.,2008,249(34):321338.
[11]Haese R R,Hensen C,Lange G J.Pore Water Geochemistry of Eastern Mediterranean Mud Volcanoes:Implications for Fluid Transport and Fluid Origin[J].Marine Geology,2006,225(14):191208.
[12]薛亞莉.陜西省渭河流域水資源供需形勢分析[J].人民黃河,2009,(11):5657.(XUE Yali.Supply and Demand Situation Analysis About Shaanxi Weihe River water[J].Yellow River,2009,(11):5657.(in Chinese))
[13]吳立凱.陜西省渭河流域水質(zhì)調(diào)查及監(jiān)測措施[J].陜西水利,2008,(4):1920.(WU Likai.Water Quality Surveys and Monitoring Measures on Shaanxi Weihe River,Shaanxi Water Resources,2008,(4):1920.(in Chinese))
[14]國家環(huán)境保護(hù)總局.中華人民共和國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB 38382002)(SEPA.People's Republic of Surface Water Quality Standards.(GB 38382002)(in Chinese))
[15]Lars Hakanson.An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach.Water Research,1980,(8):9751001.
endprint
表6咸陽混合水中重金屬潛在生態(tài)危害系數(shù)與危害指數(shù)
Table 6Potential ecological hazard coefficient and index of
heavy metals in mix water (Xianyang section)
混合比例CrMnPbRI16∶100520018023212∶1004002703110∶100200140169∶10044002102548∶10048004304787∶10048001201686∶100400090135∶10064000401902584∶10016000902202453∶10076000502503312∶100560014030371∶10076002101302274結(jié)論
(1)在pH、礦化度等其他因素的對重金屬的作用及重金屬間相互作用下,受客水后渭南和咸陽段混合水環(huán)境中重金屬含量基本上是隨客水混入量的增大而下降,水質(zhì)呈良性發(fā)展。
(2)調(diào)水后,由于受客水匯入混合稀釋作用的影響,渭南段和咸陽段混合水的重金屬內(nèi)梅羅綜合污染指數(shù)P綜合平均降低幅度分別為5934%和6176%,重金屬污染程度明顯降低。
(3)調(diào)水后受水區(qū)后地表水中單個(gè)重金屬潛在生態(tài)風(fēng)險(xiǎn)系數(shù)和潛在生態(tài)危害指數(shù)RI明顯降低,重金屬Cr、Mn、Pb的潛在生態(tài)風(fēng)險(xiǎn)系數(shù)平均下降幅度分別達(dá)到50%,70%,56%左右,潛在生態(tài)危害指數(shù)RI的平均下降幅度為57%左右,說明混合稀釋作用明顯降低了重金屬的潛在生態(tài)風(fēng)險(xiǎn)。
參考文獻(xiàn)(References):
[1]夏軍,蘇人瓊,何希吾,等.中國水資源問題與對策建議[J].中國科學(xué)院院刊,2008,(2):116120.(XIA Jun,SU Rengqiong,HE Xiwu,et al.Water Resources Problems in China and Their Tountermeasures &Suggestions[J].Bulletin of Chinese Academy of Sciences,2008,(2):116120.(in Chinese))
[2]汪明娜, 汪達(dá).調(diào)水工程對環(huán)境利弊影響綜合分析[J].水資源保護(hù),2002,(2):1015.(WANG Minna,WANG Da.Analysis of Pros and Cons of Water Diversion Projects to Environment[J].Water Resources Protection,2002,(2):1015.(in Chinese))
[3]Alperin M J,Martens C S,Albert D B,et al.Benthic Fluxes and Pore Water Concentration Profiles of Dissolved Organic Carbon in Sediments From the North Carolina Continental Slope[J].Geochimica et Cosmochimica Acta,1999,(63):427-448.
[4]Covelli S,Faganeli J,Horvat M,et al.Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste(Northern Adriatic Sea) [J].Estuarine,Coastal and Shelf Science,1999.(48):415428.
[5]Choe K Y,Gill G A,Lehmall R D,et al.SedimentWater Exchange of Total Mercury and Monomethyl in the San Francisco BayDelta[J].Limnology and Oceanography,2004,(49):1512-1527.
[6]Azadeh Taghinia Hejabi,Basavarajappa H T,Karbassi A R,et al.Heavy Metal Pollution in Water and Sedimentsin the Kabini River,Karnataka[J].India.Environ Monit Assess.2011,(182):113.
[7]Allen H E,D J Hansen.The Importance of Trace Metal Speciation to Water Quality Crieria[J].Water Environment Research,1996,68(1):4254.
[8]Hicks,M B,Scott K J,Hansen,D.J,et al.Toxicity of Cadmium in Sediments:the Role of Acid Volatile Sulfide[J].Environmental Toxicology and Chemistry,1990,9(1):14871502.
[9]Kim Yeongkyoo,Kim ByoungKi,Kim Kangjoo.Distribution and Speciation of Heavy Metals and Their Sources in Kumho River Sediment,Korea[J].Environ Earth Sci,2010,60(5):943952.
[10]Schacht U,Wallmann K,Kutterolf S,et al.Volcanogenic SedimentSeawater Interactions and the Geochemistry of Pore Waters[J].Chemical Geology.,2008,249(34):321338.
[11]Haese R R,Hensen C,Lange G J.Pore Water Geochemistry of Eastern Mediterranean Mud Volcanoes:Implications for Fluid Transport and Fluid Origin[J].Marine Geology,2006,225(14):191208.
[12]薛亞莉.陜西省渭河流域水資源供需形勢分析[J].人民黃河,2009,(11):5657.(XUE Yali.Supply and Demand Situation Analysis About Shaanxi Weihe River water[J].Yellow River,2009,(11):5657.(in Chinese))
[13]吳立凱.陜西省渭河流域水質(zhì)調(diào)查及監(jiān)測措施[J].陜西水利,2008,(4):1920.(WU Likai.Water Quality Surveys and Monitoring Measures on Shaanxi Weihe River,Shaanxi Water Resources,2008,(4):1920.(in Chinese))
[14]國家環(huán)境保護(hù)總局.中華人民共和國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB 38382002)(SEPA.People's Republic of Surface Water Quality Standards.(GB 38382002)(in Chinese))
[15]Lars Hakanson.An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach.Water Research,1980,(8):9751001.
endprint