林開(kāi)司, 張 露, 林開(kāi)武
(1.銅陵職業(yè)技術(shù)學(xué)院 電氣工程系,安徽 銅陵 244000;2.銅陵有色股份銅冠信息科技有限責(zé)任公司,安徽 銅陵 244000)
巴特沃斯低通濾波器由于其通頻帶內(nèi)響應(yīng)平坦,衰減特性和相位特性好,對(duì)構(gòu)成濾波器的器件的要求不甚嚴(yán)格,易于得到符合設(shè)計(jì)值的特性,適應(yīng)性強(qiáng)等特點(diǎn)而受到廣泛使用[1]。
有關(guān)壓控電壓源巴特沃斯低通濾波器的設(shè)計(jì)在許多文章中都有介紹,主要方法有查表法[1]、圖示法[2]、計(jì)算法[3,4]等,但這些方法都存在一些不足,不能滿足普遍的要求;有些設(shè)計(jì)是先確定電阻,再匹配電容,但特定電容難找,訂制時(shí)間長(zhǎng)、成本高,且電容精度也較電阻難以保證;一些查表法、圖示法和一些計(jì)算法沒(méi)有給出必要的理論根據(jù)和計(jì)算通式,使用者難以明白其取值的根據(jù)[3,4]。
文獻(xiàn)[6]對(duì)二階壓控電壓源低通濾波器進(jìn)行了比較詳細(xì)的理論推導(dǎo),文獻(xiàn)[5]在文獻(xiàn)[6]的基礎(chǔ)上以四階壓控電壓源單位增益巴特沃斯低通濾波器為例,介紹了2n階壓控電壓源低通濾波器的設(shè)計(jì)。在文獻(xiàn)[5,6]的基礎(chǔ)上優(yōu)化設(shè)計(jì)了六階單位增益巴特沃斯低通濾波器,并且通過(guò)Multisim10[7]仿真研究了電路中電容間容值的不同比值k以及電路中電容值的變化對(duì)設(shè)計(jì)的低通濾波器幅頻特性的影響。
六階低通濾波器可以有3個(gè)二階低通濾波器級(jí)聯(lián)產(chǎn)生,所以先根據(jù)文獻(xiàn)[5,6]介紹二階低通濾波器的優(yōu)化設(shè)計(jì)方法。常用的二階壓控電壓源低通濾波電路如圖1所示。
圖1 二階壓控電壓源低通濾波電路
由圖1可知其傳輸函數(shù)為
(1)
(2)
兩式比較得
(3)
(4)
(5)
ω0是截止角頻率,α,β是二項(xiàng)式系數(shù),代表不同的濾波特性。令
C2=kC1
(6)
由式(3)(4)(5)(6)得
(7)
式(7)是關(guān)于R2的二次方程,因?yàn)镽2有實(shí)數(shù)解,所以k必須滿足
(8)
由式(7)可解得
(9)
同理解得
(10)
所以原則上選定C1,k后根據(jù)上述計(jì)算公式設(shè)計(jì)任意特性的壓控電壓源低通濾波器。
設(shè)計(jì)實(shí)例:設(shè)計(jì)六階壓控電壓源單位增益巴特沃斯低通濾波器,截止頻率為100 kHz,增益G=1。電路仿真圖如圖2所示。
圖2 仿真電路
六階濾波器的α值分別為0.517 6,1.414 0和1.931 8,根據(jù)最簡(jiǎn)單取值情況計(jì)算出的各電阻、電容值如圖2所示。仿真得到該濾波器的幅頻特性曲線如圖3所示。
圖3 幅頻特性曲線
圖4 不同k值對(duì)應(yīng)的幅頻特性曲線
由圖3幅頻特性曲線可看出,這種方式設(shè)計(jì)的六階單位增益巴爾沃斯低通濾波器具有較理想的幅頻特性。
上面的取值方法最簡(jiǎn)單,且使得R3=R1+R2,R7=R5+R6,R10=R9+R12,這也使元件規(guī)格減少一種,訂貨和裝配都較方便,成本也可降低。但是否是最好的取值還需進(jìn)一步仿真研究。取不同的k值對(duì)應(yīng)其他的電阻電容取值如表1所示。為了便于說(shuō)明把六階濾波器分成第一級(jí)二階濾波器、第二級(jí)二階濾波器和第三級(jí)二階濾波器,對(duì)應(yīng)的k值分別為k1,k2和k3。另外三級(jí)的k值均按照同時(shí)減小的方向取值。
表1 不同k時(shí)電路中其他電阻電容的取值
由上面分析可知圖2中R1=R2,R5=R6,R9=R12,C2=C4=C6=2.2nF。R3=R1+R2,R7=R5+R6,R10=R9+R12,而R4,R8,R11取1 T的大值電阻,因此所有的元件值都已經(jīng)確定。針對(duì)不同的k值仿真得到的幅頻特性曲線如圖4所示。
由圖4看出按照最簡(jiǎn)單的方式,即優(yōu)化方法設(shè)計(jì)的各元件的參數(shù)值具有最優(yōu)的幅頻特性曲線,另外隨著三級(jí)對(duì)應(yīng)的k值同時(shí)越減小得到的幅頻特性越差。
為了突出電路中元件參數(shù)的變化對(duì)優(yōu)化設(shè)計(jì)出的低通濾波器的幅頻特性的影響,考察電路中各電容按+20%和-20%變化的情況。另外通過(guò)Multisim10仿真發(fā)現(xiàn)電路中電阻的較小變化對(duì)幅頻特性曲線的影響較小,所以省略仿真圖,且只說(shuō)明電容變化的情況,如圖5、圖6所示。
圖5 電容值加20%
圖6 電容值間20%
由圖5和圖6可知電容C2,C3,C5電容值變化對(duì)低通濾波器的幅頻特性的影響較大,另外C6在電容值減小時(shí)對(duì)濾波器幅頻特性的影響也較大,除此之外其他電容值的改變對(duì)濾波器的幅頻特性影響較小。所以在實(shí)際使用中應(yīng)盡量減小C2,C3,C5,C6電容值的變化,使用精度相對(duì)較高的電容,其他情況電容可以容忍較大電容值的變化。
對(duì)巴特沃斯低通濾波器的優(yōu)化設(shè)計(jì)進(jìn)行了理論分析,并設(shè)計(jì)了一個(gè)六階單位增益巴特沃斯低通濾波器,通過(guò)Multisim10對(duì)設(shè)計(jì)的濾波器進(jìn)行仿真,研究了k值的變化對(duì)濾波器幅頻特性的影響,另外還仿真研究了電容值變化對(duì)低通濾波器幅頻特性的影響。方法對(duì)實(shí)際低通濾波器的設(shè)計(jì)具有一定的參考價(jià)值。
參考文獻(xiàn):
[1] 張白莉,郭紅英. 基EWB的巴特沃斯有源低通濾波器的設(shè)計(jì)與仿真[J]. 吉林師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,(4):77-79
[2] JL希爾本,DE約翰遜. 有源濾波器設(shè)計(jì)手冊(cè)[M] . 北京:地質(zhì)出版社,1980
[3] 秦世才,王朝英. 集成運(yùn)算放大器應(yīng)用原理[M].天津:天津科學(xué)技術(shù)出版社,1983
[4] CARTER B,MANCINI R. OpAmps For Everyone(3E) [M]. Singapore:Elsevier (Singapore) Pte Ltd,2009
[5] 楊勇,邢磊,諸遠(yuǎn)奇,等. 壓控電壓源2n階單位增益巴特沃斯低通濾波器優(yōu)化設(shè)計(jì)[J]. 電子學(xué)報(bào),2011,39(8):1894-1897
[6] 高明甫,楊勇,孔令斌. 二階壓控電壓源低通濾波器設(shè)計(jì)[J]. 電子技術(shù),2010(3):73-75
[7] 郭鎖利. 基于Multisim的電子系統(tǒng)設(shè)計(jì)、仿真與綜合應(yīng)用[M]. 北京:人民郵電出版社,2012