• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      腸-腦-肝軸在2型糖尿病及減重手術(shù)中的作用

      2014-08-15 00:44:13王琰珉劉少壯張光永仲明惟閆治波胡三元
      腹腔鏡外科雜志 2014年1期
      關(guān)鍵詞:糖異生下丘腦小腸

      王琰珉,劉少壯,張光永,張 翔,劉 騰,仲明惟,閆治波,胡三元

      (山東大學齊魯醫(yī)院,山東 濟南,250012)

      2 型糖尿病(type 2 diabetes mellitus,T2DM)在世界范圍內(nèi)廣泛流行,嚴重危害人類健康[1-2],且發(fā)病率逐年遞增。據(jù)統(tǒng)計,2011年全球共有糖尿病患者3.66 億,預計到2030年全球糖尿病發(fā)病人數(shù)將高達5.52 億[3]。傳統(tǒng)內(nèi)科治療,如飲食控制、運動、藥物等治療方法可在短期內(nèi)改善血糖及其他代謝指標,但對長期減重、維持血糖良好控制、減少并發(fā)癥的效果并不理想。而以胃旁路術(shù)(gastric bypass,GBP)為代表的減重手術(shù)不但可減輕體重,而且對T2DM 具有明顯的治療效果[4],可顯著改善與代謝綜合征相關(guān)的心血管風險[5-6],已被寫入糖尿病治療的指南中。有薈萃分析發(fā)現(xiàn),接受GBP的T2DM 患者中,T2DM 的改善率為93. 2%,治愈率為83.7%,其效果顯著優(yōu)于內(nèi)科治療[7]。盡管GBP 對T2DM 的治療作用確切,但術(shù)后糖尿病改善的機制目前仍未完全明確,食欲及體重的變化、消化道的重建、膽汁酸的重吸收、腸道激素的改變等,均可能發(fā)揮作用[8-13]。2008年加拿大學者[14]在Nature 上首次提出了腸-腦-肝軸(小腸、小腸迷走神經(jīng)、下丘腦、肝迷走神經(jīng)、肝臟糖代謝作為整體的調(diào)控軸)的存在,其研究表明食物中的脂質(zhì)成分通過對正常大鼠上段小腸的刺激激活了腸-腦-肝軸對葡萄糖代謝的調(diào)控,從而使正常機體維持血糖穩(wěn)態(tài)。腸-腦-肝軸概念的提出,為糖尿病發(fā)病機制及治療手段的研究提供了新的視野與思路。本文現(xiàn)對腸-腦-肝軸在T2DM 及其在減重手術(shù)中的作用、相關(guān)研究進展綜述如下。

      1 腸-腦軸

      小腸在GBP 術(shù)后血糖改善中具有重要作用,這一點目前已得到公認;本課題組在前期研究中也已證實,回腸轉(zhuǎn)位術(shù)(ileal transposition,IT)、十二指腸-空腸旁路術(shù)(duodenaljejunal bypass,DJB)均對血糖代謝具有改善作用[8-9,15-17],以上兩種手術(shù)方式并未改變胃的容積,且保留了幽門,并不加速胃內(nèi)容物排空,因此充分反映了小腸的作用。

      小腸是通過何種途徑來參與GBP 后糖尿病的緩解呢?有學者認為,在人類及大鼠中,進入十二指腸的脂質(zhì),尤其長鏈脂肪酸,可快速發(fā)揮抑制食物攝入的作用[18-22]。小腸內(nèi)的脂質(zhì)可激活孤束核的感覺神經(jīng)元[18],形成腸-腦神經(jīng)軸,從而抑制攝食,并減少肝糖輸出,此過程與小腸黏膜內(nèi)的蛋白激酶C-δ(protein kinase C-δ,PKCδ)及膽囊收縮素(cholecystokinin,CCK)的釋放有關(guān)[23-24]。研究表明,在正常生理狀態(tài)下,通過腸-腦軸,小腸對于維持血糖穩(wěn)態(tài)具有重要作用,其脂質(zhì)成分對于食物攝入具有負調(diào)節(jié)作用。而在糖尿病大鼠中,根據(jù)Breen 等[22]的研究,十二指腸-空腸旁路術(shù)可快速有效地降低糖尿病大鼠的血糖水平,但如阻斷空腸對于營養(yǎng)物質(zhì)的感受作用,手術(shù)將失去效果,血糖會再次惡化。本課題組亦有研究證明,GK 大鼠(非肥胖T2DM 大鼠模型)下丘腦弓狀核調(diào)控攝食的神經(jīng)中樞阿黑皮素原(pro-opiomelanocortin,POMC)神經(jīng)元在IT 后活性上調(diào),表明POMC 在術(shù)后GK 大鼠的糖耐量改善中發(fā)揮作用[25]。因此可以說,腸-腦軸對于機體血糖穩(wěn)態(tài)的維持具有重要作用,在減重手術(shù)后同樣必不可少。

      2 腦-肝軸

      眾所周知,中樞神經(jīng)系統(tǒng),尤其下丘腦,對于維持機體的各項生理功能(如體溫調(diào)節(jié)、情緒調(diào)節(jié)、生物節(jié)律、激素分泌等)具有至關(guān)重要的作用。血糖的調(diào)控也不例外。較多研究表明,下丘腦可感受胰島素、瘦素、胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)等激素水平[26-30],以及葡萄糖、脂肪酸等營養(yǎng)物質(zhì)[31-33],從而調(diào)節(jié)肝臟葡萄糖的生成,維持血糖穩(wěn)態(tài)。這正是“腦-肝軸”這一概念的由來。與小腸相似,脂質(zhì)感受在下丘腦調(diào)節(jié)肝糖產(chǎn)生的過程中具有重要作用,在正常生理狀態(tài)下,小腸內(nèi)的脂質(zhì)吸收入血后可升高下丘腦內(nèi)的長鏈脂肪酸水平,后者在酶的作用下生成長鏈脂酰輔酶A,再通過激活PKCδ 及三磷酸腺苷敏感性鉀通道(KATP 通道)抑制肝臟葡萄糖的產(chǎn)生;而通過側(cè)腦室置管注射脂酰輔酶A 合成抑制劑或KATP 通道阻滯劑均可阻止下丘腦通過其脂質(zhì)感受機制抑制肝臟葡萄糖的產(chǎn)生[34-35]。在高脂飲食狀態(tài)下,下丘腦的脂質(zhì)感受機制受損,其通過脂質(zhì)感受調(diào)節(jié)肝臟葡萄糖產(chǎn)生的作用失衡[36],這參與了肝臟胰島素抵抗的形成。由此可見,腦-肝軸在血糖調(diào)節(jié)中十分必要,腦-肝軸的失衡可能導致T2DM 的發(fā)生。

      3 迷走神經(jīng)的作用

      在腸-腦軸調(diào)節(jié)血糖代謝的過程中,迷走神經(jīng)發(fā)揮重要作用,它參與CCK[37-40]、瘦素[39-40]等激素抑制攝食的生理過程,維持血糖的正常水平;直接以電流刺激迷走神經(jīng),亦可抑制大鼠的攝食及體重增長[41]。反之,迷走神經(jīng)的切斷或阻斷,不利于正常血糖的維持。研究表明,在實施了小腸迷走神經(jīng)傳入神經(jīng)阻滯的動物中,小腸內(nèi)的脂質(zhì)失去了原本的減少攝食的作用[21,42];而肝臟迷走神經(jīng)切斷后,糖尿病大鼠的食物攝入,尤其脂肪攝入明顯增加[43-44]。同樣,下丘腦對血糖的調(diào)節(jié)作用也是通過迷走神經(jīng)進行傳導,肝臟迷走神經(jīng)切斷使得下丘腦脂質(zhì)感受降低,葡萄糖生成的能力消失[45]。根據(jù)以上研究,迷走神經(jīng)作為神經(jīng)信號的傳入傳出通道,在血糖穩(wěn)態(tài)的調(diào)節(jié)中至關(guān)重要;一旦迷走神經(jīng)功能異常,血糖穩(wěn)態(tài)便難以維持。

      但也有文獻指向相反的方面。有學者指出,迷走神經(jīng)是胃饑餓素(Ghrelin)傳遞信號、發(fā)揮其促進食欲作用的重要路徑[46]。而Kim 等[47]對16 例患有胃惡性腫瘤的患者進行了研究,將患者隨機分為兩組,分別在胃次全切除的同時保留或切斷迷走神經(jīng),結(jié)果發(fā)現(xiàn)保留迷走神經(jīng)的患者術(shù)后體重下降相對不明顯,這與抑制攝食的重要激素酪酪肽(peptide tyrosine tyrosine,PYY)的活性降低有關(guān)??梢?,具有多種生理功能的迷走神經(jīng),在食欲及血糖的調(diào)控方面,可能存在多方面的作用,需進行更加細致深入的研究加以明確。

      4 肝-腦軸

      早在20 世紀80年代末,有學者發(fā)現(xiàn),向大鼠的門靜脈內(nèi)灌注葡萄糖可引起攝食的下降[48],這實際上是一種“肝-腦軸”。門靜脈內(nèi)的葡萄糖信號可激活門靜脈壁內(nèi)的葡萄糖感受器,經(jīng)迷走神經(jīng)傳入纖維上傳至下丘腦及孤束核,從而發(fā)揮抑制攝食的作用[49]。這種“肝-腦軸”的作用同樣體現(xiàn)在小腸糖異生的過程中。

      以往人們認為糖異生只能在肝臟、腎臟進行,但隨著研究的深入,有學者發(fā)現(xiàn)在大鼠及人的腸道中,糖異生的兩種關(guān)鍵酶——葡萄糖-6-磷酸酶(glucose-6-phosphatase,Glc6Pase)及磷酸烯醇式丙酮酸羧化激酶(phosphoenolpyruvate carboxykinase,PEPCK)也有少量表達,而在長期禁食的大鼠及糖尿病大鼠中,糖異生關(guān)鍵酶的活性及基因表達顯著升高;同位素示蹤技術(shù)顯示禁食72 h 后小腸向門靜脈釋放的葡萄糖量可占葡萄糖總輸出量的35%[50]。這提示小腸在正常情況下可進行較弱的糖異生活動,而在能量匱乏狀態(tài)時,如禁食、控制較差的糖尿病等狀態(tài)下,小腸糖異生能力大大增強,此時肝糖原已消耗殆盡,小腸糖異生成為維持血糖的重要途徑[51-52]。與門靜脈葡萄糖灌注相似,小腸糖異生使得進入門脈的葡萄糖增多,通過門脈感受器,將信號傳入并激活下丘腦相應的功能區(qū)域,產(chǎn)生飽腹感,并促進胰島素分泌,增強肝臟胰島素敏感性,抑制肝糖輸出[53]。此外,有研究證明,在門靜脈處尚存在GLP-1 受體,參與血糖的調(diào)節(jié)[54]。

      動物實驗表明,對小鼠實施減重手術(shù)后,小腸的Glc6Pase 及PEPCK 表達升高,小腸糖異生增加,這與術(shù)后小鼠進食量下降與肝胰島素敏感性升高密切相關(guān);如在施行減重手術(shù)的同時阻滯門靜脈的傳入神經(jīng),手術(shù)會失去抑制進食、改善胰島素抵抗的作用[55]。這再次證明了迷走神經(jīng)在調(diào)節(jié)血糖穩(wěn)態(tài)中的重要作用,也提示減重手術(shù)可能通過肝-腦軸發(fā)揮作用。

      5 腸-腦-肝軸

      正是基于對腸-腦軸及腦-肝軸等內(nèi)容的研究,Wang等[14]提出腸-腦-肝軸的概念。他們進行了以下研究,向近端空腸灌注脂質(zhì),可增加此段腸道內(nèi)長鏈脂肪酸輔酶A 的水平,且抑制葡萄糖生成;而向十二指腸灌注脂質(zhì)的同時,一并灌注長鏈脂肪酸輔酶A 合酶抑制劑,或麻醉藥物丁卡因,其抑制葡萄糖生成的作用消失;實施腸迷走神經(jīng)傳入神經(jīng)阻滯或切斷,或直接向第四腦室或孤束核灌注N 甲基D 天冬氨酸離子通道受體阻滯劑MK-801,或進行肝臟迷走神經(jīng)切斷,均使近端小腸內(nèi)的脂質(zhì)成分對于葡萄糖生成的抑制作用無效。這一系列的研究表明,近端小腸內(nèi)的脂質(zhì)水平激活了腸-腦-肝這條神經(jīng)軸,使得葡萄糖生成受抑制。

      腸-腦-肝軸這一概念,將上述腸-腦軸、腦-肝軸、迷走神經(jīng)及肝臟有機聯(lián)系在一起,揭示了一條先前并未充分認識的調(diào)控血糖穩(wěn)態(tài)的通路。本課題組擬在此基礎(chǔ)上,進一步研究腸-腦-肝神經(jīng)軸作為一個整體在減重手術(shù)后胰島素敏感性及糖代謝改善中發(fā)揮的作用,已成功申請國家自然基金項目并完成初步研究。

      綜上所述,小腸、小腸迷走神經(jīng)、下丘腦、肝迷走神經(jīng)及肝臟作為一個有機的整體,即所謂的腸-腦-肝軸,對于正常血糖的維持具有重要作用。在某些病理因素下,這個有機整體被破壞,可能導致胰島素抵抗及T2DM 的發(fā)生,而減重手術(shù)可能對于腸-腦-肝軸的重新恢復具有積極作用,從而改善糖代謝紊亂。盡管目前尚缺乏足夠證據(jù)證實這一點,尤其減重手術(shù)后腸-腦-肝軸的變化及作用需進行進一步的研究探索,但其在不遠的將來可能會成為治療T2DM 的新靶點。

      [1]Hossain P,Kawar B,El Nahas M.Obesity and diabetes in the developing world-a growing challenge[J].N Engl J Med,2007,356(3):213-215.

      [2]Mokdad AH,F(xiàn)ord ES,Bowman BA,et al.Prevalence of obesity,diabetes,and obesity-related health risk factors,2001[J]. JAMA,2003,289(1):76-79.

      [3]Whiting DR,Guariguata L,Weil C,et al. IDF diabetes atlas:global estimates of the prevalence of diabetes for 2011 and 2030[J].Diabetes Res Clin Pract,2011,94(3):311-321.

      [4]Pories WJ,Swanson MS,MacDonald KG,et al.Who would have thought it?An operation proves to be the most effective therapy for adult-onset diabetes mellitus[J].Ann Surg,1995,222(3):339-350.

      [5]Rider OJ,F(xiàn)rancis JM,Ali MK,et al.Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity[J].J Am Coll Cardiol,2009,54(8):718-726.

      [6]Sj?str?m L,Lindroos AK,Peltonen M,et al. Lifestyle,diabetes,and cardiovascular risk factors 10 years after bariatric surgery[J].N Engl J Med,2004,351(26):2683-2693.

      [7]Buchwald H,Avidor Y,Braunwald E,et al.Bariatric surgery:a systematic review and meta-analysis[J].JAMA,2004,292(14):1724-1737.

      [8]Wang TT,Hu SY,Gao HD,et al.Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1[J].Ann Surg,2008,247(6):968-975.

      [9]Liu S,Zhang G,Wang L,et al.The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats[J].Ann Surg,2012,256(6):1049-1058.

      [10]Thaler JP,Cummings DE.Minireview:Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery[J].Endocrinology,2009,150(6):2518-2525.

      [11]Rubino F,F(xiàn)orgione A,Cummings DE,et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes[J].Ann Surg,2006,244(5):741-749.

      [12]Drucker DJ.The role of gut hormones in glucose homeostasis[J].J Clin Invest,2007,117(1):24-32.

      [13]Simonen M,Dali-Youcef N,Kaminska D,et al.Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass[J].Obes Surg,2012,22(9):1473-1480.

      [14]Wang PY,Caspi L,Lam CK,et al.Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production[J].Nature,2008,452(7190):1012-1016.

      [15]Yan Z,Chen W,Liu S,et al.Myocardial insulin signaling and glucose transport are up-regulated in Goto-Kakizaki type 2 diabetic rats after ileal transposition[J].Obes Surg,2012,22(3):493-501.

      [16]Sun D,Wang K,Yan Z,et al.Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats[J].Obes Surg,2013,23(11):1734-1742.

      [17]Hu C,Zhang G,Sun D,et al.Duodenal-jejunal bypass improves glucose metabolism and adipokine expression independently of weight loss in a diabetic rat model[J].Obes Surg,2013,23(9):1436-1444.

      [18]Greenberg D,Smith GP,Gibbs J.Intraduodenal infusions of fats elicit satiety in sham-feeding rats[J].Am J Physiol,1990,259(1 Pt 2):R110-R118.

      [19]M?nnikes H,Lauer G,Bauer C,et al.Pathways of Fos expression in locus ceruleus,dorsal vagal complex,and PVN in response to intestinal lipid[J].Am J Physiol,1997,273(6 Pt 2):R2059-R2071.

      [20]Matzinger D,Degen L,Drewe J,et al.The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans[J].Gut,2000,46(5):689-693.

      [21]Feinle C,O'Donovan D,Doran S,et al.Effects of fat digestion on appetite,APD motility,and gut hormones in response to duodenal fat infusion in humans[J].Am J Physiol Gastrointest Liver Physiol,2003,284(5):G798-807.

      [22]Breen DM,Rasmussen BA,Kokorovic A,et al.Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes[J].Nat med,2012,18(6):950-955.

      [23]Breen DM,Yue JT,Rasmussen BA,et al.Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production[J].Diabetes,2011,60(12):3148-3153.

      [24]Kokorovic A,Cheung GW,Breen DM,et al.Duodenal mucosal protein kinase C-δ regulates glucose production in rats[J].Gastroenterology,2011,141(5):1720-1727.

      [25]Chen W,Yan Z,Liu S,et al.The changes of pro-opiomelanocortin neurons in type 2 diabetes mellitus rats after ileal transposition:the role of POMC neurons[J].J Gastrointest Surg,2011,15(9):1618-1624.

      [26]Obici S,Zhang BB,Karkanias G,et al.Hypothalamic insulin signaling is required for inhibition of glucose production[J].Nat Med,2002,8(12):1376-1382.

      [27]Gelling RW,Morton GJ,Morrison CD,et al.Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes[J].Cell Metab,2006,3(1):67-73.

      [28]Coppari R,Ichinose M,Lee CE,et al.The hypothalamic arcuate nucleus:a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity[J].Cell Metab,2005,1(1):63-72.

      [29]Kievit P,Howard JK,Badman MK,et al.Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells[J].Cell Metab,2006,4(2):123-132.

      [30]Knauf C,Cani PD,Perrin C,et al.Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage[J].J Clin Invest,2005,115(12):3554-3563.

      [31]Lam TK,Gutierrez-Juarez R,Pocai A,et al. Regulation of blood glucose by hypothalamic pyruvate metabolism[J]. Science,2005,309(5736):943-947.

      [32]Parton LE,Ye CP,Coppari R,et al.Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity[J].Nature,2007,449(7159):228-232.

      [33]Obici S,F(xiàn)eng Z,Morgan K,et al.Central administration of oleic acid inhibits glucose production and food intake[J].Diabetes,2002,51(2):271-275.

      [34]Ross R,Wang PY,Chari M,et al. Hypothalamic protein kinase C regulates glucose production[J]. Diabetes,2008,57(8):2061-2065.

      [35]Pocai A,Lam TK,Gutierrez-Juarez R,et al.Hypothalamic KATP channels control hepatic glucose production[J].Nature,2005,434(7036):1026-1031.

      [36]Caspi L,Wang PY,Lam TK.A balance of lipid-sensing mechanisms in the brain and liver[J].Cell Metab,2007,6(2):99-104.

      [37]Moran TH,Baldessarini AR,Salorio CF,et al.Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin[J].Am J Physiol,1997,272(4 pt 2):R1245-R1251.

      [38]Cheung GW,Kokorovic A,Lam CK,et al.Intestinal cholecystokinin controls glucose production through a neuronal network[J].Cell Metab,2009,10(2):99-109.

      [39]De Lartigue G,Barbier de la Serre C,Espero E,et al.Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats[J].PLoS One,2012,7(3):e32967.

      [40]Peters JH,Simasko SM,Ritter RC.Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin[J].Physiol Behav,2006,89(4):477-485.

      [41]Gil K,Bugajski A,Thor P.Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet[J].J Physiol Pharmacol,2011,62(6):637-646.

      [42]Sclafani A,Ackroff K,Schwartz GJ.Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients[J].Physiol Behav,2003,78(2):285-294.

      [43]La Fleur SE,Ji H,Manalo SL,et al.The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia[J].Diabetes,2003,52(9):2321-2330.

      [44]Warne JP,F(xiàn)oster MT,Horneman HF,et al.Hepatic branch vagotomy,like insulin replacement,promotes voluntary lard intake in streptozotocin-diabetic rats[J].Endocrinology,2007,148(7):3288-3298.

      [45]Lam TK,Pocai A,Gutierrez-Juarez R,et al.Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis[J].Nat Med,2005,11(3):320-327.

      [46]Date Y,Murakami N,Toshinai K,et al.The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats[J].Gastroenterology,2002,123(4):1120-1128.

      [47]Kim HH,Park MI,Lee SH,et al.Effects of vagus nerve preservation and vagotomy on peptide YY and body weight after subtotal gastrectomy[J].World J Gastroenterol,2012,18(30):4044-4050.

      [48]Tordoff MG,Tluczek JP,F(xiàn)riedman MJ.Effect of hepatic portal glucose concentration on food intake and metabolism[J].Am J Physiol,1989,257(6 Pt 2):R1474-R1480.

      [49]Shimizu N,Oomura Y,Novin D,et al.Functional correlations between lateral hypothalamic glucose-sensitive neurons and hepatic portal glucose-sensitive units in rat[J].Brain Res,1983,265(1):49-54.

      [50]Mithieux G,Bady I,Gautier A,et al. Induction of control genes in intestinal glueoneogenesis is sequential during fasting and maximal in diabetes[J].Am J Physiol Endocrinol Metab,2004,286(3):E370-E375.

      [51]Mithieux G.A novel function of intestinal gluconeogenesis:central signaling in glucose and energy homeostasis[J].Nutrition,2009,25(9):88l-884.

      [52]Mithieux G,Gautier-Stein A,Rajas F,et al.Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat[J].Comp Biochem Physiol B Biochem Mol Biol,2006,143(2):195-200.

      [53]Delaere F,Magnan C,Mithieux G.Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity[J].Diabetes Metab,2010,36(4):257-262.

      [54]Vahl TP,Tauchi M,Durler TS,et al.Glucagon-like peptide-1 (GLP-1)receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats[J].Endocrinology,2007,148(10):4965-4973.

      [55]Troy S,Soty M,Ribeiro L,et al.Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not gastric after lap-band in mice[J].Cell Metab,2008,8(3):201-211.

      猜你喜歡
      糖異生下丘腦小腸
      小而強大的下丘腦
      科學中國人(2024年5期)2024-06-14 00:00:00
      糖異生相關(guān)通路的研究進展及中藥的改善作用*
      灌肉
      用好小腸經(jīng),可整腸除濕熱
      石斛合劑基于PKB/FoxO1通路抑制糖尿病大鼠 肝糖異生的機制研究
      肝糖異生的調(diào)控機制及降糖藥物的干預作用
      一根小腸一頭豬
      故事會(2019年10期)2019-05-27 06:06:58
      黃秋葵醇提物中2種成分對肝細胞糖異生及AMPKα磷酸化的影響
      中成藥(2018年5期)2018-06-06 03:12:06
      科學家發(fā)現(xiàn)控制衰老開關(guān)
      中老年健康(2017年9期)2017-12-13 07:16:39
      中藥對下丘腦作用的研究進展
      中成藥(2017年6期)2017-06-13 07:30:34
      建昌县| 香港 | 峨山| 黑山县| 绵阳市| 临朐县| 绥芬河市| 松潘县| 阿拉尔市| 黑龙江省| 鄄城县| 松原市| 南陵县| 安丘市| 焦作市| 汨罗市| 平果县| 邓州市| 沈丘县| 漯河市| 邹城市| 荆州市| 开封市| 盘山县| 晋中市| 舟曲县| 白玉县| 缙云县| 尚义县| 曲靖市| 平和县| 正镶白旗| 华阴市| 哈尔滨市| 孝昌县| 长阳| 开封市| 济阳县| 留坝县| 分宜县| 宁强县|