王秀娟 孫堯
【摘要】 目的:觀察乏氧條件下miRNA調(diào)節(jié)AMPK對胰腺β細胞發(fā)揮的作用。方法:經(jīng)細胞培養(yǎng)及Real-time PCR,觀察在乏氧條件下miR-29a通過AMPK調(diào)控胰島β細胞功能的發(fā)揮。結(jié)果:INS-1細胞,主要表達AMPKα2,其磷酸化AMPK活性在乏氧條件下增加。用Real time PCR檢測AMPK的表達,發(fā)現(xiàn)乏氧說明在胰腺β細胞,主要表達AMPKα2亞基。乏氧能促進HIF-1α表達,促進AMPK的活化。同時AMPK可能受miR-29a的調(diào)節(jié)。結(jié)論:乏氧條件下胰島β細胞主要表達為AMPKa2,說明AMPK能促進胰島β細胞細胞增殖。
【關(guān)鍵詞】 AMPK; 胰腺β細胞; 乏氧; miR-29a
【Abstract】 Objective:To explore the mechanism by which miRNA plays roles in pancreatic β cells through regulating AMPK under hypoxic condition. Method:Under the condition of lack of oxygen miR - 29 a by AMPK regulation islet beta cell function were observed by cell culture and Real - time PCR.Result:The INS-1 cell primarily expressed AMPKα2, which the phosphorylation activity of AMPK was increased under hypoxic condition. the expression of AMPK was detected by Real time PCR, which suggested that pancreatic β cells primarily expressed AMPKα2 under hypoxic condition. Hypoxia could accelerate the expression of HIF-1α and the activation of AMPK. Meanwhile, AMPK might be regulated by miR-29a.Conclusion:Under the condition of lack of oxygen islet beta cells mainly expressed as AMPKa2, AMPK can promote cell proliferation islet beta cells.
【Key words】 AMPK; Pancreatic β cells; Hypoxia; miR-29a
First-authors address:Hebei United University,Tangshan 063000,China
doi:10.3969/j.issn.1674-4985.2014.18.023
胰腺是一腺體器官,內(nèi)分泌胰腺包括胰島,約有100~1000激素分泌細胞散布在外分泌組織和通過血管團相互聯(lián)系。胰島的功能主要是通過產(chǎn)生多種激素維持代謝平衡,這些激素調(diào)節(jié)血糖水平。胰腺β細胞的功能受很多分子的調(diào)控包括信號轉(zhuǎn)導(dǎo)通路、各種代謝分子及microRNA(miRNA)等構(gòu)成一個復(fù)雜的網(wǎng)絡(luò)系統(tǒng),精確調(diào)控其行為[1-3]。miRNA是一種內(nèi)源性的非編碼RNA,廣泛存在于真核生物中。而乏氧上調(diào)miR-29a通過AMPK抑制胰腺β細胞增殖、促進凋亡及促進自噬。筆者采用分子生物學(xué)和細胞生物學(xué)的方法研究特分析如下。
1 材料與方法
1.1 材料與試劑
1.1.1 RPMI 1640培養(yǎng)液 RPMI 1640培養(yǎng)基干粉為Invitrogen產(chǎn)品,去離子水配制,每升加入2.0 g的碳酸氫鈉,充分溶解后用HCl調(diào)pH至7.4,0.22 μm濾膜過濾后4 ℃保存使用。
1.1.2 DMEM培養(yǎng)液 DMEM培養(yǎng)基干粉為Invitrogen 產(chǎn)品。去離子水配制,每升加入3.7 g的碳酸氫鈉,充分溶解后用HCl調(diào)pH至7.4,0.22 μm濾膜過濾后4 ℃保存使用。
1.1.3 D-Hanks液配制 1 L含有0.12 g Na2HPO4·7H2O,0.06 g KH2PO4,0.35 g NaHCO3,0.4 g KCl,8 g NaCl。
1.1.4 0.25%胰蛋白酶 1L D-Hanks液(pH 7.4)含有2.5 g胰酶,充分溶解后過濾除菌于4 ℃保存。
1.1.5 其他材料 細胞培養(yǎng)用各式培養(yǎng)皿、培養(yǎng)板和其他耗材,均購自Corning公司。
1.1.6 10×PBS 室溫保存,使用時以水稀釋至1×PBS,調(diào)pH 7.4。
1.1.7 Real-time PCR相關(guān)試劑 Olig(dT)18、dNTP、逆轉(zhuǎn)錄酶和逆轉(zhuǎn)錄酶抑制劑購自Promega公司;2×SYBR Green PCR Master Mix(Takara公司,日本),此混合物中含有dNTP、MgCl2、Taq DNA多聚酶、抗Taq單克隆抗體和SYBR Green I、II等。
1.2 實驗方法
1.2.1 細胞培養(yǎng) INS-1細胞為本實驗室保存,培養(yǎng)在RPMI1640并含有2 mmol/L Gln,另外加100 kU/L青霉素和100 mg/L鏈霉素,1 mmol/L丙酮酸鈉,完全的培養(yǎng)基含有10%滅活的胎牛血清,培養(yǎng)37 ℃,5% CO2條件下[4-5]。乏氧處理的條件是1% O2。
1.2.2 Real-time PCR 使用Primer Premier software 5.0軟件設(shè)計引物,DNA序列由上海生物工程有限公司合成,Real-time PCR擴增程序為:熱啟動95 ℃ 3 min,然后95 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s擴增40循環(huán),最后0.5 ℃/s作融解曲線。使用Light Cycler軟件分析結(jié)果。目的基因與內(nèi)參Ct值各自通過標(biāo)準(zhǔn)曲線轉(zhuǎn)換為濃度值,以各目的基因和GAPDH基因的濃度比值表示mRNA的相對水平[6-8]。endprint
2 結(jié)果
2.1 乏氧條件下胰島β細胞AMPK的表達情況 為研究乏氧條件下胰島β細胞AMPK的表達情況,將INS-1細胞放于常氧和乏氧(1% O2)條件下培養(yǎng),觀察不同乏氧時間4、12和24 h的AMPK表達情況,結(jié)果發(fā)現(xiàn)在INS-1細胞,主要表達AMPKα2,其磷酸化AMPK活性在乏氧條件下增加(圖1)。用Real time PCR檢測AMPK的表達,發(fā)現(xiàn)乏氧說明在胰腺β細胞,主要表達AMPKα2亞基(圖2)。當(dāng)HIF-1α被抑制后,磷酸化AMPK下降,同時AMPK也下降。說明乏氧能促進HIF-1α表達,促進AMPK的活化(圖3)。
2.2 miR-29a調(diào)節(jié)AMPK在胰島細胞的表達 AMPK在胰島細胞有很重要的作用,筆者用生物學(xué)軟件對調(diào)節(jié)AMPK的3UTR的miRNAs進行了預(yù)測,發(fā)現(xiàn)AMPK的3UTR區(qū)有miR-29a結(jié)合位點,說明AMPK可能受miR-29a的調(diào)節(jié),因此構(gòu)建了AMPK的3UTR的報告基因載體,證明了AMPK是miR-29a的靶基因(圖4)。將INS-1細胞在乏氧條件下培養(yǎng)發(fā)現(xiàn),乏氧能下調(diào)miR-29a的表達(圖5)。
3 討論
AMPK在細胞內(nèi)氧化應(yīng)激是活性增加。ROS誘導(dǎo)激活A(yù)MPK被認為對許多藥物的有益效果是非常重要的。例如,已報道二甲雙胍通過線粒體衍生的RNS激活A(yù)MPK。在小鼠骨骼肌AMPK被活化,氧化應(yīng)激和增強葡萄糖轉(zhuǎn)運,并不依賴于AMP或AMP/ATP比值的變化。同樣,在細胞培養(yǎng)條件下,缺氧誘導(dǎo)的AMPK活化依賴于線粒體ROS而AMP/ATP比值沒有顯著的變化[9]。過氧化氫已被觀察到,能夠強烈誘導(dǎo)活化AMPK。
線粒體尤其線粒體受損是細胞ROS產(chǎn)生的主要來源,線粒體損傷與許多慢性疾病有關(guān)如糖尿病,神經(jīng)退行性疾病和癌癥。AMPK可通過幾個機制調(diào)節(jié)線粒體ROS的產(chǎn)生[10]。解偶聯(lián)蛋白是線粒體陰離子載體蛋白的大家庭成員,解偶聯(lián)蛋白促進線粒體膜上的陰離子轉(zhuǎn)移。UCP2在控制線粒體ROS生產(chǎn)中起著重要的作用是治療肥胖、糖尿病及衰老的潛在靶點[11]。研究表明,一個在氧化還原調(diào)控AMPK的作用機制是通過上調(diào)線粒體UCP2表達。例如,通過AICAR激活A(yù)MPK,或過表達組成性激活A(yù)MPK,抑制O2生產(chǎn)和降低酪氨酸硝化前列環(huán)素合酶在人臍靜脈內(nèi)皮細胞在高糖處理[12]。AMPK參與NPY/刺鼠相關(guān)肽的作用。后者似乎是由于了UCP2表達的調(diào)控,導(dǎo)致神經(jīng)元的調(diào)控線粒體ROS的產(chǎn)生。培養(yǎng)MIN6胰島瘤細胞。此外,在動物模型,發(fā)現(xiàn)激活A(yù)MPK導(dǎo)致胰島UCP2表達的增加,此結(jié)果與在β細胞缺失的細胞結(jié)果一致[13]。盡管這些研究結(jié)果,AMPK調(diào)節(jié)UCP2表達和功能的詳細的機制仍然不完全清楚。新研究表明,AMPK調(diào)節(jié)自噬從而調(diào)節(jié)線粒體ROS的產(chǎn)生。眾所周知的,受損的蛋白質(zhì)和DNA的或不正常的線粒體可導(dǎo)致線粒體產(chǎn)生ROS增強[14]。因此,細胞有各種特定的機制來控制這些受損細胞器,這樣的機制之一就是細胞自噬,從細胞中消除不正常的線粒體是至關(guān)重要的[14]。自噬缺陷導(dǎo)致生產(chǎn)ROS;這是由自噬功能失調(diào)的細胞或動物的許多實驗結(jié)果的支持。例如,從agt7缺陷小鼠的骨骼肌細胞表現(xiàn)為線粒體呼吸和ROS水平增加[15]。
筆者的研究發(fā)現(xiàn)乏氧條件下胰島β細胞主要表達AMPKα2,而AMPKα1表達很低,說明AMPK在細胞的表達存在組織特異性。進一步的結(jié)果說明AMPK能促進胰島β細胞細胞增殖。
參考文獻
[1] Bonal C,Herrera P L.Genes controlling pancreas ontogeny[J].Int J Dev Biol,2008,52(23):823-835.
[2] Collombat P,Hecksher-Sorensen J,Serup P,et al.Specifying pancreatic endocrine cell fates[J].Mech Dev,2006,123(12):501-512.
[3] Oliver-Krasinski J M,Stoffers D A.On the origin of the beta cell[J].Genes Dev,2008,22(2):1998-2021.
[4] Palanichamy J K,Rao D S.miRNA dysregulation in cancer: towards a mechanistic understanding[J].Front Genet,2014,5(4):54.
[5] Kaspi H,Pasvolsky R,Hornstein E.Could microRNAs contribute to the maintenance of β cell identity?[J].Trends Endocrinol Metab,2014,25(6):274-282.
[6] Gong W,Xiao D,Ming G,et al.Type 2 diabetes mellitus-related genetic polymorphisms in micro RNAs and microRNA target sites[J]. J Diabetes,2014,6(4):279-283.
[7] Jiang H,Zhang G,Wu J H,et al.Diverse roles of miR-29 in cancer (Review)[J].Oncol Rep,2014,31(4):1509-1516.
[8] Farr R J,Joglekar M V,Taylor C J,et al.Circulating non-coding RNAs as biomarkers of β cell death in diabetes[J].Pediatr Endocrinol Rev,2013,11(1):14-20.endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文編輯:蔡元元)endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文編輯:蔡元元)endprint
[9] Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75(5):37-47.
[10] Bagge A,Dahmcke C M,Dalgaard LT.Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells[J].Horm Metab Res,2013,45(6):463-466.
[11] Bagge A,Clausen T R,Larsen S,et al.MicroRNA-29a is up-regulated in β-cells by glucose and decreases glucose-stimulated insulin secretion[J].Biochem Biophys Res Commun,2012,426(2):266-272.
[12] Roggli E,Gattesco S,Caille D,et al.Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice[J].Diabetes,2012,61(7):1742-1751.
[13] Pullen T J,da Silva Xavier G,Kelsey G,et al.miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[14] Puddu A,Sanguineti R,Mach F,et al.Update on the protective molecular pathways improving pancreatic β-cell dysfunction[J].Mediators Inflamm,2013,13(23):750 540.
[15] Zong H,Ren J M,Young L H,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Natl Acad Sci,2002,99(12):15 983-15 987.
(收稿日期:2014-04-21) (本文編輯:蔡元元)endprint