• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      氨氮對魚類的危害

      2014-08-27 21:35:12高亞峰孫洪杰
      河北漁業(yè) 2014年8期
      關(guān)鍵詞:魚類毒性

      高亞峰+孫洪杰

      摘 要:氨氮是水產(chǎn)養(yǎng)殖中需要密切關(guān)注的水質(zhì)指標(biāo)。氨氮對魚類的毒害作用主要?dú)w因于其所包含的非離子氨(NH3-N)的毒性。研究表明:NH3-N能夠影響魚類的生長、滲透壓的平衡、代謝活動等,并能對魚類造成一定的損傷。本文就NH3-N的毒性做了詳細(xì)闡述。

      關(guān)鍵詞:非離子氨;離子氨;魚類;毒性

      氨氮是水產(chǎn)養(yǎng)殖環(huán)境中的一個環(huán)境污染的指標(biāo)。研究表明,高濃度氨氮能夠嚴(yán)重影響水生動物的正常生活。隨著水產(chǎn)養(yǎng)殖業(yè)集約化、規(guī)模化的迅速發(fā)展,使得水產(chǎn)養(yǎng)殖業(yè)中氨氮污染的問題變得日益嚴(yán)重。因?yàn)殡S著養(yǎng)殖規(guī)模的擴(kuò)大,大大降低了水體中水生生物的多樣性,減弱了池塘中的能量流動,導(dǎo)致投入的餌料、糞便及各種生物的尸體等含蛋白質(zhì)的物質(zhì)不能及時分解。當(dāng)池塘中所含的氨氮總量多余消散量時,隨著時間的遷移,池塘中氨氮的含量逐漸累積,達(dá)到一定程度后,就會對水生生物產(chǎn)生毒害作用,造成較大的危害。

      1 氨氮的存在形式

      作為水生生物的“頭號隱形殺手”,氨氮主要以兩種形式存在于水體中:非離子氨(NH3-N)和離子氨(NH4+)。二者在水體中存在一定的平衡:NH4+OH-NH3·H2ONH3+H2O[1]。 NH3-N和NH4+的相對濃度與pH值和溫度有密切的關(guān)系。通過Emerson, Russo, Lund and Thurston [1]的實(shí)驗(yàn)研究發(fā)現(xiàn):NH3=[NH3+NH4+]1+10(pKa-pH):pKa=0.090 18+2 729.92/T, (T in Kelvin=273+T℃),在pH值和溫度一定的情況下,二者能夠按照一定比例而共存。通過近年來對氨氮毒性的研究可知:氨氮對水生動物的毒性,主要是它所包含的NH3-N起作用。NH3-N是具有毒性的,然而NH4+對水生動物的毒性很小,甚至可以忽略不計[2]。但是研究表明,NH4+對亞硝化單胞菌(Nitrosomonas)和硝化細(xì)菌(Nitrobacter)有一定的毒性,能夠抑制硝化反應(yīng)的進(jìn)行,進(jìn)而導(dǎo)致水體中NH3-N濃度的增加,增強(qiáng)了氨氮對水生動物的毒性[3]。

      2 氨氮對魚類的影響

      由于氨氮是制約水產(chǎn)養(yǎng)殖業(yè)發(fā)展的重要因素,為了更好地了解氨氮的毒性,學(xué)者們對于NH3-N對魚的毒性進(jìn)行了深入的研究。大量的研究表明:NH3-N能夠影響魚類正常的生長。其中一些學(xué)者認(rèn)為,NH3-N能夠?qū)︳~類的正常生活形成脅迫作用,將會抑制它們的生長[4-5]。Foss, et al.[6]也證實(shí)了高濃度的NH3-N能夠抑制比目魚(Scophthalmus maximus)的生長,高濃度的NH3-N對魚有脅迫作用,抑制了魚的攝食,因此生長受到限制。然而也有一些學(xué)者認(rèn)為NH3-N能夠促進(jìn)魚的生長[7-8],Sun, et al.[9]通過實(shí)驗(yàn)也證實(shí)了低濃度的NH3-N促進(jìn)鳙魚(Hypophthalmythys nobilis)仔魚的生長。并推測這可能是因?yàn)樽恤~機(jī)體能夠充分利用外界中NH3-N提供的氮源,考慮到NH3-N對魚體重影響的結(jié)論不一致,可能是因?yàn)镹H3-N對不同種類、不同時期的魚類的影響不同。此外,NH3-N還會對魚類產(chǎn)生其他影響??寡趸到y(tǒng),是魚體抵御環(huán)境脅迫的第一道屏障,能夠及時準(zhǔn)確地反映出機(jī)體受到的損害[10]??寡趸割惖拇嬖趯︳~類適應(yīng)外界環(huán)境起到重要作用,研究表明:胚胎及孵化初期的仔魚就已經(jīng)形成了抗氧化系統(tǒng),具備了清除體內(nèi)氧化自由基和過氧化物的能力[10-11]??寡趸?,作為抗氧化系統(tǒng)的重要組成部分,對機(jī)體抵御環(huán)境脅迫有很重要的作用。Yang, et al. [12]研究指出:長期暴露在NH3-N(安全濃度)環(huán)境下,能夠影響鯽魚(Carassius carassius)的抗氧化酶類(CAT和SOD)的活性和抗氧化物質(zhì)(GSH)的含量。Hegazi, et al.[13]也通過實(shí)驗(yàn)發(fā)現(xiàn):長期暴露NH3-N能夠影響羅非魚(Oreochromis niloticus)的抗氧化酶類。在NH3-N影響魚體的抗氧化系統(tǒng)的同時,降低了機(jī)體的免疫力,進(jìn)而導(dǎo)致機(jī)體更易感染一些細(xì)菌性或寄生性疾病。這是因?yàn)镹H3-N能夠?qū)C(jī)體造成氧化應(yīng)激,破壞機(jī)體的抗氧化系統(tǒng),進(jìn)而降低機(jī)體的免疫能力[12,14]。除此之外,NH3-N還會對魚類的ATP產(chǎn)生影響。有研究指出:NH3-N能夠抑制ATP的產(chǎn)生,并能耗盡腦部的ATP。因?yàn)榘钡軌蛲ㄟ^激活NMDA 受體,進(jìn)而減少了對Na+、K+磷?;^程中起主要作用的蛋白激酶C[15-17]。另外,也有研究證實(shí)了,NH3-N能夠影響機(jī)體的滲透壓平衡,進(jìn)而對其肝臟和腎臟造成紊亂[18]。并可以影響魚體內(nèi)的糖酵解,抑制克氏循環(huán)并減弱了血液的攜氧能力。隨著NH3-N進(jìn)入到魚體內(nèi),組織中氨濃度的提高抑制了機(jī)體的蛋白質(zhì)分解和氨基酸的水解來降低體內(nèi)氨的含量。與此同時磷酸果糖激酶被激活,進(jìn)而影響糖酵解過程。NH3-N對糖酵解過程的影響而導(dǎo)致敗血癥的產(chǎn)生,進(jìn)而對血液的攜氧能力產(chǎn)生影響[19-20]。NH3-N除了影響魚類體內(nèi)的正常代謝、生化反應(yīng)等,還對其生理造成損傷。NH3-N可以誘導(dǎo)魚類的許多組織發(fā)生病變[21-22]。Benli, et al.[23]通過慢性(6周)暴露實(shí)驗(yàn)發(fā)現(xiàn),NH3-N能夠誘導(dǎo)羅非魚(Oreochromis niloticus L.)的鰓組織充血、肝組織腫脹、誘變腎炎等病變。Spencer, et al.[24]通過亞急性實(shí)驗(yàn)也證實(shí)了,21天的NH3-N暴露能夠?qū)е露鸥隔~(Cottus cognatus)的鰓組織發(fā)生病變。Miron, et al.[25]通過急性試驗(yàn)表明:短時間(96 h)的NH3-N暴露能夠促使鯰魚(Rhamdia quelen)的鰓組織發(fā)生病變。這表明NH3-N對魚類的危害性很大,能夠影響機(jī)體內(nèi)的抗氧化系統(tǒng)的平衡,并在短時間內(nèi)能夠誘導(dǎo)機(jī)體發(fā)生病變。

      除此之外,研究還發(fā)現(xiàn):NH3-N還具有神經(jīng)毒性[26-27]。NH3-N進(jìn)入血液中轉(zhuǎn)換成離子氨,NH4+能夠通過替代K+激活NMDA谷氨酸受體,進(jìn)而導(dǎo)致過多的Ca2+流失,最終導(dǎo)致神經(jīng)細(xì)胞死亡[27]。

      綜上所述,NH3-N能夠?qū)︳~類造成多種危害,究其原因可能是:NH3-N能夠像O2、CO2一樣通過魚鰓的上皮細(xì)胞內(nèi)的水蛋白通道進(jìn)入到魚體內(nèi),在血液中NH3-N被轉(zhuǎn)化成離子氨,帶電荷的NH4+影響了機(jī)體的滲透壓平衡,又因?yàn)槠渌鶐У碾姾捎绊憴C(jī)體內(nèi)正常的生化反應(yīng),進(jìn)而可以對機(jī)體造成生理上的影響。

      參考文獻(xiàn):

      [1] Emerson, K.; Russo, R. C.; Lund, R. E.; Thurston, R. V., Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Board Can. 1975, 32, (12), 2379-2383

      [2] Constable, M.; Charlton, M.; Jensen, F.; McDonald, K.; Craig, G.; Taylor, K. W., An ecological risk assessment of ammonia in the aquatic environment. Hum. Ecol. Risk Assess. 2003, 9, (2), 527-548

      [3] Anthonisen, A.; Loehr, R.; Prakasam, T.; Srinath, E., Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, (5), 835-852

      [4] Person-Le Ruyet, J.; Mahe, K.; Le Bayon, N.; Le Delliou, H., Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 2004, 237, (1), 269-280

      [5] Foss, A.; Evensen, T. H.; Vollen, T.; ?iestad, V., Effects of chronic ammonia exposure on growth and food conversion efficiency in juvenile spotted wolffish. Aquaculture 2003, 228, (1), 215-224

      [6] Foss, A.; Imsland, A. K.; Roth, B.; Schram, E.; Stefansson, S. O., Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot. Aquaculture 2007, 271, (1), 244-251

      [7] Wood, C. M., Dogmas and controversies in the handling of nitrogenous wastes: Is exogenous ammonia a growth stimulant in fish J. Exp. Biol. 2004, 207, (12), 2043-2054.

      [8] Foss, A.; Siikavuopio, S. I.; S?ther, B.-S.; Evensen, T. H., Effect of chronic ammonia exposure on growth in juvenile Atlantic cod. Aquaculture 2004, 237, (1), 179-189

      [9] Sun, H.; Lü, K.; Minter, E. J.; Chen, Y.; Yang, Z.; Montagnes, D. J., Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J. Hazard. Mater. 2012, 221, 213-219

      [10] Sun, H.; Yang, W.; Chen, Y.; Yang, Z., Effect of purified microcystin on oxidative stress of silver carp Hypophthalmichthys molitrix larvae under different ammonia concentrations. Biochem. Syst. Ecol. 2011, 39, (4), 536-543

      [11] Chen, Y.; Sun, H.; Yang, W.; Yang, Z., Incubation and oxidative stress of grass carp (Ctenopharyngodon idella) embryos exposed to different un-ionized ammonia levels. J. Freshwater Ecol. 2012, 27, (1), 143-150

      [12] Yang, W.; Sun, H.; Xiang, F.; Yang, Z.; Chen, Y., Response of juvenile crucian carp (Carassius auratus) to long-term ammonia exposure: feeding, growth, and antioxidant defenses. J. Freshwater Ecol. 2011, 26, (4), 563-570

      [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

      [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

      [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

      [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

      [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

      [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

      [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

      [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

      [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

      [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

      [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

      [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

      [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

      [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

      [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

      [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

      [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

      [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

      [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

      [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

      [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

      [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

      [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

      [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

      [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

      [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

      [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

      [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

      [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

      [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

      [13] Hegazi, M. M.; Attia, Z. I.; Ashour, O. A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, (2), 118-125

      [14] Yang, W.; Xiang, F.; Sun, H.; Chen, Y.; Minter, E.; Yang, Z., Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem. Syst. Ecol. 2010, 38, (4), 557-562

      [15] Kosenko, E.; Kaminsky, Y.; Grau, E.; Mi?ana, M. D.; Marcaida, G.; Grisolía, S.; Felipo, V., Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+‐ATPase. J. Neurochem. 1994, 63, (6), 2172-2178.

      [16] Kosenko, E.; Kaminsky, M.; Kaminsky, A.; Valencia, M.; Lee, L.; Hermenegildo, C.; Felipo, V., Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radical Res. 1997, 27, (6), 637-644

      [17] Hurvitz, A.; Bercovier, H.; Van run, J., Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss, Walbaum) vaccinated against Streptococcus iniae Fish Shellfish Immunol. 1997, 7, (1), 45-53

      [18] Eddy, F., Ammonia in estuaries and effects on fish. J. Fish Biol. 2005, 67, (6), 1495-1513

      [19] Sousa, R. J.; Meade, T. L., The influence of ammonia on the oxygen delivery system of coho salmon hemoglobin. Comp. Biochem. Phys. A 1977, 58, (1), 23-28.

      [20] Ip, Y.; Chew, S.; Randall, D., Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109-148

      [21] Schuwerack, P.-M.; Lewis, J.; Hoole, D.; Morley, N., Ammonia-induced cellular and immunological changes in juvenile Cyprinus carpio infected with the blood fluke Sanguinicola inermis. Parasitology 2001, 122, (03), 339-345

      [22] Vogelbein, W.; Shields, J.; Haas, L.; Reece, K.; Zwerner, D., Skin ulcers in estuarine fishes: a comparative pathological evaluation of wild and laboratory-exposed fish. Environ. health Persp. 2001, 109, (Suppl 5), 687

      [23] Benli, A. . K.; Kksal, G.; ?zkul, A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, (9), 1355-1358

      [24] Spencer, P.; Pollock, R.; Dubé, M., Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquat. Toxicol. 2008, 90, (4), 300-309

      [25] Miron, D. d. S.; Moraes, B.; Becker, A. G.; Crestani, M.; Spanevello, R.; Loro, V. L.; Baldisserotto, B., Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 2008, 277, (3), 192-196

      [26] Felipo, V.; Kosenko, E.; Mi?ana, M.-D.; Marcaida, G.; Grisolia, S., Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. In Hepatic Encephalopathy, Hyperammonemia, and Ammonia Toxicity, Springer: 1994; pp 65-77

      [27] Randall, D.; Tsui, T., Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, (1), 17-23

      猜你喜歡
      魚類毒性
      基于MFCC和ResNet的魚類行為識別
      魚類運(yùn)動會
      動物之最——毒性誰最強(qiáng)
      苦豆子總堿對PC12細(xì)胞的毒性
      中成藥(2018年11期)2018-11-24 02:57:24
      2050年大海里的塑料將多過魚類
      奇妙的古代動物 泥盆紀(jì)的魚類
      魚類是怎樣保護(hù)自己的
      RGD肽段連接的近紅外量子點(diǎn)對小鼠的毒性作用
      PM2.5中煤煙聚集物最具毒性
      魚類怎樣呼吸
      滁州市| 应城市| 湖南省| 弥勒县| 佛教| 花莲市| 琼海市| 合作市| 澎湖县| 南川市| 蕲春县| 新昌县| 南召县| 从化市| 灵丘县| 平昌县| 长宁区| 巫山县| 佛坪县| 东山县| 武冈市| 定兴县| 杭州市| 竹溪县| 泸水县| 襄樊市| 天全县| 米林县| 福鼎市| 松溪县| 玉田县| 兴安县| 加查县| 灵川县| 新源县| 漳浦县| 嘉荫县| 宾阳县| 奉化市| 乐都县| 通河县|