• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Parameter optimization of electro-hydraulic proportionalsystem of PID based on the improved ant colony algorithm

      2014-09-05 05:47:40XiufenXU
      機(jī)床與液壓 2014年6期
      關(guān)鍵詞:比例控制臂架控制參數(shù)

      Xiu-fen XU

      Electrical and Mechanical Engineering College,Xinxiang Institute,Xinxiang 453000,China

      Parameteroptimizationofelectro-hydraulicproportionalsystemofPIDbasedontheimprovedantcolonyalgorithm

      Xiu-fen XU?

      ElectricalandMechanicalEngineeringCollege,XinxiangInstitute,Xinxiang453000,China

      VACA is a hybrid algorithm combined with the variable metric algorithm and ant colony optimization algorithm.For the electro-hydraulic proportional control system for PID parameter tuning problem,this paper puts forward the optimization of PID parameters based on VACA,and gives the specific implementation steps: establish mathematical model for electro-hydraulic control system,establish the simulation model of electro-hydraulic proportional control system of VACA-PID by using SIMULINK toolbox,simulation and verification.The results show that: the VACA-PID controller has good static and dynamic performance,can fully meet the electro-hydraulic proportional control system.

      Improved ant colony algorithm,Electro-hydraulic proportional control,PID,Optimization

      1.Introduction

      Concrete pump truck[1] is a kind of construction machinery with concrete pumps placed in the special purpose vehicle turf,to be able to walk independently and realize transmission and pouring concrete through special boom of high technical content.Pump truck boom is the core part of the electro-hydraulic control system and its dynamic and steady-state performance has far-reaching influences on the vehicle performance.Although traditional Z-N[2-4] setting algorithm can basically meet the requirements,it has some limitations because of the poor stability and low accuracy of setting.So we must adopt measures to improve the control effect.Based on VACA[5] to PID control parameter optimization,the passage forms the intelligent electro hydraulic proportional control system.

      Single section control system electro-hydraulic proportion control system is a position closed loop control system,its principle diagram is shown in Figure 1,including the electro-hydraulic proportional valve,valve controlled single rod hydraulic cylinder,conversion link (to convert cylinder expansion amount to boom Angle),obliquity sensor,etc.

      Figure 1.The principle diagram of the electro-hydraulic proportional control system

      2.The transfer function of the system

      Static and dynamic performance of the electro-hydraulic proportional position control system mainly depends on the electro-hydraulic proportional valve and valve control hydraulic cylinder components such as features.Mathematical model of transmission system function is established.

      2.1.Transferfunctionofelectro-hydraulicproportionaldirectionvalve

      According to the actual situation,the transfer function of electro-hydraulic proportional valve can be simplified as the second order oscillation link,its transfer function is:

      (1)

      In the formula:

      X: valve core displacement (m);

      Kq: the valve’s flow gain (m3·s-1·A-1);

      ωn:the valve’s inherent frequency (rad/s);

      ζn:valve damping ratio,usually is 0.5~0.7.

      2.2.Transferfunctionofvalvecontrolledsinglerodhydrauliccylinder

      1) The force balance equation of the hydraulic cylinder and the load

      (2)

      Y: the hydraulic cylinder piston displacement (m);

      Mt: piston and load equivalent to the total mass on the piston(kg);

      Bp: the piston and the viscous damping coefficient of load (N·s/m);

      FL: effect on the piston as accidental load (N);

      2) The flow continuity equation of the hydraulic cylinder:

      (3)

      In the formula:

      βl: effective bulk modulus (Pa);

      V0: cavity volume of any hydraulic cylinder (m3);

      3) Slide valve flow equation

      QL=Q1=KqX-KcPL

      (4)

      In the formula:

      Kq: valve frontal flow gain (m3·s-1·A-1);

      Kc: valve of flow pressure coefficient (m3·s-1·pa-1)

      For formula (2),(3),(4),make a Laplace transform,three basic equations can be obtained:

      A1PL=mtS2Y+BPSY+FL

      (5)

      (6)

      QL=KqX-KCPL

      (7)

      Based on the three basic equations,we can get the transfer function expression of valve control hydraulic cylinder

      (8)

      In the formula:

      ωh: valve control hydraulic cylinder natural frequency (rad/s);

      ζh: valve control hydraulic cylinder damping ratio;

      βe: effective bulk modulus (Pa);

      FL: effect on the piston arbitrary load (N);

      A1: rodless hydraulic cylinder cavity cross-section area (m2);

      A0: hydraulic cylinder rod cavity area (m2);

      V0: cavity volume of any hydraulic cylinder (m3).

      Take the individual parameters of valve control hydraulic cylinder into the equation above and available valve control cylinder transfer function can be got:

      (9)

      According to the type of the hydraulic cylinder piston displacement relative proportional valve core displacement and relative to the external load transfer function,it is shown as follows:

      (10)

      (11)

      3.The establishment of the PID algorithm based on VACA

      3.1.ThePIDcontrolparameterssetting

      PID[6-7] controller is a linear controller,according to the given valuer(t) and the actual output valuey(t) to control deviatione(t),namely:

      e(t)=r(t)-y(t)

      (12)

      The deviation of the ratio (P-proportion),integral (I-integral),differential(D-differential),by the linear combination of the control volume,controlled object,so that the PID controller,its control law (represented by a transfer function) for:

      (13)

      Combining the improved ant colony algorithm and PID together,we can optimize the three parameters of PID controller online.Based on ant colony algorithm of PID control system,structure is shown in Figure 2.

      Figure 2.The control program principle diagram of the improved ant colony algorithm

      3.2.VACA-PIDcontrolservosystemmodel

      Under the MATLAB7.0[8] interface,use Simulink to establish the corresponding VACA-PID control system and the module type,as shown in Figure 3.

      VACA algorithm process is shown in Figure 4.

      (b) the VAC-PID control modules

      3.3.Therealizationofthealgorithm

      9.10≤KP≤10.0;100.0≤Ti≤120;

      0≤Td≤0.50

      Figure 4.VACA flow chart of the algorithm

      3.4.Thesimulationanalysisandverification

      Improved ant colony algorithm for PID parameters optimization performance indicators are shown in Table 1.

      Table 1.PID parameters settings between Z-N optimal and VACA contrast

      We can see from the Figure 5,VACA-PID setting of electro-hydraulic proportional system steady state was achieved at 5.6 s and no overshoot.Because of the boom,a process can take a few minutes,and the control accuracy and response time of this system are fully able to meet the requirements.

      Figure 5.Two different optimization strategy step response curves

      4.Conclusion

      The simulation results show that PID parameters optimization method based on improved ant colony algorithm(VACA) can short the setting time and decrease overshoot.VACA control strategy has simple structure,good stability and easy to project implem-entation.It realizes the characteristics of electro-Hydraulic proportional System steady-state performance and dynamic performance optimization.

      [1]Zhao Ruonan.Concrete pump truck arm electro-hydraulic system PID control[D].Nanjing: YanShan university engineering master degree thesis,2012(5):27-30.

      [2]Zhang Hanlei.FESTO proportional hydraulic position control system design and performance simulation analysis[D].Guiyang: Gui Zhou university engineering master degree thesis,2011:55-58.

      [3]Yang Jing,Tong Zhixue,Liu Tao.Hydraulic machinery flashlight hydraulic proportion system fuzzy PID control study[J].machinery science and technology,2013,32(6): 834-838.

      [4]Wang Muye,Zhang Xuming.Stage lifting hydraulic pump controlled cylinder synchronization with hydraulic control system[J].Machine tool and hydraulics.2010,38(20): 52-54.

      [5]Yin Hongpeng,Chai Yi.PID control parameters optimization based on ant colony algorithm[J].Computer engineering and application,2007,43(17): 4-7.

      [6]Liu Yong,Wang Yong.Direct drive electro-hydraulic servo system PID correction compound controller study[J].machine tools and hydraulic,2010,38(17):8-11.

      [7]Quan Long.The control of the pump cylinder electro-hydraulic technology research status quo,problems and innovative solutions[J].Journal of mechanical engineering,2008,44(11): 87-92.

      [8]Huang Jian.Automatic control principle and its application[M].Beijing: Beijing higher education press,2009.

      基于改進(jìn)蟻群算法的電液比例系統(tǒng)PID參數(shù)優(yōu)化

      徐秀芬?

      (新鄉(xiāng)學(xué)院 機(jī)電工程學(xué)院,河南 新鄉(xiāng) 453000)

      VACA是變尺度算法融入蟻群優(yōu)化算法中而形成的一種混合算法。針對電液比例系統(tǒng)PID 控制參數(shù)整定問題,提出了基于改進(jìn)蟻群算法的 PID 參數(shù)優(yōu)化方案,并給出了具體的實(shí)現(xiàn)步驟:建立臂架電液控制系統(tǒng)的數(shù)學(xué)模型,利用Simulink工具箱建立了電液比例控制系統(tǒng)的 VACA-PID的仿真模型,進(jìn)行了仿真和驗(yàn)證。結(jié)果表明: VACA-PID 控制器具有良好的靜、動(dòng)態(tài)性能,完全能達(dá)到電液比例控制系統(tǒng)的要求。

      改進(jìn)蟻群算法;電液比例控制;PID;優(yōu)化

      TM921.51

      2013-09-28

      ? Xiu-fen XU,E-mail: xxf_xf@163.com

      10.3969/j.issn.1001-3881.2014.06.025

      猜你喜歡
      比例控制臂架控制參數(shù)
      水下作業(yè)臂架力學(xué)特性分析
      高超聲速飛行器滑??刂茀?shù)整定方法設(shè)計(jì)*
      飛控與探測(2022年6期)2022-03-20 02:16:14
      Birkhoff系統(tǒng)穩(wěn)定性的動(dòng)力學(xué)控制1)
      一種基于電液比例控制的叉車液壓系統(tǒng)
      一種工程制圖課程模型投影演示裝置的設(shè)計(jì)及其研究
      基于PI與準(zhǔn)PR調(diào)節(jié)的并網(wǎng)逆變器控制參數(shù)設(shè)計(jì)
      黑龍江電力(2017年1期)2017-05-17 04:25:08
      基于ANSYS的四連桿臂架系統(tǒng)全幅度應(yīng)力分析
      混凝土泵車臂架系統(tǒng)折疊型式和機(jī)構(gòu)分析
      專用汽車(2016年7期)2016-11-23 06:21:24
      折臂式舉高消防車臂架系統(tǒng)振動(dòng)特性研究
      烹飪
      剑河县| 临武县| 筠连县| 克什克腾旗| 安顺市| 长春市| 化州市| 梁平县| 保定市| 安远县| 吉水县| 佳木斯市| 涞源县| 会昌县| 弥渡县| 屯门区| 贵德县| 桑植县| 正阳县| 临清市| 商都县| 龙门县| 高碑店市| 武川县| 唐山市| 洛浦县| 平度市| 凉山| 岱山县| 嘉黎县| 吴川市| 巫溪县| 久治县| 姚安县| 同德县| 越西县| 肥东县| 湛江市| 双江| 普兰店市| 马公市|