• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical properties of disc-spring vibration isolatorsbased on boundary friction

    2014-09-06 10:49:37JiaFangZhangFancheng
    關(guān)鍵詞:碟簧阻尼力學(xué)性能

    Jia Fang Zhang Fancheng

    (School of Mechanical Engineering, Southeast University, Nanjing 210096, China)

    ?

    Mechanical properties of disc-spring vibration isolatorsbased on boundary friction

    Jia Fang Zhang Fancheng

    (School of Mechanical Engineering, Southeast University, Nanjing 210096, China)

    To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators, a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law, as well as considering the effect of the boundary friction. The formula is validated through the finite element analysis and static load tests. On this basis, the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests. The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators. Compared with the loading frequency, the loading amplitude has a greater impact on the energy consumption, dynamic stiffness and damping of vibration isolators. This research can provide valuable information for the design of disc-spring vibration isolators.

    disc-spring vibration isolator; boundary friction; hysteresis curve; dynamic stiffness; damping; finite element analysis (FEA)

    The disc-spring vibration isolator features its small volume, large bearing capacity, variable stiffness and capability of providing friction damping by itself, thus winning a wide application in the field of nonlinear vibration isolation. Due to the existence of boundary friction, the loading/unloading curves of the vibration isolator do not overlap, which can bear much load on its mechanical properties.

    Up to now, various researches have been focused on disc-springs and vibration isolators. Saini et al.[1]investigated the bearing capacity and deformation of disc springs with parabolically varying thickness by theoretical analysis. Fawazi et al.[2]studied the load displacement prediction for a bended slotted disc using the energy method. Curti et al.[3]studied the effect of friction on disc-spring calculation accuracy by the finite element method and experiments. Ozaki et al.[4]analyzed the performance of disc springs with different friction boundaries based on the energy method and the Coulomb friction theory. Xiong et al.[5]proposed a new type of vibration isolator composed of steel wire rope and disc springs and studied the dynamic response of the isolation system. Du et al.[6]explored the dynamic characteristics of a disc-spring shock absorber, pointing out that the shock absorber damping shows some of the nonlinear characteristics. Gong et al.[7]presented a new method for dynamic modelling of the vibration isolator addressing its hysteresis nonlinearity and better damping performance. Peng et al.[8]discussed the effects of cubic nonlinear damping on vibration isolations using the harmonic balance method. However, to the best of our knowledge, no attempt has ever been made to gain insights into the impact of boundary friction on the mechanical properties of disc-spring vibration isolators.

    In the present study, a load-displacement hysteresis curve formula of disc-spring vibration isolators is developed, based on the theories or principles of energy conservation and boundary friction. Simulation based on finite element analysis (FEA) and static load tests are conducted for its verification. Dynamic performance of the disc-spring vibration isolator is studied through dynamic load tests. The findings are supposed to be of benefit to the desirable design of disc-spring vibration isolators.

    1 Theoretical and Finite Element Analysis of Disc Springs

    1.1 Theoretical analysis

    The Almen-Laszlo equation[9]is currently a commonly-used formula for the disc spring design. However, it tends to generate conspicuous errors in solution as it ignores the boundary friction and the radial stress. In practice, the friction between stacked springs at the edges or on the surfaces will affect the stiffness estimation of the device due to large friction damping. The disc-spring structure of the vibration isolator is shown in Fig.1. Ignoring the boundary friction, the relationship between the loadP′ and deformationfcan be written as[10]

    (1)

    Fig.1 Structure diagram of disc spring

    ParameterValueElasticmodulusE/Pa2.06×1011Poissonratioν0.3OuterradiusR/mm225Innerradiusr/mm112Thicknesst/mm6.5Freeheighth0/mm7.1

    To ascertain the relationship of the frictional dissipation and the deformation, a free body diagram of the disc spring with friction force is presented in Fig.2. In terms of the Almen-Laszlo assumptions, the cross section of the disc spring does not distort, and it merely rotates about a neutral point; thus the sliding displacement in the radial direction and the rotation angleαof the cross section can be expressed by[4]

    (2)

    wherelis the diagonal length of the cross section;βis the angle between the diagonal and vertical planes. As it is difficult to obtain the actual force acting on the boundary, the friction pressure is replaced by loadp′ in our finite element analysis. When the deformation of the disc spring rises to df, an extra loadp*is required to over-come the frictional energy dissipation. By the law of energy conservation, the frictional energy dissipation should be equal to the work done by the extra load; that is

    Fig.2 Force sketch of single disc spring

    W=Ef, dW=dEf

    (3)

    dW=p*df

    (4)

    dEf=2Fedse=2p′μdse

    (5)

    whereWis the extra work;Efis the frictional energy dissipation; dW, dEfrepresents the infinitesimal increment;Feis the frictional force; andμis the friction coefficient. As the rotation angleαis very small, Eq.(2) can be simplified into

    (6)

    And the relationship between the frictional displacement and the deformation is

    (7)

    Based on Eqs.(3), (4), (5) and (7), the width of the load-displacement hysteresis curve can be calculated by

    (8)

    Thus, we obtain the load-displacement hysteresis curve formula of the single disc spring as follows:

    (9)

    where “+” is for loading and “-” for unloading.

    1.2 Frictional analysis of disc-spring vibration isolators

    The disc-spring vibration isolator can be designed by arranging disc-springs in series or in parallel for different loads. And there must exist friction at the edges and on the surfaces between parallel springs. The structure of the vibration isolator is shown in Fig.3, whereJrepresents the number of disc springs in parallel andIdenotes the number of series of disc springs. A steel plate is used to connect disc-springs in series. Ignoring the friction, the load of the isolator isJp′ when the deformation isIf. In addition, the surface friction displacementsscan also be evaluated as a function of the deformationf. As illustrated in Fig.3, the surface friction displacement is given as

    (10)

    whereA(x1,y1) andB(x1,y2) are the coordinates at the contact points of disc springs stacked in parallel, which vary with the deformation of the springs. Known from the

    Fig.3 Structure of disc-spring vibration isolator (I=2,J=2,O1(xo1,yo1) andO2(xo2,yo2))

    researches on the single disc spring, the contact points rotate about the neutral pointO. So based on the coordinate transformation matrix, the rotation matrix of pointsAandBcan be written as

    wherexo2=xo1;yo2=yo1+t/sinφ, andφis the angle between the spring and the vertical plane. During the deformation, the location vectors {x1,y1,1} and {x2,y2,1} change with the rotating neutral pointsO1andO2. According to Eqs.(10), (11) and (12), the surface friction displacement can be calculated by

    When the deformation of the vibration isolator grows to df, the friction energy dissipation and the extra force overcoming the surface friction can be denoted as

    (14)

    (15)

    And the extra force overcoming the edge friction is

    (16)

    Thus, we obtain the load-displacement hysteresis curve formula of the disc-spring vibration isolator as

    (17)

    where “+” is for loading and “-” for unloading.

    1.3 Finite element analysis

    ANSYS 12.0 is used to analyze the static-load characteristics of a single disc spring and two disc springs in parallel. The FEA models are demonstrated in Fig.4. The axial displacement load is imposed on the top of the models for transient dynamic analysis. Then the loading and unloading conditions with different friction coefficients are simulated to validate the hysteresis curve formula. The results from FEA and the hysteresis curve formula are compared in Figs.5 and 6. As illustrated in Fig.5, similar changes are observed among the results from the FEA, the hysteresis curve formula and the theoretical curve. No overlapping is observable between the loading and unloading curves due to the presence of friction. Fig.6 shows that with the surface friction added, the curves of the FEA and the hysteresis curve formula remain highly consistent. This verifies the accuracy of the formula.

    (a) (b)

    Fig.4 FEA models of disc spring. (a) Single disc spring; (b) Two disc springs in parallel

    Fig.5 Loading-displacement of the single disc spring

    Fig.6 Loading displacement of two disc springs in parallel (μ=0.3)

    2 Static Experiment and Analysis

    To evaluate the effect of boundary friction on the isolator’s static stiffness, static load deformation resistibility and dynamic features, an intelligent servo hydraulic testing machine is used to carry out the test. The test system consists of the loading test system and the data collection system, as shown in Fig.7. As the disc-spring vibration isolator is composed of two disc springs set in parallel and four groups in series, the same mechanical properties are shared by all the groups. The load-displacement curves of the experiments, the FEA and the hysteresis curve formula are compared in Fig.8, which shows that the theoretical curves differ a lot from the test curves in the initial phase of deformation. With the increase of deformation, the difference gradually narrows. This is because error exists in the assembly process of disc springs. It also shows that the area of load-deformation curves in the experiment is approximately equal to that in the formula with the friction coefficient of 0.3. Therefore, 0.3 can be taken as the boundary friction coefficient of the disc-spring vibration isolator.

    Fig.7 Mechanical test system

    Fig.8 Loading displacement of static load experiment

    The loading and unloading stiffnesses of the disc-spring vibration isolator are derived from numerical analysis. CFTOOL, a fitting tool in Matlab, is used to fit the loading/unloading stiffness curves of the experiment. Then the results from the experiment, the hysteresis formula and the theoretical analysis are compared in Fig.9. As shown in Fig.9, the loading and unloading stiffnesses given by the test and the formula are lower than that of the theoretical result which ignores the friction effect. It is a solid evidence that the boundary friction can reduce the stiffness of the disc-spring vibration isolator. The averages of the loading and unloading stiffnesses in different deformations from the theoretical calculation and test results can well reflect the static stiffness of the vibration isolator. The average values of stiffness from the hysteresis formula and the tests are compared. Results show that the maximum and minimum deviations of calculated values and test values are 7.6% and 1.2%, respectively, which proves that the hysteresis formula is of high accuracy and it is capable of reflecting the static load performance of disc-spring vibration isolators accurately.

    (a)

    (b)Fig.9 Loading/unloading stiffness of disc-spring vibration isolator. (a) Loading stiffness; (b) Unloading stiffness

    3 Dynamic Experiment and Analysis

    Dynamic stiffness and damping are the key parameters to the design of vibration isolators. Dynamic stiffness reflects the device’s ability to resist deformation under dynamic load, and damping is its capability for energy dissipation. To ascertain the impact of the boundary friction on its dynamic performance, a 50 kN pre-load is slowly applied onto the vibration isolator, followed by the sinusoidal displacement control with the amplitudes of 0.5, 1 and 2 mm and the frequencies of 3, 4 and 5 Hz to obtain its force response.

    3.1 Results of dynamic experiment

    Results of the dynamic experiment are demonstrated in Figs.10 and 11. As illustrated in Fig.10, with the increasing amplitude, the areas of the hysteretic curves expand. In other words, the larger the displacement, the more the dissipated energy. As shown in Fig.11, with the change of loading frequency, the curve areas remain nearly invariable, which means that the loading frequency has little influence on the ability of energy consumption. For further study, dynamic stiffnessKeand equivalent damping coefficientξeare calculated using the following equations[11]and presented in Tab. 2.

    (18)

    (19)

    whereu+andu-denote the largest and the least vertical deformation;f+andf-represent the vertical forces corresponding tou+andu-; andSis the area of the hysteresis curve.

    Fig.10 Hysteretic curves of different amplitudes with a loading frequency of 5 Hz

    Fig.11 Hysteretic curves of different frequencies with an amplitude of 2 mm

    Amplitude/ mmVariableFrequency/Hz3450.5Ke/(kN·mm-1)15.00015.30015.714ξe0.14470.16320.16891Ke/(kN·mm-1)11.20411.86512.412ξe0.19810.20140.21452Ke/(kN·mm-1)8.578.848.96ξe0.20970.21950.2289

    3.2 Analysis of dynamic performance

    The effect of amplitude on the dynamic stiffness and the equivalent damping ratio is presented in Fig.12. As can be observed, the dynamic stiffness decreases with the increasing loading amplitude while the loading frequency remains constant, which fully reflects the nonlinearity of the disc-spring vibration isolator. In contrast, the equivalent damping ratio rises with the increasing load amplitude, but the rising trend dwindles away gradually. When the amplitude grows from 0.5 to 1 mm and from 1 to 2 mm, the damping ratio goes up by 36.9% and 5.89%, respectively. Apparently, as the damping of the vibration isolator is provided by the boundary friction that relates to the friction coefficient, force and amplitude, it is only af-fected by the amplitude when the friction coefficient and force are invariant. That is why the disc-spring vibration isolator can provide a larger friction damping of up to 0.23.

    (a)

    (b)Fig.12 Dynamic performance. (a) Dynamic stiffness; (b) Equivalent damping ratio

    Fig.12 also shows that with constant loading amplitude both the dynamic stiffness and the equivalent damping ratio feature a trend of gradual rise with the increase of loading frequency. That is to say, the loading amplitude has a greater effect on the dynamic stiffness and the equivalent damping ratio of the vibration isolator than the loading frequency. It means that the vibration amplitude is a key parameter to the properties of the disc-spring vibration isolator.

    4 Conclusion

    In the present study, a load-displacement hysteresis curve formula of the disc-spring vibration isolator which considers the boundary friction is developed based on the principles of energy conservation. The validity of the formula is verified and the influence of boundary friction on the static stiffness is also investigated via the finite element simulation and static load tests. The effect of the boundary friction on the isolator dynamic performance is also studied. As revealed by the test results, the boundary friction endows the disc-spring vibration isolator with a larger damping of nearly 0.23. The loading amplitude exerts a larger influence on the isolator’s energy dissipation, dynamic stiffness and damping coefficient than the loading frequency does. This research may provide valuable information for the design of the disc-spring vibration isolator.

    [1]Saini P K, Kumar P, Tandon P. Design and analysis of radially tapered disc springs with parabolically varying thickness[J].JournalofMechanicalEngineeringScience, 2007, 221(2): 151-158.

    [2]Fawazi N, Lee J, Oh J. A load-displacement prediction for a bended slotted disc using the energy method[J].JournalofMechanicalEngineeringScience, 2012, 226(8): 2126-2137.

    [3]Curti G, Montanini R. On the influence of friction in the calculation of conical disk springs[J].JournalofMechanicalDesign, 1999, 121(4): 622-627.

    [4]Ozaki S, Tsuda K, Tominaga J. Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries[J].Thin-WalledStructures, 2012, 59: 132-143.

    [5]Xiong Shishu, Li Huisheng, Huang Liting, et al. Design and application of base isolation system for explosive laboratory[J].ExplosionandShockWaves, 2006, 26(2): 145-149. (in Chinese)

    [6]Du Junmin, Dai Shuangxian. Research on dynamic characteristics of saucer dampers[J].ConstructionMachineryandEquipment, 2009, 40(11): 15-18. (in Chinese)

    [7]Gong Xiansheng, Xie Zhijiang, Luo Zhenhuang, et al. The characteristics of a nonlinear damper for vibration isolation[J].JournalofVibrationEngineering, 2001, 14(3): 90-94. (in Chinese)

    [8]Peng Z K, Meng G, Lang Z Q, et al. Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method[J].InternationalJournalofNon-LinearMechanics, 2012, 47(10): 1073-1080.

    [9]Almen J O, Laszlo A. The uniform-section belleville spring[J].TransASME, 1936, 58(5): 387-392.

    [10]Yi Xianzhong. Analysis of basic characteristic parameters of disk springs [J].ChinaPetroleumMachinery, 1995, 23(3): 10-17. (in Chinese)

    [11]Chen Heshi. Experimental study of nonlinear assembled isolator for high speed press[D]. Nanjing: School of Mechanical Engineering of Southeast University, 2011. (in Chinese)

    基于邊界摩擦的碟簧隔振器力學(xué)性能

    賈 方 張凡成

    (東南大學(xué)機(jī)械工程學(xué)院,南京 210096)

    為研究邊界摩擦對(duì)碟簧隔振器力學(xué)性能的影響,基于能量守恒定律推導(dǎo)了在考慮邊界摩擦?xí)r碟簧隔振器的載荷位移遲滯曲線公式.通過(guò)有限元分析與靜載試驗(yàn)驗(yàn)證了該公式的正確性.在此基礎(chǔ)上研究了邊界摩擦對(duì)碟簧隔振器承載能力的影響,并通過(guò)動(dòng)載試驗(yàn)研究了邊界摩擦對(duì)碟簧隔振器的動(dòng)態(tài)性能的影響.試驗(yàn)結(jié)果表明:邊界摩擦可提供較大的阻尼,使得碟簧隔振器具有良好的阻尼特性,其阻尼比可達(dá)0.23;隔振器的耗能、動(dòng)剛度和阻尼特性對(duì)加載幅值更為敏感,而對(duì)加載頻率敏感度較小.該研究成果對(duì)碟簧隔振器設(shè)計(jì)具有重要的指導(dǎo)意義.

    碟簧隔振器;邊界摩擦;遲滯曲線;動(dòng)剛度;阻尼;有限元分析

    TP391

    Transformation Program of Science and Technology Achievements of Jiangsu Province (No.BA2008030).

    :Jia Fang, Zhang Fancheng. Mechanical properties of disc-spring vibration isolators based on boundary friction[J].Journal of Southeast University (English Edition),2014,30(1):39-44.

    10.3969/j.issn.1003-7985.2014.01.008

    10.3969/j.issn.1003-7985.2014.01.008

    Received 2013-08-07.

    Biography:Jia Fang (1968—), female, doctor, associate professor, 13851896116@139.com.

    猜你喜歡
    碟簧阻尼力學(xué)性能
    Pr對(duì)20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    碟簧裝置恢復(fù)力模型及其在自復(fù)位RC剪力墻中的應(yīng)用
    N維不可壓無(wú)阻尼Oldroyd-B模型的最優(yōu)衰減
    關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
    具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
    基于ANSYS對(duì)液壓-卡扎里密封頂緊器碟簧組設(shè)計(jì)及有限元分析
    Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    用于鎖緊液壓缸的錐面-碟簧載荷-變形特性分析
    碟形彈簧彈塑性有限元分析研究
    具阻尼項(xiàng)的Boussinesq型方程的長(zhǎng)時(shí)間行為
    国产高清视频在线播放一区| 一级毛片高清免费大全| 亚洲色图综合在线观看| 国产在线一区二区三区精| 可以免费在线观看a视频的电影网站| 欧美在线一区亚洲| 亚洲国产看品久久| 亚洲欧美色中文字幕在线| 成年人午夜在线观看视频| 亚洲国产中文字幕在线视频| 人人妻人人澡人人看| av超薄肉色丝袜交足视频| 在线看a的网站| 90打野战视频偷拍视频| 亚洲性夜色夜夜综合| 大型黄色视频在线免费观看| 久热爱精品视频在线9| 日日摸夜夜添夜夜添小说| 黑人欧美特级aaaaaa片| 国产精品久久电影中文字幕 | aaaaa片日本免费| 两性夫妻黄色片| 国产精品久久久久久人妻精品电影| 国产一区二区激情短视频| 精品一品国产午夜福利视频| 777久久人妻少妇嫩草av网站| 精品国产乱子伦一区二区三区| 亚洲欧美激情综合另类| 亚洲av日韩在线播放| 丰满的人妻完整版| 啦啦啦免费观看视频1| 在线视频色国产色| 精品亚洲成a人片在线观看| 国产99白浆流出| 黄色a级毛片大全视频| 欧美精品人与动牲交sv欧美| ponron亚洲| 高潮久久久久久久久久久不卡| 国产熟女午夜一区二区三区| 香蕉国产在线看| 精品久久久久久久毛片微露脸| 久久狼人影院| 国产成人系列免费观看| 天堂√8在线中文| 国产日韩一区二区三区精品不卡| 一边摸一边抽搐一进一小说 | 黄色视频,在线免费观看| 国产高清videossex| 91麻豆精品激情在线观看国产 | 大片电影免费在线观看免费| 亚洲国产精品一区二区三区在线| av在线播放免费不卡| 亚洲av成人一区二区三| 国产成人一区二区三区免费视频网站| 在线看a的网站| 人人妻,人人澡人人爽秒播| 国产精品免费大片| 午夜精品在线福利| 久久精品国产亚洲av高清一级| 精品人妻熟女毛片av久久网站| 黄网站色视频无遮挡免费观看| 久久热在线av| 高清毛片免费观看视频网站 | 日本一区二区免费在线视频| 岛国毛片在线播放| 精品亚洲成国产av| 亚洲欧美日韩高清在线视频| 午夜精品在线福利| 亚洲av熟女| 久久人妻熟女aⅴ| 国产高清激情床上av| 99国产精品一区二区三区| 久久久久视频综合| 在线看a的网站| 欧美在线一区亚洲| 久久精品人人爽人人爽视色| 飞空精品影院首页| 老司机在亚洲福利影院| 国产精品99久久99久久久不卡| 一个人免费在线观看的高清视频| 精品亚洲成a人片在线观看| 国产乱人伦免费视频| 变态另类成人亚洲欧美熟女 | 波多野结衣一区麻豆| 在线观看免费视频网站a站| 国产精品综合久久久久久久免费 | 精品一品国产午夜福利视频| 欧美日韩黄片免| 好看av亚洲va欧美ⅴa在| 国产成+人综合+亚洲专区| x7x7x7水蜜桃| 久久久久久久精品吃奶| 丝瓜视频免费看黄片| 美国免费a级毛片| 色播在线永久视频| 国产aⅴ精品一区二区三区波| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| av国产精品久久久久影院| 久久这里只有精品19| 啦啦啦 在线观看视频| 手机成人av网站| 久久青草综合色| 亚洲欧洲精品一区二区精品久久久| 黄片播放在线免费| 国产精品永久免费网站| 精品欧美一区二区三区在线| av超薄肉色丝袜交足视频| 日本黄色日本黄色录像| 99国产极品粉嫩在线观看| 日韩欧美国产一区二区入口| 亚洲中文字幕日韩| 好看av亚洲va欧美ⅴa在| 国产精品秋霞免费鲁丝片| 午夜福利在线观看吧| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 国产成人免费无遮挡视频| 国产精品久久电影中文字幕 | 国产免费av片在线观看野外av| 国产在线一区二区三区精| 999久久久精品免费观看国产| 老司机亚洲免费影院| 国产亚洲精品一区二区www | 国产精品久久久人人做人人爽| 飞空精品影院首页| 亚洲三区欧美一区| a级毛片黄视频| 久久人人爽av亚洲精品天堂| 我的亚洲天堂| 黄色毛片三级朝国网站| 午夜久久久在线观看| 在线av久久热| 国产有黄有色有爽视频| 人人妻,人人澡人人爽秒播| 超碰97精品在线观看| 99国产极品粉嫩在线观看| 热99国产精品久久久久久7| √禁漫天堂资源中文www| 日韩一卡2卡3卡4卡2021年| 国产精华一区二区三区| 男女之事视频高清在线观看| 亚洲久久久国产精品| 久久亚洲精品不卡| 日韩欧美一区二区三区在线观看 | 亚洲色图综合在线观看| 制服人妻中文乱码| 久久99一区二区三区| 波多野结衣av一区二区av| 99精品在免费线老司机午夜| 大片电影免费在线观看免费| 欧美中文综合在线视频| 国产人伦9x9x在线观看| 免费不卡黄色视频| 色尼玛亚洲综合影院| 男女床上黄色一级片免费看| 亚洲全国av大片| 欧美另类亚洲清纯唯美| 大香蕉久久网| 人人妻人人爽人人添夜夜欢视频| 国产一区二区激情短视频| 国产精品久久久久久人妻精品电影| 精品欧美一区二区三区在线| 色婷婷av一区二区三区视频| 可以免费在线观看a视频的电影网站| 99久久综合精品五月天人人| 久久久国产一区二区| 黑人猛操日本美女一级片| 亚洲av日韩在线播放| www.999成人在线观看| 美女视频免费永久观看网站| 欧美精品高潮呻吟av久久| 80岁老熟妇乱子伦牲交| 宅男免费午夜| 日本五十路高清| 亚洲国产看品久久| 久久久久精品人妻al黑| 90打野战视频偷拍视频| av网站免费在线观看视频| 一边摸一边抽搐一进一小说 | 色尼玛亚洲综合影院| 国产精品一区二区在线不卡| 啦啦啦在线免费观看视频4| 男男h啪啪无遮挡| 国产免费男女视频| 亚洲专区字幕在线| 搡老熟女国产l中国老女人| 侵犯人妻中文字幕一二三四区| 亚洲五月色婷婷综合| 亚洲全国av大片| 色在线成人网| 久久精品国产清高在天天线| 天堂√8在线中文| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说 | 两个人看的免费小视频| 欧美黑人欧美精品刺激| tube8黄色片| 人人妻,人人澡人人爽秒播| 无遮挡黄片免费观看| 国产又色又爽无遮挡免费看| 两个人免费观看高清视频| 免费在线观看影片大全网站| 一级毛片精品| 国产欧美日韩综合在线一区二区| 91av网站免费观看| 80岁老熟妇乱子伦牲交| 国产亚洲av高清不卡| 国产片内射在线| 91字幕亚洲| cao死你这个sao货| 久久久国产欧美日韩av| 精品国产国语对白av| 午夜久久久在线观看| 免费在线观看黄色视频的| 免费高清在线观看日韩| 国产精品国产av在线观看| 成人av一区二区三区在线看| 国产精品免费视频内射| 欧美日韩av久久| 国产无遮挡羞羞视频在线观看| 超碰97精品在线观看| 久久国产乱子伦精品免费另类| 久久精品aⅴ一区二区三区四区| 亚洲成人国产一区在线观看| 老司机影院毛片| 日韩大码丰满熟妇| 免费不卡黄色视频| 色尼玛亚洲综合影院| 免费在线观看日本一区| 在线国产一区二区在线| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽 | 国产精品免费一区二区三区在线 | 欧美午夜高清在线| 在线免费观看的www视频| 五月开心婷婷网| 交换朋友夫妻互换小说| 日韩大码丰满熟妇| 久99久视频精品免费| 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 国产成人欧美在线观看 | 91九色精品人成在线观看| 757午夜福利合集在线观看| 一级黄色大片毛片| 777久久人妻少妇嫩草av网站| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 亚洲五月色婷婷综合| 老司机靠b影院| 身体一侧抽搐| 久久亚洲精品不卡| 中文字幕制服av| 午夜成年电影在线免费观看| 99精品在免费线老司机午夜| 久久国产精品影院| 亚洲第一av免费看| 一夜夜www| x7x7x7水蜜桃| 精品少妇久久久久久888优播| 亚洲一区中文字幕在线| 纯流量卡能插随身wifi吗| 国产三级黄色录像| 99riav亚洲国产免费| 国产成人免费观看mmmm| 久久精品亚洲熟妇少妇任你| 日韩精品免费视频一区二区三区| 老司机影院毛片| 一级作爱视频免费观看| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 国产淫语在线视频| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 欧美不卡视频在线免费观看 | 99re6热这里在线精品视频| 精品国产一区二区三区久久久樱花| 视频在线观看一区二区三区| 欧美色视频一区免费| 亚洲成国产人片在线观看| 国产精品一区二区免费欧美| 色综合婷婷激情| 久久人人97超碰香蕉20202| 一二三四社区在线视频社区8| 国产伦人伦偷精品视频| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 美女扒开内裤让男人捅视频| 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品aⅴ一区二区三区四区| 老司机影院毛片| 亚洲色图 男人天堂 中文字幕| 欧美中文综合在线视频| 黄色怎么调成土黄色| 国产在视频线精品| 美国免费a级毛片| 久久久精品区二区三区| 一a级毛片在线观看| 国产主播在线观看一区二区| 黄片小视频在线播放| 午夜福利在线免费观看网站| 亚洲精华国产精华精| 国产精品美女特级片免费视频播放器 | 妹子高潮喷水视频| 久久久久久人人人人人| 欧美av亚洲av综合av国产av| 大香蕉久久网| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 欧美精品av麻豆av| 9191精品国产免费久久| 嫩草影视91久久| videosex国产| 亚洲熟女精品中文字幕| 亚洲欧洲精品一区二区精品久久久| a级毛片黄视频| 飞空精品影院首页| 午夜福利一区二区在线看| 久久中文字幕人妻熟女| 日本一区二区免费在线视频| 久久青草综合色| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| а√天堂www在线а√下载 | 亚洲av成人一区二区三| 女人被躁到高潮嗷嗷叫费观| 国产精品影院久久| 大香蕉久久网| 中文字幕人妻熟女乱码| 久久热在线av| 亚洲精品中文字幕在线视频| 日韩欧美一区二区三区在线观看 | 午夜福利在线观看吧| 亚洲熟女精品中文字幕| av国产精品久久久久影院| 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 国产免费男女视频| 日韩成人在线观看一区二区三区| 成人亚洲精品一区在线观看| 欧美日韩福利视频一区二区| 久久青草综合色| 亚洲精品中文字幕在线视频| 亚洲成人国产一区在线观看| 国产精品成人在线| 国产人伦9x9x在线观看| 侵犯人妻中文字幕一二三四区| 亚洲成人免费av在线播放| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 黑人欧美特级aaaaaa片| 欧美最黄视频在线播放免费 | 超色免费av| 国产精品一区二区在线不卡| 不卡一级毛片| 久久中文看片网| 久久性视频一级片| xxx96com| 动漫黄色视频在线观看| 亚洲,欧美精品.| 1024视频免费在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线美女| 亚洲精品一二三| 中国美女看黄片| 国产麻豆69| 一级毛片高清免费大全| 午夜精品国产一区二区电影| 国产三级黄色录像| 后天国语完整版免费观看| 欧美久久黑人一区二区| 少妇粗大呻吟视频| a级片在线免费高清观看视频| 亚洲黑人精品在线| 多毛熟女@视频| 激情在线观看视频在线高清 | 久久中文字幕人妻熟女| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 他把我摸到了高潮在线观看| 亚洲人成电影观看| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 99在线人妻在线中文字幕 | 色综合婷婷激情| 婷婷精品国产亚洲av在线 | 国产成人欧美在线观看 | 午夜福利,免费看| 国产欧美日韩综合在线一区二区| av电影中文网址| 巨乳人妻的诱惑在线观看| 国产精华一区二区三区| 免费在线观看日本一区| 国产成人欧美| 成人亚洲精品一区在线观看| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 精品国产一区二区三区四区第35| 精品少妇一区二区三区视频日本电影| 久久国产精品男人的天堂亚洲| 超色免费av| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av高清一级| 人妻久久中文字幕网| 在线观看66精品国产| 久久久久精品人妻al黑| 性少妇av在线| 国产精品乱码一区二三区的特点 | 国产精品二区激情视频| 亚洲精华国产精华精| 制服人妻中文乱码| 精品少妇一区二区三区视频日本电影| 久久人人97超碰香蕉20202| 亚洲熟妇中文字幕五十中出 | 他把我摸到了高潮在线观看| 1024视频免费在线观看| 夜夜躁狠狠躁天天躁| 自线自在国产av| 大陆偷拍与自拍| 精品久久蜜臀av无| 麻豆成人av在线观看| 日本黄色日本黄色录像| 国产亚洲欧美98| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 亚洲第一青青草原| 老司机午夜十八禁免费视频| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 欧美日韩视频精品一区| 在线国产一区二区在线| 亚洲国产毛片av蜜桃av| 美女国产高潮福利片在线看| 欧美成人午夜精品| 国产一区二区激情短视频| 成人三级做爰电影| 侵犯人妻中文字幕一二三四区| 国产精华一区二区三区| 久久香蕉国产精品| 亚洲第一欧美日韩一区二区三区| 少妇 在线观看| 两个人免费观看高清视频| 欧美乱妇无乱码| 成人永久免费在线观看视频| 宅男免费午夜| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品美女久久久久99蜜臀| 午夜老司机福利片| 麻豆成人av在线观看| 俄罗斯特黄特色一大片| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 国产亚洲精品久久久久5区| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 午夜亚洲福利在线播放| 伦理电影免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国内视频| 亚洲一区二区三区不卡视频| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码| 亚洲午夜精品一区,二区,三区| 国产一区二区三区综合在线观看| 久久精品国产99精品国产亚洲性色 | 狂野欧美激情性xxxx| 天堂俺去俺来也www色官网| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区| 侵犯人妻中文字幕一二三四区| 免费高清在线观看日韩| 老司机午夜福利在线观看视频| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区| 在线av久久热| 精品少妇一区二区三区视频日本电影| 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 成人18禁在线播放| 女人被躁到高潮嗷嗷叫费观| 亚洲五月天丁香| 亚洲av片天天在线观看| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 18禁美女被吸乳视频| 怎么达到女性高潮| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 成人18禁在线播放| 在线视频色国产色| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区不卡视频| 精品人妻熟女毛片av久久网站| 亚洲成国产人片在线观看| 老熟妇仑乱视频hdxx| 亚洲人成电影观看| 久久久久国产精品人妻aⅴ院 | 人人妻人人澡人人看| 国产精品亚洲一级av第二区| 国产成人精品无人区| 日日夜夜操网爽| 久久久精品免费免费高清| 精品欧美一区二区三区在线| 动漫黄色视频在线观看| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| 两人在一起打扑克的视频| 国产精品久久久久久精品古装| 人成视频在线观看免费观看| 免费在线观看日本一区| 欧美在线黄色| 桃红色精品国产亚洲av| 水蜜桃什么品种好| 一夜夜www| 看片在线看免费视频| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 一边摸一边做爽爽视频免费| 在线看a的网站| 亚洲国产欧美网| 亚洲av美国av| 国产人伦9x9x在线观看| 精品国产一区二区三区四区第35| 欧美日韩福利视频一区二区| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 国产成+人综合+亚洲专区| 久久久国产精品麻豆| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 美女 人体艺术 gogo| 久久久久久人人人人人| 久久精品亚洲av国产电影网| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 亚洲av片天天在线观看| 大香蕉久久网| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 亚洲免费av在线视频| 亚洲全国av大片| 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的| 国产成人精品久久二区二区91| 又黄又粗又硬又大视频| 人人妻人人澡人人爽人人夜夜| 精品第一国产精品| 国产高清激情床上av| 久久久国产一区二区| 国产野战对白在线观看| 一进一出抽搐动态| av线在线观看网站| 老鸭窝网址在线观看| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 美国免费a级毛片| 人人妻人人澡人人爽人人夜夜| 中文字幕av电影在线播放| 十八禁网站免费在线| 精品久久久久久久久久免费视频 | 国产成人av激情在线播放| 99re6热这里在线精品视频| 最近最新中文字幕大全电影3 | 亚洲午夜理论影院| 国产午夜精品久久久久久| 欧美最黄视频在线播放免费 | 免费在线观看视频国产中文字幕亚洲| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 欧美不卡视频在线免费观看 | 久久久久久免费高清国产稀缺| 国产一区二区三区在线臀色熟女 | 丁香欧美五月| 国产成人影院久久av| 久久国产亚洲av麻豆专区| av天堂在线播放| 日韩大码丰满熟妇| 亚洲一区二区三区不卡视频| 国产一卡二卡三卡精品| 久久久国产成人精品二区 | 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 少妇粗大呻吟视频| 在线观看午夜福利视频| 欧美乱色亚洲激情| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲综合色网址| 一a级毛片在线观看| av一本久久久久| 亚洲,欧美精品.| 两个人看的免费小视频| 精品人妻熟女毛片av久久网站|