任瑋++++張永紅++肖威++陸興++++趙良啟
[摘要] 目的 制備血管內(nèi)皮生長因子(VEGF)可降解緩釋微球,考察其生物活性的保存情況以及對血管內(nèi)皮細胞的作用。 方法 采用W1/O/W2超聲乳化法制備羥基丁酸與羥基辛酸共聚物載血管內(nèi)皮生長因子納米微球,采用三步梯度篩網(wǎng)法培養(yǎng)腎微血管內(nèi)皮細胞,按照培養(yǎng)液中所含成分不同分為3組:血管內(nèi)皮生長因子組、納米微球組、對照組,其中前兩組血管內(nèi)皮生長因子的有效質(zhì)量濃度分別設為10、20、50 μg/L。 結(jié)果 培養(yǎng)第1、3天,血管內(nèi)皮生長因子組與納米微球組吸光度值比較差異無統(tǒng)計學意義(P>0.05),但吸光度值顯著高于對照組(P<0.05),即血管內(nèi)皮生長因子對腎微血管內(nèi)皮細胞具有明顯促增殖作用;第5、7天納米微球組吸光度值高于血管內(nèi)皮生長因子組(P<0.01),即納米微球緩慢釋放血管內(nèi)皮生長因子,明顯提高生物利用度;第7、10天載藥納米微球組微血管內(nèi)皮細胞仍有較強的增殖能力,與其他兩組比較,差異有統(tǒng)計學意義(P<0.01)。 結(jié)論 VEGF-P(HBHO)NPs對生長因子具有良好緩釋作用,比單純VEGF對腎微血管內(nèi)皮細胞有更為明顯的生物學效應,可以持續(xù)促進其增殖。
[關(guān)鍵詞] 血管內(nèi)皮生長因子;微球體;血管內(nèi)皮細胞;緩釋制劑
[中圖分類號] Q813.2[文獻標識碼] A[文章編號] 1674-4721(2014)06(a)-0012-05
Preparation technique,characterizationand biological effects of VEGF-P(HBHO)NPs microspheres
REN Wei1 ZHANG Yong-hong1 XIAO Wei1 LU Xing1 ZHAO Liang-qi2
1.Department of Orthopaedics,the Second Clinical Medical College of Shanxi Medical University,Taiyuan 030001,China;2.Biological Technology Research Institute of Shanxi University,Taiyuan 030006,China
[Abstract] Objective To prepare of vascular endothelial growth factor (VEGF) biodegradable slow-release microspheres,to inspect the preservation of its biological activity and the role of vascular endothelial cells. Methods Hydroxybutyric acid and hydroxy acid copolymer vascular endothelial growth factor nanometer microspheres were prepared by W1/O/W2 ultrasonic emulsification method,the renal microvascular endothelial cells was cultivated by three gradient mesh method,they were divided into three groups according to the nutrient solution contains ingredients different:VEGF group,nanospheres group and control group,among them,the former two groups of vascular endothelial growth factor of the effective mass concentration were set to 10,20,50 μg/L. Results To cultivate 1,3 days,the absorbance value between VEGF group and nanospheres group had no statistical significance (P>0.05),but the absorbance value from them were both higher than that of the control group (P<0.05),VEGF had obvious effect on promoting proliferation of renal microvascular endothelial cells.The absorbance value in nanospheres group was significantly higher than that of the VEGF group at the 5,7 days,nanometer microspheres can slow release of vascular endothelial growth factor and improve bioavailability,microvascular endothelial cells still had a strong ability of proliferation in nanospheres group at the 7,10 days,compared with other two groups,the difference was statistically significant (P<0.01). Conclusion VEGF-P(HBHO)NPs has a good slow release effect on growth factors, have a more obvious biological effect than simple VEGF on renal microvascular endothelial cells,it can continue to promote its proliferation.
[Key words] Vascular endothelial growth factor;Microspheres;Vascular endothelial cells;Sustained release formulations
在組織工程中,生物活性生長因子可以促進其特定的種子細胞的增殖及分化,從而實現(xiàn)關(guān)節(jié)一體化各個區(qū)域的構(gòu)建[1-4]。但生長因子極易被體內(nèi)的蛋白酶所分解,生物利用度低,不能有效發(fā)揮其生物學作用[5-7]。為了解決這些問題,本課題組運用發(fā)酵技術(shù)開發(fā)出了一種新型多聚羥基烷酸-羥基丁酸與羥基辛酸共聚物(PHBHOx),不僅具有多聚羥基烷酸-羥基丁酸的通性[8-10],而且其柔韌性與加工性能得到較大改善[11-12]。本課題制備PHBHOx載血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)納米微球,并探索研究該納米微球的體外性能。
1 材料與方法
1.1 實驗材料
1.1.1 主要材料及試劑PHBHOx(HB∶HO=9∶1,黏均分子量1.85×105 Da,由本實驗室發(fā)酵生產(chǎn)所得);VEGF(武漢博士得生物工程有限公司,中國);二氯甲烷(天津星馬克科技發(fā)展有限公司,中國);聚乙烯醇(PVA,上海研生實業(yè)有限公司,中國)。
1.1.2 主要儀器磁力加熱攪拌器(浙江金壇恒豐制造有限公司,中國);超聲波細胞粉碎儀(寧波新藝超聲設備有限公司,中國)。
1.1.3 實驗動物9周齡乳兔1只,重量1000 g,來源于山西醫(yī)科大學實驗動物中心,許可證號:SYXK(晉)2009-0004。
1.2 方法
1.2.1 載VEGF納米緩釋微球的制備稱取一定量的PHBHOx溶于2 ml二氯甲烷(含5% Tween 80,1% Span 80)中加熱溶解,作為溶液1,取10 μg VEGF溶于0.5 ml PBS液中作為溶液2,按3%的濃度秤取一定量的PVA溶于20 ml蒸餾水中,加熱攪拌溶解后,降至常溫,作為溶液3。調(diào)節(jié)超聲波細胞粉碎儀,輸出功率為250 W,有效時間30 s,冰浴條件下,用超聲波細胞粉碎儀超聲溶液1與2至乳狀。將溶液3加入到乳狀混合液中,調(diào)節(jié)超聲波細胞粉碎儀,輸出功率為450 W,同前超聲,至乳狀。將混合乳狀液在常溫下,機械攪拌5 h,除去二氯甲烷,15 000 r/min高速離心除去游離藥物與表面活性劑(PVA;Tween 80;Span 80),用PBS液充分洗滌3次,共約700 ml,分別用不同孔徑微孔濾膜由大到小依次過濾,濾出物經(jīng)冷凍干燥儀冷凍干燥后,并60Co滅菌備用。
1.2.2 兔腎微血管內(nèi)皮細胞的分離傳代培養(yǎng)采用三步梯度篩網(wǎng)法[13-14]進行分離及培養(yǎng)??諝馑ㄈ幩廊橥煤笕‰p腎,體積分數(shù)75%乙醇浸泡5 min,Hank緩沖液漂洗3次,剝離被膜和脂肪組織,取腎皮質(zhì),剪成約1 mm×1 mm×1 mm組織塊,置于100目尼龍濾網(wǎng)上研磨,濾過物置于150目濾網(wǎng)上研磨,最后用200目尼龍濾網(wǎng)搜集濾過物;M199培養(yǎng)液沖洗并搜集濾過物,1200 r/min離心5 min,離心半徑15.5 cm,棄上清液,用0.1%Ⅳ型膠原酶(1 g/L)37℃消化濾過物30 min,離心,取積淀物用M199培養(yǎng)液(含體積分數(shù)20%胎牛血清,0.02 mg/L血管內(nèi)皮細胞生長因子,青、鏈霉素各100 U/ml)吹打勻稱,細胞計數(shù),以1×1010/L細胞濃度置于25 ml培養(yǎng)瓶作原代培養(yǎng),倒置顯微鏡下察看細胞狀態(tài)。72 h后首次換液,隨后每隔48 h換液,待細胞增殖融合至80%~90%時,以0.25%胰蛋白酶(含0.02%乙胺四乙酸)消化傳代,1∶2傳至第3代備用。
1.2.3 實驗分組實驗分組依據(jù)所含成分的不同分為3組。A組:VEGF組;B組:納米微球組;C組:對照組。A組為單純10%胎牛血清DMEM液+VEGF;B組將VEGF-P(HBHO)NPs加入10%胎牛血清DMEM液。C組為沒有添加藥物的10%胎牛血清DMEM液(對照組)。前兩組培養(yǎng)液中VEGF濃度分別設為10、20、50 ng/ml 3個濃度。提取培養(yǎng)至第3代的兔腎微血管內(nèi)皮細胞,用培養(yǎng)液調(diào)整濃度至1×107個/L,接種到96孔板上,每孔200 μl。使細胞同步生長后,隔天換液1次,并于1、3、5、7、10 d收集細胞,A、B兩組每個時相點設置4個重復測量孔,C組每個時相點設置2個重復測量孔。
1.2.4 MTT法檢測緩釋納米微球?qū)δI血管內(nèi)皮細胞活力的影響分別于培養(yǎng)1、3、5、7、10 d,常規(guī)先后加入5%四甲基偶氮唑鹽(MTT)20 μl,經(jīng)過4 h后再加入二甲基亞砜150 μl,低速振蕩,用酶聯(lián)免疫檢測儀依次測量各孔的吸光度值,檢測波長為490 nm,以反映VEGF對腎微血管內(nèi)皮細胞活力的影響。
1.3 統(tǒng)計學處理
本研究所得數(shù)據(jù)均采用SPSS 13.0統(tǒng)計軟件進行統(tǒng)計分析,計數(shù)資料以x±s表示,采用t檢驗,計數(shù)資料采用方差分析,以P<0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 納米微球及腎微血管內(nèi)皮細胞形態(tài)的觀察
納米緩釋微球表面形態(tài),基本完整,大小較均一,分散性可;載藥納米微球的平均粒徑為(524.75±67.46) nm(圖1)。腎微血管內(nèi)皮細胞呈短胖梭形,鑲嵌分列,互不堆疊,產(chǎn)生接觸抑制呈鋪路鵝卵石形(圖2)。
圖1 納米微球掃描電鏡圖
圖2 腎微血管內(nèi)皮細胞顯微鏡圖
2.2 載VEGF緩釋納米微球載藥量與包封率的測定結(jié)果
采用ELISA法在450 nm波長處,測定某一標準孔的OD值,吸光度(A)與濃度(C)呈較好線性關(guān)系,回歸方程為:A=0.002C+0.122,r2=0.997(表1、圖3)。
表1 在450nm波長處一定濃度的吸光度值
圖3 在450 nm波長處一定濃度的吸光度值線性關(guān)系
根據(jù)公式,載藥量=(微球中所含藥物重/微球的總重)×100%;包封率=(系統(tǒng)中包封與未包封的總藥量-液體介質(zhì)中未包封的藥量/系統(tǒng)中包封與未包封的總藥量)×100%;得到載VEGF緩釋納米微球的載藥量為:(1.257±0.024)×10-3%,包封率為:(90.77±1.67)%(表2)。
表2 PHBHOx載VEGF納米微球載藥量及包封率的測定結(jié)果
2.3 PHBHOx載VEGF緩釋納米微球體外釋藥率的測定
精確稱取10 mg納米粒分散于100 ml pH 7.4的PBS液中,水浴恒溫37℃,并以一定的速度低速攪拌,分別在0、1、3、5、7、9、11、13、15 d取樣5 ml,同時補充同體積的PBS,立即對樣液進行離心(15 000 r/min,10 min),取上清10 μl,測OD值,代入標準曲線回歸方程,計算累積釋藥百分數(shù),并制圖(x軸釋藥天數(shù),y軸釋藥百分比)。在第1天內(nèi)微球釋藥速率較快,這可能與微球迅速吸水溶脹,而快速的釋放包被的生物活性因子;同時也未超過20%,5 d釋藥率可達50%,14 d可達90%的釋藥率,這段時間微球的釋藥率逐漸減慢,這可能與微球以自身降解來釋放藥物有關(guān)(圖4)。
圖4 載VEGF的緩釋納米微球釋藥曲線
2.4 不同濃度的單純VEGF、VEGF-P(HBHO)NPs及對照組對腎微血管內(nèi)皮細胞增殖檢測的結(jié)果
培養(yǎng)1~3 d,A組與B組比較,差異無統(tǒng)計學意義(P>0.05),即腎微血管內(nèi)皮細胞在不同形式的生物活性因子的作用下,增殖無明顯差別;C組與A、B組比較,差異均有統(tǒng)計學意義(P<0.01),表明VEGF可顯著促進腎微血管內(nèi)皮細胞的增殖;共培養(yǎng)5~7 d,A組與C組比較,差異有統(tǒng)計學意義,說明VEGF可繼續(xù)促進腎微血管內(nèi)皮細胞的增殖,B組與A、C組比較,差異均有統(tǒng)計學意義,表明緩釋納米微球緩慢持續(xù)的釋放VEGF;共培養(yǎng)7~10 d,A組與C組比較,差異無統(tǒng)計學意義,即VEGF的生物活性可能喪失,無法發(fā)揮其促進腎微血管內(nèi)皮細胞增殖分化的作用;B組與A、C組比較,差異均有統(tǒng)計學意義(P<0.01),表明載VEGF的納米緩釋微球仍然可以緩慢釋放生物活性因子,在很大程度上,延長了生物活性因子的作用時間,顯示出納米粒子的緩釋作用(表3)。
3 討論
在組織工程中,生物活性生長因子可以促進其特定的種子的增殖及分化[15-16],這其中VEGF可以為關(guān)節(jié)一體化支架基質(zhì)區(qū)的構(gòu)建提供生長因子[17-18],同時可以有效促進關(guān)節(jié)周圍肉芽組織生長以及在創(chuàng)傷修復中的傷口愈合[19-20]。但由于VEGF本身屬于一種蛋白質(zhì),極易被體內(nèi)的蛋白酶降解,短時間內(nèi)就會被代謝,因而自身組織的修復不能被充分滿足,研究生長因子緩釋微球,可以為組織工程技術(shù)修復軟骨損傷鋪平道路。
本研究通過超聲乳化法[12,21]制備載VEGF緩釋納米微球,并與腎微血管內(nèi)皮細胞共培養(yǎng),腎微血管內(nèi)皮細胞在不同形式的生物活性因子的作用下,增殖無明顯差別,可能與緩釋納米微球迅速吸水溶脹,從而快速釋放出所包被的生物活性因子有關(guān);VEGF可顯著促進腎微血管內(nèi)皮細胞的增殖;包被在載體中的生物活性因子隨著載體材料的降解而緩慢持續(xù)釋出,從而顯著提高生物活性因子的生物利用度,在較長的一段時間內(nèi)可繼續(xù)促使腎微血管內(nèi)皮細胞的增殖,在很大程度上,延長了生物活性因子的作用時間,顯示出納米粒子的緩釋作用。
綜上所述,采用超聲乳化法制備的載VEGF緩釋納米微球,可以一定速率釋放VEGF,可以持續(xù)有效的較長時間促進腎血管內(nèi)皮細胞的增殖及分化。制備的載藥納米粒子初期快速釋藥,使單純使用生長因子與載藥粒子無明顯差異,而后期,包被的藥物通過載體材料的降解而緩慢持續(xù)釋藥,緩釋納米粒子的緩釋作用得到顯著體現(xiàn),這也說明納米粒子釋放規(guī)律基本遵守降解擴散控制原則[22-25]。但由于時間因素,未能做在體內(nèi)環(huán)境下,實施納米微球與支架復合后的損傷修復實驗,有待進一步的研究證明該微球的生物學意義和應用價值。
[參考文獻]
[1]Seil JT,Webster TJ.Antimicrobial applications of nanotechnology:methods and literature[J].Int J Nanomedicine,2012,7:2767-2781.
[2]Tiwari M.Nano cancer therapy strategies[J].J Cancer Res Ther,2012,8(1):19-22.
[3]Kawagachi T,Tsugane A,Higashide K,et al.Control of drug release with a combination of prodrug and polymer matrix:antitumor activity and release profiles of 3′,5′-diacyl-5-fluoro-2′-deoxyurkline from poly (3-hydroxybutyrat e) microspheres[J].J Pharm Sci,1992,81(6):508-512.
[4]Liu Y,Tan J,Thomas A,et al.The shape of things to come: importance of design in nanotechnology for drug delivery[J].Ther Deliv,2012,3(2):181-194.
[5]Desai N.Challenges in development of nanoparticle-based therapeutics[J].AAPS J,2012,14(2):282-295.
[6]Pouton CW,Akhtar S.Biosynthetic polyhydroxyalkanoates and their potential in drug delivery[J].Adv Drug Deliv Rev,1996,18(2):133-162.
[7]Koosha F,Muller RH,Davis SS.Polyhydroxybutyrate as a drug carries[J].Crit Rev Ther Darrier Syst,1989,6(2):117-130.
[8]Bosetti M,Boccafoschi F,Leigheb M,et al.Chondrogenic induction of human mesenchyal stem cells using combined growth factors for cartilage tissue engineering[J].J Tissue Eng Regen Med,2012,6(3):205-213.
[9]de Koning GJM,Lemstra PJ.Crystallization phenomena in bacterial poly[(R) -3-hydroxybutyrate]:3.Toughening via texture changes[J].Polymer,1994,35(21):4598-4605.
[10]Li S,Ji Z,Zou M,et al.Preparation,characterization,pharmacokinetics and tissue distribution of solid lipidnanoparticles loaded with tetrandrine[J].AAPS Pharm Sci Tech,2011,12(3):1011-1018.
[11]Ozturk K,Caban S,Kozlu S,et al.The influence of technologicalparameters on the physicochemical properties of blank PLGAnanoparticles[J].Pharmazie,2010,65(9):665-669.
[12]Park YM,Lee SJ,Kim YS,et al.Nanoparticle-based vaccine delivery for cancer immunotherapy[J].Immune Netw,2013,13(5):177-183.
[13]Rolbblat G.Growth,nutrition,and metabolism of cell in culture[M].New York:Academic Publishers,1977.
[14]Manke A,Wang L,Rojanasakul Y.Mechanisms of nanoparticle-induced oxidative stress and toxicity[J].Biomed Res Int,2013,2013:942916.
[15]Li C,Li L,Keates AC.Targeting cancer gene therapy with magnetic nanoparticles[J].Oncotarget,2012,3(4):365-367.
[16]張綱.bFGF、rhBMP-2聚乳酸納米微球促進下頜骨骨折愈合的實驗研究[D].重慶:第三軍醫(yī)大學,2007.
[17]陳璋,張嬋,郭羽,等.羥基丁酸與羥基辛酸共聚物載阿霉素緩釋納米微球的研究[J].山西大學學報(自然科學版),2009,32(2):258-262.
[18]郭羽,董岳峰,陳璋,等.羥基丁酸與羥基辛酸共聚體骨組織工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.
[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.
[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.
[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.
[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.
[23]Ba?obre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.
[24]Cohen NP,F(xiàn)oster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.
[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.
(收稿日期:2014-04-04本文編輯:林利利)
[18]郭羽,董岳峰,陳璋,等.羥基丁酸與羥基辛酸共聚體骨組織工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.
[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.
[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.
[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.
[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.
[23]Ba?obre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.
[24]Cohen NP,F(xiàn)oster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.
[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.
(收稿日期:2014-04-04本文編輯:林利利)
[18]郭羽,董岳峰,陳璋,等.羥基丁酸與羥基辛酸共聚體骨組織工程支架的初步研究[J].功能材料,2009,40(3):459-462,466.
[19]Havla JB,Lotz AS,Richter E,et al.Cartilage tissue engineering for auricular reconstruction in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials[J].Toxicol In Vitro,2010,24(3):849-853.
[20]Agarwal S,Wendorff JH,Greiner A.Use of electrospinning technique for biomedical applications[J].Polymer,2008, 49(26):5603-5621.
[21]Sun ML,Zhang H.The development of nanoparticles on DNA isolation and purification[J].Sheng Wu Gong Cheng Xue Bao,2001,17(6):601-603.
[22]Park H,Hwang MP,Lee KH.Immunomagnetic nanoparticle-based assays for detection of biomarkers[J].Int J Nanomedicine,2013,8:4543-4552.
[23]Ba?obre-López M,Teijeiro A,Rivas J.Magnetic nanoparticle-based hyperthermia for cancer treatment[J].Rep Pract Oncol Radiother,2013,18(6):397-400.
[24]Cohen NP,F(xiàn)oster RJ,Mow VC.Composition and dynamics of articular cartilage:structure,function,and maintaining healthy state[J].J Orthop Sports Phys Ther,1998, 28(4):203-215.
[25]Rim KT,Song SW,Kim HY.Oxidative DNA damage from nanoparticle exposure and its application to workers′ health:a literature review[J].Saf Health Work,2013,4(4):177-186.
(收稿日期:2014-04-04本文編輯:林利利)