• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      營(yíng)養(yǎng)與魚類免疫研究進(jìn)展

      2014-09-20 02:19:24周小秋姜維丹
      關(guān)鍵詞:膽堿營(yíng)養(yǎng)物質(zhì)脾臟

      周小秋 馮 琳 姜維丹 吳 培 劉 揚(yáng) 胡 凱 姜 俊

      (四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所,成都 611130)

      水不僅僅是魚類必需的生存環(huán)境,也是其他病原菌的良好生存介質(zhì)和有毒物質(zhì)的良好溶劑。因此,隨著集約化高密度養(yǎng)殖模式的推廣,魚類常常面臨著生存環(huán)境擁擠、中毒和感染等各種應(yīng)激,導(dǎo)致魚類免疫力降低,甚至爆發(fā)感染而引起大面積死亡[1]。然而,抗生素和化學(xué)制劑等傳統(tǒng)魚類疾病預(yù)防和治療措施存在嚴(yán)重的環(huán)境污染和食品安全問(wèn)題[2]。近年來(lái),通過(guò)營(yíng)養(yǎng)措施提高魚類自身疾病抵抗力和抗應(yīng)激能力預(yù)防疾病爆發(fā)因其低環(huán)境污染、保證食品安全而成為研究熱點(diǎn)[3]。目前,關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類疾病抵抗力及其免疫調(diào)控作用已開(kāi)展了一些研究,本文將對(duì)部分氨基酸[蛋 氨 酸 (methionine,Met)[4]和 異 亮 氨 酸(isoleucine,Ile)][5]、脂溶性維生素[維生素 A(vitamin A,VA)][6]、水溶性維生素[維生素 B1(vitamin B1,VB1)[7]、吡哆醇[8]、泛酸(pantothenic acid,PA)[9]、膽堿[10]和肌醇(myo-inositol,MI)][11]及營(yíng)養(yǎng)性添加物[蛋氨酸羥基類似物(methionine hydroxyl analogue,MHA)][12]等營(yíng)養(yǎng)物質(zhì)與魚類疾病抵抗力、非特異和特異性免疫防御、免疫器官生長(zhǎng)發(fā)育、結(jié)構(gòu)完整性和抗氧化防御、細(xì)胞因子及其相關(guān)信號(hào)途徑之間關(guān)系的研究進(jìn)展作一綜述。

      1 營(yíng)養(yǎng)物質(zhì)與魚類疾病抵抗力和免疫防御的關(guān)系

      疾病抵抗力是衡量營(yíng)養(yǎng)物質(zhì)對(duì)機(jī)體免疫作用的綜合指標(biāo),而細(xì)菌攻毒后的存活率能敏感反映魚類疾病抵抗力[13]。近來(lái)研究表明,飼料中適宜水平 的 Met[4]、Ile[5]、VA[6]、VB1[7]、吡 哆 醇[8]、PA[9]、膽堿[10]和 MHA[12]可顯著提高幼建鯉細(xì)菌攻毒后的存活率(P<0.05)(表1),說(shuō)明這些營(yíng)養(yǎng)物質(zhì)能夠增強(qiáng)魚類疾病抵抗力。魚類疾病抵抗力主要依賴于免疫防御系統(tǒng),其主要包括非特異和特異性免疫防御[14]。因此,營(yíng)養(yǎng)物質(zhì)增強(qiáng)魚類疾病抵抗力可能與其提高了魚類非特異和特異性免疫防御有關(guān)。

      非特異性免疫防御在魚類抵抗病原菌入侵過(guò)程中非常重要,主要包括細(xì)胞和體液免疫2部分[15]。吞噬細(xì)胞是魚類非特異性細(xì)胞免疫防御系統(tǒng)的關(guān)鍵組成之一,能有效吞噬和殺滅病原菌[16]。白細(xì)胞吞噬活性(leucocytes phagocytic activity,LPA)可敏感反映白細(xì)胞吞噬能力,是魚類非特異性細(xì)胞免疫的重要標(biāo)識(shí)[17]。研究表明,飼料中適宜 水 平 的 Ile[5]、VB1[7]、吡 哆 醇[8]、PA[9]、膽堿[10]、MI[11]以及 MHA[12]能夠顯著提高攻毒后幼建鯉的LPA(P<0.05)(表1),增強(qiáng)白細(xì)胞吞噬能力。魚類白細(xì)胞發(fā)揮吞噬作用需要吞噬細(xì)胞經(jīng)過(guò)對(duì)病原菌的識(shí)別、黏附及溶菌等一系列過(guò)程,從而殺滅病原菌[18]。凝集素廣泛存在于脊椎動(dòng)物體液和細(xì)胞表面,在細(xì)胞免疫識(shí)別中起重要作用[19]。補(bǔ)體3(C3)和補(bǔ)體4(C4)與魚類補(bǔ)體介導(dǎo)的調(diào)理作用有關(guān),通過(guò)與病原菌共價(jià)結(jié)合后與吞噬細(xì)胞表面補(bǔ)體受體作用,進(jìn)而有利于吞噬細(xì)胞對(duì)病原菌的識(shí)別和吞噬[20]。溶菌酶和酸性磷酸酶(acid phosphatase,ACP)是重要的非氧依賴免疫防御分子,是吞噬細(xì)胞消化攝入病原菌能力的重要標(biāo)識(shí)[14]。有限的研究表明,飼料中適宜水平的Ile[5]、膽堿[10]和 MHA[12]可顯著提高攻毒后幼建鯉的血清凝集素效價(jià)、C3和C4含量以及溶菌酶和ACP活力(P<0.05);飼料中適宜水平的Met[4]可顯著提高攻毒后幼建鯉的血清凝集素效價(jià)、C3和C4含量以及溶菌酶活力(P<0.05);飼料中適宜水平的VB1[7]、吡哆醇[8]和 PA[9]對(duì)血清凝集素效價(jià)以及溶菌酶和ACP活力的影響與膽堿一致,而MI[11]僅顯著提高了攻毒后幼建鯉血清凝集素效價(jià)和溶菌酶活力(P<0.05),對(duì)血清ACP活力沒(méi)有顯著影響(P>0.05)(表1)。這些結(jié)果說(shuō)明,營(yíng)養(yǎng)物質(zhì)提高魚類白細(xì)胞吞噬能力與其增強(qiáng)了吞噬細(xì)胞對(duì)病原菌的識(shí)別、黏附和溶菌能力有關(guān)。此外,抑制病原菌生長(zhǎng)也是機(jī)體非特異性免疫防疫的主要作用之一[21]。鐵是微生物生長(zhǎng)所必需的營(yíng)養(yǎng)元素之一,轉(zhuǎn)鐵蛋白有很強(qiáng)的鐵結(jié)合能力,可以抑制微生物生長(zhǎng)和繁殖[22],也可以直接作用于病原菌膜蛋白,增強(qiáng)魚類巨噬細(xì)胞對(duì)病原菌的殺傷能力[23]。常用總鐵結(jié)合力(total iron-binding capacity,TIBC)來(lái)反映血清中轉(zhuǎn)鐵蛋白含量[24]。相關(guān)研究表明,飼料中適宜水平的 Met[4]、VB1[7]、吡哆醇[8]、PA[9]以及 MHA[12]能夠顯著提高攻毒后幼建鯉的血清TIBC(P<0.05)(表1),從而增強(qiáng)魚類的抑菌作用和吞噬細(xì)胞殺菌能力。然而,飼料中膽堿缺乏顯著提高了攻毒后幼建鯉的血清TIBC(P<0.05)(表1),這可能與膽堿缺乏破壞了細(xì)胞結(jié)構(gòu)完整有關(guān)[10]。此外,MI對(duì)攻毒后幼建鯉的血清TIBC沒(méi)有顯著影響(P >0.05)[11](表1)。

      盡管魚類特異性免疫應(yīng)答相對(duì)哺乳動(dòng)物不完善,但其仍然是魚類免疫防疫體系的重要組成部分[14]。非特異性免疫防御系統(tǒng)未處理的胞外抗原或通過(guò)抗原呈遞細(xì)胞識(shí)別并捕獲后的胞內(nèi)抗原可激活體內(nèi)特異性免疫系統(tǒng),產(chǎn)生特異性抗體來(lái)專一性的清除抗原[25]。研究表明,飼料中適宜水平的 Met[4]、Ile[5]、VB1[7]、吡 哆 醇[8]、PA[9]、膽堿[10]、MI[11]以及 MHA[12]可顯著提高攻毒后幼建鯉的血清抗體含量(P<0.05)(表1),說(shuō)明這些營(yíng)養(yǎng)物質(zhì)能夠提高魚類的特異性免疫能力,進(jìn)而增強(qiáng)其疾病抵抗力。然而,VA對(duì)幼建鯉血清免疫球蛋白 M(IgM)含量沒(méi)有顯著影響(P >0.05)[6](表1)。

      2 營(yíng)養(yǎng)物質(zhì)與魚類血液紅細(xì)胞(red blood cell,RBC)、白 細(xì) 胞 (white blood cell,WBC)數(shù)量及免疫器官生長(zhǎng)發(fā)育的關(guān)系

      營(yíng)養(yǎng)物質(zhì)提高魚類非特異和特異性免疫力可能與其提高RBC、WBC數(shù)量有關(guān)。研究報(bào)道,魚類非特異和特異性免疫力與其血液中RBC和WBC數(shù)量呈正相關(guān)[26]。近來(lái)研究表明,飼料中適宜水平的 Ile[5]、VA[6]、VB1[7]、吡哆醇[8]、PA[9]、膽堿[10]、MI[11]以及 MHA[12]可顯著提高幼建鯉的血液RBC和WBC數(shù)量(P<0.05)(表2),說(shuō)明這些營(yíng)養(yǎng)物質(zhì)能夠通過(guò)增加魚類血液中RBC和WBC數(shù)量來(lái)提高魚類的非特異和特異性免疫力。Ellis[27]報(bào)道,頭腎和脾臟是硬骨魚類重要的造血和免疫器官。因此,營(yíng)養(yǎng)物質(zhì)增加魚類RBC和WBC數(shù)量可能與其促進(jìn)了魚類免疫器官生長(zhǎng)發(fā)育有關(guān)。已有研究表明,飼料中適宜水平的VA[6]、VB1[7]、吡哆醇[8]、PA[9]、膽堿[10]、MI[11]以及MHA[12]能夠顯著提高幼建鯉脾體指數(shù)(spleen index,SI)(P<0.05)(表 2),促進(jìn)魚類脾臟生長(zhǎng)發(fā)育。然而,除 Ile[5]和 MHA[12]對(duì)幼建鯉頭腎生長(zhǎng)發(fā)育的影響與脾臟一致外,VB1[7]、吡哆醇[8]、PA[9]和 MI[11]缺乏導(dǎo)致幼建鯉頭腎指數(shù)(head kidney index,HKI)顯著提高(P <0.05)(表 2),這可能由于當(dāng)這些維生素缺乏時(shí)魚類優(yōu)先保證重要器官的生長(zhǎng)發(fā)育和功能正常,但具體作用機(jī)制需要進(jìn)一步研究。此外,VA[6]和膽堿[10]對(duì)幼建鯉 HKI沒(méi)有顯著影響(P>0.05)(表2)。綜上所述,營(yíng)養(yǎng)物質(zhì)能夠促進(jìn)幼建鯉免疫器官生長(zhǎng)發(fā)育,且不同營(yíng)養(yǎng)物質(zhì)和不同免疫器官間存在差異。魚類組織器官生長(zhǎng)發(fā)育通常依賴于其細(xì)胞結(jié)構(gòu)完整性和抗氧化狀態(tài)[28],營(yíng)養(yǎng)物質(zhì)可能通過(guò)調(diào)控免疫器官抗氧化防御保證細(xì)胞結(jié)構(gòu)的完整性。

      表1 營(yíng)養(yǎng)物質(zhì)對(duì)嗜水氣單孢菌攻毒后幼建鯉存活率、非特異和特異性免疫指標(biāo)的影響Table 1 Effects of nutrients on survival rate and parameters of non-specific and specific immunity in juvenile Jian carp after challenged with Aeromonas hydrophila %

      3 營(yíng)養(yǎng)物質(zhì)與魚類免疫器官抗氧化防御的關(guān)系

      3.1 營(yíng)養(yǎng)物質(zhì)與魚類免疫器官氧化損傷的關(guān)系及其作用途徑

      大量研究表明,硬骨魚類脾臟和頭腎含有大量淋巴細(xì)胞等免疫細(xì)胞[29],這些免疫細(xì)胞的正常代謝及免疫過(guò)程將產(chǎn)生大量活性氧簇(reactive oxygen species,ROS)[30]。然而,過(guò)量 ROS 將引起氧化應(yīng)激,導(dǎo)致魚脾臟[31]和頭腎[32]的氧化損傷。此外,魚類細(xì)胞膜中含有大量多不飽和脂肪酸,非常容易遭受 ROS攻擊[27,33]。因此,保護(hù)魚類免疫器官免受氧化損傷,保證其結(jié)構(gòu)完整性在魚類免疫防疫中非常重要。然而,目前關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類免疫器官氧化損傷的影響僅見(jiàn)少量研究報(bào)道。丙二醛(malondialdehyde,MDA)和蛋白質(zhì)羰基(protein carbonyl,PC)能夠分別敏感反映魚類組織器官脂質(zhì)過(guò)氧化和蛋白質(zhì)氧化損傷程度[34]。飼料中適宜水平的膽堿和MHA可顯著降低幼建鯉脾臟中MDA和PC含量(P<0.05)(表3)。Ile和膽堿對(duì)幼建鯉頭腎中MDA和PC含量的影響與脾臟類似,而MHA僅顯著降低了MDA含量(P<0.05)(表 3)。這些結(jié)果說(shuō)明 Ile[5]、膽堿[35]和 MHA[12]能夠降低魚類免疫器官的氧化損傷,保證魚類免疫器官結(jié)構(gòu)完整和功能正常。

      表2 營(yíng)養(yǎng)物質(zhì)對(duì)幼建鯉紅細(xì)胞、白細(xì)胞數(shù)量以及脾臟和頭腎指數(shù)的影響Table 2 Effects of nutrients on the counts of red blood cells and white blood cells,and the indexes of spleen and head kidney in juvenile Jian carp %

      超氧陰離子和羥自由基是導(dǎo)致機(jī)體氧化損傷常見(jiàn)的2種氧自由基[36]??钩蹶庪x子(anti-superoxide anion,ASA)和抗羥自由基(anti-hydroxy radical,AHR)活力能夠分別敏感反映細(xì)胞對(duì)這2種自由基的清除能力[37]。飼料中適宜水平的膽堿[35]和 MHA[12]可顯著降低幼建鯉脾臟 ASA 活力(P<0.05);飼料中適宜水平的膽堿對(duì)幼建鯉脾臟中AHR活力的影響與其對(duì)ASA的影響一致[35],而飼料中適宜水平的MHA則提高了脾臟AHR 活力(P <0.05)[12](表 3)。這些結(jié)果說(shuō)明:1)膽堿可能作為細(xì)胞膜結(jié)構(gòu)組成直接保護(hù)魚類脾臟細(xì)胞結(jié)構(gòu)的完整性,而不通過(guò)提高ASA和AHR活力來(lái)發(fā)揮作用[35]。Saito 等[38]報(bào)道,膽堿含有的羥胺基團(tuán)能夠分解氫過(guò)氧化物,降低沙丁魚油混合物的過(guò)氧化值。2)膽堿提高魚類脾臟ROS水平可能與增強(qiáng)氧依賴方式殺菌能力有關(guān)[35]。3)MHA通過(guò)降低魚類脾臟中ASA活力增強(qiáng)免疫細(xì)胞氧依賴方式殺菌能力,同時(shí)也通過(guò)提高AHR活力提高抗氧化損傷能力[12]。在魚類頭腎上的研究表明,飼料中適宜水平的Ile可顯著提高幼建鯉頭腎中 ASA 和 AHR活力(P<0.05)[5],而 MHA對(duì)頭腎中ASA和AHR活力的影響與Ile的趨勢(shì)相反[12];膽堿僅顯著降低幼建鯉頭腎中 AHR活力(P <0.05)[35](表 3)。

      魚類的ROS清除能力通常與非酶性和酶性抗氧化系統(tǒng)有關(guān)[39]。谷胱甘肽(glutathione,GSH)是脊椎動(dòng)物主要的非蛋白質(zhì)低分子抗氧化物質(zhì)之一[40]。飼料中膽堿缺乏可顯著提高幼建鯉脾臟GSH含量(P<0.05),該結(jié)果與ASA和AHR活力的變化趨勢(shì)相一致[35](表3)。膽堿缺乏導(dǎo)致幼建鯉脾臟GSH含量增加可能與GSH生物合成途徑有關(guān)[35]。Zhang 等[41]報(bào)道,膽堿缺乏誘導(dǎo)小鼠肝臟GSH生物合成限速酶谷氨酸-半胱氨酸連接酶催化亞基(glutamate-cysteine ligase catalytic subunit,GCLC)的 mRNA表達(dá),進(jìn)而增加小鼠肝臟GSH含量。然而,MHA對(duì)幼建鯉脾臟GSH含量沒(méi)有顯著影響(P>0.05)[12]。在魚類頭腎上的研究顯示,Ile和膽堿對(duì)幼建鯉頭腎GSH含量的影響與膽堿對(duì)脾臟GSH含量的影響具有相似變化趨勢(shì),但MHA與Ile的作用趨勢(shì)相反(表3)。這些結(jié)果說(shuō)明,Ile[5]、膽堿[35]和 MHA[12]能夠影響魚類免疫器官中GSH含量,且在不同免疫器官間存在差異,具體作用方式有待進(jìn)一步研究。

      抗氧化酶在魚類免疫器官抵抗氧化應(yīng)激免受ROS導(dǎo)致的氧化損傷過(guò)程中發(fā)揮著重要的作用。超氧化物歧化酶(superoxide dismutase,SOD)、過(guò)氧化氫酶(catalase,CAT)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GPx)、谷胱甘肽硫轉(zhuǎn)移酶(glutathione-S-transferase,GST)和谷胱甘肽還原酶(glutathione peroxidase,GR)是構(gòu)成魚類酶性抗氧化系統(tǒng)的重要抗氧化酶類[39]。研究表明,Ile[5]、膽堿[35]和 MHA[12]對(duì)魚類免疫器官抗氧化酶活力有顯著影響(表3)。飼料中膽堿缺乏導(dǎo)致幼建鯉脾臟中 SOD、CAT、GPx、GST和 GR活力顯著增加[35](P <0.05),該結(jié)果與脾臟 ASA 和 AHR 活力變化趨勢(shì)一致;MHA對(duì)脾臟SOD、CAT和GPx活力的影響與膽堿一致,但飼料適宜水平的MHA顯著提高了脾臟GST和GR活力(P <0.05)[12](表3)。在魚類頭腎上的研究顯示,飼料中適宜水平的Ile顯著提高了幼建鯉頭腎SOD、CAT、GPx、GST和GR活力(P<0.05)[5];膽堿和 MHA 對(duì)頭腎 CAT活力以及MHA對(duì)頭腎GR活力的影響與Ile的趨勢(shì)一致,而膽堿[35]和 MHA[12]對(duì)頭腎 GPx 以及MHA[12]對(duì)SOD活力的影響與Ile的趨勢(shì)相反;膽堿[35]和 MHA[12]對(duì)頭腎 GST 活力以及膽堿[35]對(duì)頭腎SOD和GR活力沒(méi)有顯著影響(P>0.05)(表3)。這些結(jié)果說(shuō)明,Ile[5]、膽堿[35]和 MHA[12]能夠部分通過(guò)影響脾臟和頭腎的抗氧化酶活力來(lái)影響免疫器官的ASA和AHR活力,調(diào)節(jié)免疫器官的ROS水平,使其在發(fā)揮免疫功能的同時(shí)保證魚類免疫器官結(jié)構(gòu)的完整性。

      表3 營(yíng)養(yǎng)物質(zhì)對(duì)幼建鯉免疫器官抗氧化相關(guān)參數(shù)的影響Table 3 Effects of nutrients on antioxidant-related parameters in immune organs of juvenile Jian carp %

      3.2 營(yíng)養(yǎng)物質(zhì)與魚類免疫器官抗氧化酶基因表達(dá)的關(guān)系及調(diào)控途徑

      在大鼠上的研究表明,抗氧化酶活力與其基因表達(dá)有關(guān)[42]。而關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類免疫器官抗氧化酶基因表達(dá)的影響僅見(jiàn)膽堿上有零星報(bào)道。飼料中膽堿缺乏顯著上調(diào)幼建鯉脾臟和頭腎銅鋅超氧化物歧化酶(copper-zinc superoxide dismutase,CuZnSOD)、錳超氧化物歧化酶(manganese superoxide dismutase,MnSOD)、CAT、谷胱甘肽過(guò)氧化物酶 1a(glutathione peroxidase 1a,GPx1a)、谷胱甘肽過(guò)氧化物酶1b(glutathione peroxidase 1b,GPx1b)和 GR mRNA 的表達(dá)(P < 0.05)[10,35](圖1),說(shuō)明膽堿可以通過(guò)影響魚類脾臟和頭腎抗氧化酶基因的表達(dá)來(lái)調(diào)控抗氧化酶活力。膽堿對(duì)抗氧化酶基因表達(dá)的影響在大鼠上有相似報(bào)道,報(bào)道認(rèn)為膽堿-蛋氨酸缺乏上調(diào)了大鼠NAD(P)H:苯醌氧化還原酶 -1[NAD(P)H:quinone oxidoreductase 1,NQO1]等抗氧化反應(yīng)相關(guān)酶類基因的表達(dá)[43]。動(dòng)物細(xì)胞抗氧化酶基因的表達(dá)受到多種關(guān)鍵信號(hào)分子的調(diào)控[44]。核因子E2相關(guān)因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是調(diào)控斑馬魚抗氧化酶基因轉(zhuǎn)錄的關(guān)鍵信號(hào)分子之一[45]。Kelch樣 ECH 相關(guān)蛋白 1(Kelch-like ECH-associated protein 1,Keap1)與斑馬魚Nrf2的穩(wěn)定性調(diào)控有關(guān)[46]。鯉魚上已成功克隆了鯉魚Nrf2和Kelch樣ECH相關(guān)蛋白1a(Kelch-like ECH-associated protein 1a,Keap1a)cDNA(NCBI登錄號(hào)分別為 JX462955和 JX470752)[47]。關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類免疫器官Nrf2及Keap1表達(dá)的影響僅見(jiàn)膽堿上有1篇研究報(bào)道。Wu等[35]報(bào)道,飼料中膽堿缺乏顯著上調(diào)幼建鯉頭腎Nrf2以及脾臟和頭腎Keap1a mRNA的表達(dá)(P<0.05)(圖1),該結(jié)果與抗氧化酶基因的表達(dá)結(jié)果一致,說(shuō)明膽堿可通過(guò)影響Nrf2和Keap1a的表達(dá)調(diào)控魚類免疫器官抗氧化酶基因的表達(dá),具體作用機(jī)制有待進(jìn)一步研究。

      圖1 營(yíng)養(yǎng)物質(zhì)對(duì)嗜水氣單孢菌攻毒后幼建鯉免疫器官基因表達(dá)的影響Fig.1 Effects of nutrients on gene expression in immune organs of juvenile Jian carp after being challenged with Aeromonas hydrophila[5,10,35]

      4 營(yíng)養(yǎng)物質(zhì)與魚類免疫器官細(xì)胞因子的關(guān)系

      前面提到 Ile[5]和膽堿[35]等營(yíng)養(yǎng)物質(zhì)缺乏會(huì)導(dǎo)致魚類脾臟和頭腎發(fā)生氧化應(yīng)激,破壞其結(jié)構(gòu)完整性。在小鼠上研究表明,氧化應(yīng)激與細(xì)胞內(nèi)促炎癥細(xì)胞因子白細(xì)胞介素-1(interleukin-1,IL-1)和腫瘤壞死因子 -α(tumor necrosis factor α,TNF-α)的產(chǎn)生有關(guān)[48]。白細(xì)胞介素 -10(interleukin-10,IL-10)和轉(zhuǎn)化生長(zhǎng)因子 -β2(transforming growth factor-β2,TGF-β2)等抗炎細(xì)胞因子能夠有效抑制脊椎動(dòng)物白細(xì)胞介素-1β(interleukin-1β,IL-1β)和 TNF-α 的產(chǎn)生[49]。目前,關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類脾臟和頭腎細(xì)中胞因子的研究?jī)H見(jiàn)Ile和膽堿上有報(bào)道。研究表明,飼料中適宜水平的 Ile[5]和膽堿[10]下調(diào)了攻毒后幼建鯉頭腎中促炎癥細(xì)胞因子IL-1β和TNF-α mRNA的表達(dá),同時(shí)Ile上調(diào)抗炎癥細(xì)胞因子IL-10 mRNA表達(dá),而下調(diào)了 TGF-β2 mRNA 表達(dá)[5](P <0.05),但膽堿對(duì)頭腎IL-10和TGF-β2 mRNA表達(dá)的影響與Ile趨勢(shì)相反;同時(shí),膽堿對(duì)脾臟中細(xì)胞因子的影響與頭腎相似[10](圖 1)。這些結(jié)果說(shuō)明,Ile[5]和膽堿[10]可以分別通過(guò)上調(diào) TGF-β2和 IL-10的表達(dá)來(lái)降低魚類免疫器官促炎癥細(xì)胞因子IL-1β和TNF-α的產(chǎn)生。在陸生動(dòng)物上的研究表明,細(xì)胞因子同樣也受到多種胞內(nèi)信號(hào)途徑的調(diào)控[50]。近年來(lái)研究表明,哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of papamycin,mTOR)在調(diào)控人類免疫細(xì)胞細(xì)胞因子的產(chǎn)生過(guò)程中發(fā)揮重要作用,能夠通過(guò)抑制轉(zhuǎn)錄因子核因子-κB(nuclear factorκB,NF-κB)來(lái)降低促炎癥細(xì)胞因子的產(chǎn)生,同時(shí)還能夠增強(qiáng)轉(zhuǎn)錄因子信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)的活性,促進(jìn)抗炎癥細(xì)胞因子IL-10的產(chǎn)生[51]。在鯉魚上已成功克隆到雷帕霉素靶蛋白(target of papamycin,TOR)[52]及其下游信號(hào)分子真核翻譯起始因子4E結(jié)合蛋白(eukaryotic translation initiation factor 4E binding protein,4E-BP)(NCBI登錄號(hào)分別為FJ899680和HQ010440)基因的cDNA序列。研究表明,飼料中適宜水平的膽堿上調(diào)攻毒后幼建鯉脾臟TOR mRNA表達(dá)而下調(diào)4E-BP mRNA的表達(dá),且頭腎TOR和4E-BP mRNA的表達(dá)與脾臟相反[10];Ile對(duì)幼建鯉頭腎TOR和4E-BP mRNA表達(dá)的影響同膽堿對(duì)脾臟TOR和4E-BP mRNA表達(dá)的影響趨勢(shì)一致[5](圖1),表明 Ile[5]和膽堿[10]可通過(guò) TOR 信號(hào)途徑調(diào)控魚類免疫器官細(xì)胞因子的產(chǎn)生,且調(diào)控作用存在差異,具體作用機(jī)制有待進(jìn)一步研究。

      5 小結(jié)

      營(yíng)養(yǎng)物質(zhì)能夠通過(guò)提高非特異和特異性免疫力增強(qiáng)魚類疾病抵抗力。非特異和特異性免疫力的提高與營(yíng)養(yǎng)物質(zhì)促進(jìn)了魚類免疫器官的生長(zhǎng)發(fā)育有關(guān)。魚類免疫器官的生長(zhǎng)發(fā)育部分依賴于其結(jié)構(gòu)完整性和抗氧化能力。營(yíng)養(yǎng)物質(zhì)主要通過(guò)作為細(xì)胞組成成分(如膽堿等)以及影響細(xì)胞非酶性和酶性抗氧化系統(tǒng)2個(gè)方面來(lái)提高魚類免疫器官的抗氧化能力。營(yíng)養(yǎng)物質(zhì)對(duì)酶性抗氧化系統(tǒng)的影響與其通過(guò)抗氧化關(guān)鍵信號(hào)分子Nrf2調(diào)控魚類免疫器官抗氧化酶mRNA的表達(dá)有關(guān)。此外,營(yíng)養(yǎng)物質(zhì)還能夠通過(guò)影響魚類免疫器官TOR信號(hào)途徑上調(diào)抗炎癥細(xì)胞因子mRNA的表達(dá),下調(diào)促炎癥細(xì)胞因子mRNA的表達(dá),進(jìn)而減少促炎癥細(xì)胞因子誘導(dǎo)的氧化應(yīng)激。然而,不同營(yíng)養(yǎng)物質(zhì)對(duì)魚類不同免疫器官的生長(zhǎng)發(fā)育、抗氧化防御及細(xì)胞因子的調(diào)控存在差異。這種差異提示我們雖然各種營(yíng)養(yǎng)物質(zhì)在最適添加水平時(shí)不約而同地表現(xiàn)出提高免疫力進(jìn)而增強(qiáng)魚類疾病抵抗力的終端效應(yīng),但由于各種營(yíng)養(yǎng)物質(zhì)自身物理化學(xué)特點(diǎn),魚類對(duì)不同營(yíng)養(yǎng)物質(zhì)消化吸收、代謝以及器官需求和利用的差異,可能導(dǎo)致不同營(yíng)養(yǎng)物質(zhì)對(duì)魚類免疫調(diào)控的特異性。目前,關(guān)于營(yíng)養(yǎng)物質(zhì)對(duì)魚類免疫功能調(diào)控的研究?jī)H處于起步階段,更深入的調(diào)控機(jī)制有待進(jìn)一步研究。

      [1]EL-BOSHY M E,EL-ASHRAM A M,ABDELHAMID F M,et al.Immunomodulatory effect of dietary Saccharomyces cerevisiae,β-glucan and laminaran in mercuric chloride treated Nile tilapia(Oreochromis niloticus)and experimentally infected with Aeromonas hydrophila[J].Fish & Shellfish Immunology,2010,28(5/6):802-808.

      [2]KIRON V.Fish immune system and its nutritional modulation for preventive health care[J].Animal Feed Science and Technology,2012,173(1/2):111-133.

      [3]ZUO R T,AI Q H,MAI K S,et al.Effects of dietary n-3 highly unsaturated fatty acids on growth,nonspecific immunity,expression of some immune related genes and disease resistance of large yellow croaker(Larmichthys crocea)following natural infestation of parasites(Cryptocaryon irritans)[J].Fish & Shellfish Immunology,2012,32(2):249-258.

      [4]TANG L,WANG G X,JIANG J,et al.Effect of methionine on intestinal enzymes activities,microflora and humoral immune of juvenile Jian carp(Cyprinus carpio var.Jian)[J].Aquaculture Nutrition,2009,15(5):477-483.

      [5]ZHAO J,LIU Y,JIANG J,et al.Effects of dietary isoleucine on the immune response,antioxidant status and gene expression in the head kidney of juvenile Jian carp(Cyprinus carpio var.Jian)[J].Fish & Shellfish Immunology,2013,35(2):572-580.

      [6]YANG Q H,ZHOU X Q,JIANG J,et al.Effect of dietary vitamin A deficiency on growth performance,feed utilization and immune responses of juvenile Jian carp(Cyprinus carpio var.Jian)[J].Aquaculture Research,2008,39(8):902-906.

      [7]FENG L,HUANG H H,LIU Y,et al.Effect of dietary thiamin supplement on immune responses and intestinal microflora in juvenile Jian carp(Cyprinus carpio var.Jian)[J].Aquaculture Nutrition,2011,17(5):557-569.

      [8]FENG L,HE W,JIANG J,et al.Effects of dietary pyridoxine on disease resistance,immune responses and intestinal microflora in juvenile Jian carp(Cyprinus carpio var.Jian)[J].Aquaculture Nutrition,2010,16(3):254-261.

      [9]WEN Z P,F(xiàn)ENG L,JIAN G J,et al.Immune response,disease resistance and intestinal microflora of juvenile Jian carp(Cyprinus carpio var.Jian)fed graded levels of pantothenic acid[J].Aquaculture Nutrition,2010,16(4):430-436.

      [10]WU P,JIANG J,LIU Y,et al.Dietary choline modulates immune responses,and gene expressions of TOR and eIF4E-binding protein 2 in immune organs of juvenile Jian carp(Cyprinus carpio var.Jian)[J].Fish& Shellfish Immunology,2013,35(3):697-706.

      [11]JIANG W D,F(xiàn)ENG L,LIU Y,et al.Effects of graded levels of dietary myo-inositol on non-specific immune and specific immune parameters in juvenile Jian carp(Cyprinus carpio var.Jian)[J].Aquaculture Research,2010,41(10):1413-1420.

      [12]KUANG S Y,XIAO W W,F(xiàn)ENG L,et al.Effects of graded levels of dietary methionine hydroxy analogue on immune response and antioxidant status of immune organs in juvenile Jian carp(Cyprinus carpio var.Jian)[J].Fish & Shellfish Immunology,2012,32(5):629-636.

      [13]ZHOU Q,WANG L G,WANG H L,et al.Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia(Rachycentron canadum)[J].Fish & Shellfish Immunology,2012,32(6):969-975.

      [14]SONG S K,BECK B R,KIM D,et al.Prebiotics as immunostimulants in aquaculture:a review[J].Fish &Shellfish Immunology,2014,40(1):40-48.

      [15]AOKI T,TAKANO T,SANTOS M D,et al.Molecular innate immunity in teleost fish:review and future perspectives[C]//TSUKAMOTO K,KAWAMURA T,TAKEUCHI T,et al.Fisheries for global welfare and environment.Tokyo:TERRAPUB,2008:263-276.

      [16]SALINAS I,CUESTA A,ESTEBAN M á,et al.Dietary administration of Lactobacillus delbrueckii and Bacillus subtilis,single or combined,on gilthead seabream cellular innate immune responses[J].Fish &Shellfish Immunology,2005,19(1):67-77.

      [17]CEREZUELA R,GUARDIOLA F A,MESEGUER J,et al.Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream(Sparus aurata L.)did not correlate with disease resistance to Photobacterium damselae[J].Fish& Shellfish Immunology,2012,32(6):1032-1040.

      [18]WHYTE S K.The innate immune response of finfish:a review of current knowledge[J].Fish & Shellfish Immunology,2007,23(6):1127-1151.

      [19]RAUTA P R,NAYAK B,DA S S.Immune system and immune responses in fish and their role in comparative immunity study:a model for higher organisms[J].Immunology Letters,2012,148(1):23-33.

      [20]L?VOLL M,DALMO R A,B?GWALD J.Extrahepatic synthesis of complement components in the rainbow trout(Oncorhynchus mykiss)[J].Fish& Shellfish Immunology,2007,23(4):721-731.

      [21]TURNER R J.Immunology:a comparative approach[M].New York:John Wiley&Sons Ltd.,1994.

      [22]DIETRICH M A,Z.MIJEWSKI D K,AROL H,et al.Isolation and characterization of transferrin from common carp(Cyprinus carpio L.)seminal plasma[J].Fish & Shellfish Immunology,2010,29(1):66-74.

      [23]STAFFORD J L,BELOSEVIC M.Transferrin and the innate immune response of fish:identification of a novel mechanism of macrophage activation[J].Developmental& Comparative Immunology,2003,27(6):539-554.

      [24]ESLAMLOO K,F(xiàn)ALAHATKAR B,YOKOYAMA S.Effects of dietary bovine lactoferrin on growth,physiological performance,iron metabolism and nonspecific immune responses of Siberian sturgeon Acipenser baeri[J].Fish & Shellfish Immunology,2012,32(6):976-985.

      [25]PARKIN J,COHEN B.An overview of the immune system[J].The Lancet,2001,357(9270):1777-1789.

      [26]HARIKRISHNAN R,BALASUNDARAM C,HEO M S.Effect of Inonotus obliquus enriched diet on hematology,immune response,and disease protection in kelp grouper,Epinephelus bruneus against Vibrio harveyi[J].Aquaculture,2012,344-349:48-53.

      [27]ELLIS A E.Fish immune system[M]//ROITT I M.Encyclopediaofimmunology.London:Academic Press,1998:920-926.

      [28]ZAPATA A,DIEZ B,CEJALVO T,et al.Ontogeny of the immune system of fish[J].Fish &Shellfish Immunology,2006,20(2):126-136.

      [29]PRESS C M,EVENSEN ?.The morphology of the immune system in teleost fishes[J].Fish & Shellfish Immunology,1999,9(4):309-318.

      [30]CHENG Z,GATLIN III D M,BUENTELLO A.Dietary supplementation of arginine and/or glutamine influences growth performance,immune responses and intestinal morphology of hybrid striped bass(Morone chrysops × Morone saxatilis)[J].Aquaculture,2012,362/363:39-43.

      [31]YONAR M E.The effect of lycopene on oxytetracycline-induced oxidative stress and immunosuppression in rainbow trout(Oncorhynchus mykiss,W.)[J].Fish Shellfish Immunol,2012,32(6):994-1001.

      [32]FATIMA M,AHMAD I,SAYEED I,et al.Pollutantinduced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues[J].Aquatic Toxicology,2000,49(4):243-250.

      [33]WAAGBó R,HEMRE G I,HOLM J C,et al.Tissue fatty acid composition,haematology and immunity in adult cod,Gadus morhua L.,fed three dietary lipid sources[J].Journal of Fish Diseases,1995,18(6):615-622.

      [34]TKACHENKO H,KURHALUK N,GRUDNIEWSKA J,et al.Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis[J].Fish Physiology and Biochemistry,2014,40(4):1289-1300

      [35]WU P,JIANG W D,LIU Y,et al.Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp(Cyprinus carpio var.Jian)[J].Fish& Shellfish Immunology,2014,38(2):374-382.

      [36]HALLIWELL B.Free radicals and antioxidants-quo vadis?[J].Trends in Pharmacological Sciences,2011,32(3):125-130.

      [37]JIANG J,ZHENG T,ZHOU X Q,et al.Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes[J].Aquaculture Nutrition,2009,15:409-414.

      [38]SAITO H,ISHIHARA K.Antioxidant activity and active sites of phospholipids as antioxidants[J].Journal of the American Oil Chemists’Society,1997,74(12):1531-1536.

      [39]MARTíNEZ-áLVAREZRM,MORALESAE,SANZ A.Antioxidant defenses in fish:biotic and abiotic factors[J].Reviews in Fish Biology and Fisheries,2005,15(1/2):75-88.

      [40]DE LA ROSA L C,GARCíA-RUIZ C,F(xiàn)ERNáNDEZCHECA J C.Glutathione in mammalian biology[M]//Systems biology of free radicals and antioxidants.Berlin:Springer-Verlag,2014:617-644.

      [41]ZHANG Y K J,YEAGER R L,TANAKA Y,et al.Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine-and choline-deficient diet[J].Toxicology and Applied Pharmacology,2010,245(3):326-334.

      [42]ATTIA A A,ELMAZOUDY R H,EL-SHENAWY N S.Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats[J].Pesticide Biochemistry and Physiology,2012,103(2):87-93.

      [43]LICKTEIG A J,F(xiàn)ISHER C D,AUGUSTINE L M,et al.Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis[J].Journal of Biochemical and Molecular Toxicology,2007,21(4):216-220.

      [44]BRYAN H K,OLAYANJU A,GOLDRING C E,et al.The Nrf2 cell defence pathway:Keap1-dependent and-independent mechanisms of regulation[J].Biochemical Pharmacology,2013,85(6):705-717.

      [45]KOBAYASHI M,LI L,IWAMOTO N,et al.The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds[J].Molecular and Cellular Biology,2009,29(2):493-502.

      [46]KOBAYASHI M,ITOH K,SUZUKI T,et al.Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system[J].Genes to Cells,2002,7(8):807-820.

      [47]JIANG W D,LIU Y,HU K,et al.Copper exposure induces oxidative injury,disturbs the antioxidant system and changes the Nrf2/ARE(CuZnSOD)signaling in the fish brain:protective effects of myo-inositol[J].Aquatic Toxicology,2014,155:303-313.

      [48]TYAGI E,AGRAWAL R,NATH C,et al.Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain[J].Journal of Neuroimmunology,2008,205(1/2):51-56.

      [49]REYES-CERPA S,MAISEY K,REYES-LóPEZ F,et al.Fish cytokines and immune response[M]//TüRKER H.New advances and contributions to fish biology.Croatia:InTech,2013:3-58.

      [50]WEICHHART T,SAEMANN M D.The multiple facets of mTOR in immunity[J].Trends in Immunology,2009,30(5):218-226.

      [51]WEICHHART T,COSTANTINOG,POGLITSCH M,et al.The TSC-mTOR signaling pathway regulates the innate inflammatory response[J].Immunity,2008,29(4):565-577.

      [52]JIANG J,F(xiàn)ENG L,LIU Y,et al.Mechanistic target of rapamycin in common carp:cDNA cloning,characterization,and tissue expression[J].Gene,2013,512(2):566-572.

      猜你喜歡
      膽堿營(yíng)養(yǎng)物質(zhì)脾臟
      茶樹(shù)吸收營(yíng)養(yǎng)物質(zhì)的特性
      茶道(2022年3期)2022-04-27 00:15:46
      一種包埋氯化膽堿的微膠粉制備工藝
      化工管理(2021年27期)2021-10-20 03:00:58
      生鮮乳中營(yíng)養(yǎng)物質(zhì)的調(diào)控技術(shù)
      試分析高中生物三大營(yíng)養(yǎng)物質(zhì)的代謝關(guān)系
      保留脾臟的胰體尾切除術(shù)在胰體尾占位性病變中的應(yīng)用
      對(duì)診斷脾臟妊娠方法的研究
      11C-蛋氨酸及11C-膽堿聯(lián)合18F-氟代脫氧葡萄糖在膠質(zhì)瘤診斷中的價(jià)值
      膽堿對(duì)脂肪代謝調(diào)控及其機(jī)制的研究進(jìn)展
      核磁共振磷譜內(nèi)標(biāo)法測(cè)定磷脂酰膽堿的含量
      腹腔鏡脾切除術(shù)與開(kāi)腹脾切除術(shù)治療脾臟占位的比較
      墨脱县| 武山县| 赞皇县| 花莲县| 普兰县| 德江县| 阿克苏市| 昌江| 卫辉市| 休宁县| 舞钢市| 中超| 田林县| 安龙县| 长垣县| 黄梅县| 轮台县| 嵊泗县| 杂多县| 延津县| 含山县| 华安县| 尼玛县| 哈巴河县| 嘉义县| 阿坝县| 杭锦后旗| 黔东| 轮台县| 鄱阳县| 平陆县| 沂源县| 遂昌县| 涡阳县| 通许县| 武乡县| 山西省| 岑溪市| 安龙县| 佛冈县| 青冈县|