孟祥菊,潘學(xué)功,高夢(mèng)涵
(1.保定學(xué)院數(shù)學(xué)與計(jì)算機(jī)系,河北保定 071000;2.河北軟件職業(yè)技術(shù)學(xué)院學(xué)生處,河北保定 071000)
對(duì)數(shù)平均的最優(yōu)凸組合界
孟祥菊1,潘學(xué)功2,高夢(mèng)涵1
(1.保定學(xué)院數(shù)學(xué)與計(jì)算機(jī)系,河北保定 071000;2.河北軟件職業(yè)技術(shù)學(xué)院學(xué)生處,河北保定 071000)
考慮對(duì)數(shù)平均、調(diào)和平均、第2類反調(diào)和平均之間的估計(jì)式,建立了對(duì)數(shù)平均關(guān)于調(diào)和平均、第2類反調(diào)和平均的最優(yōu)凸組合界.這些結(jié)果都是經(jīng)典平均構(gòu)建的最佳雙邊不等式的推廣和發(fā)展.
對(duì)數(shù)平均;調(diào)和平均;第2類反調(diào)和平均;不等式
MSC2010:26D20
近幾年來(lái),二變量平均值理論已經(jīng)成為數(shù)學(xué)研究的熱門課題,它在物理學(xué)、經(jīng)濟(jì)學(xué)、氣象學(xué)等方面都有廣泛的應(yīng)用.國(guó)內(nèi)外學(xué)者們建立了一系列精確的不等式[19].
[1] TOMINAGA M.Specht's ratio and logarithmic mean in the Young inequality[J].Math Inequal Appl,2004,7(1):113-125.
[2] KAHLIG P,MATKOWSKI J.Functional equations involving the logarithmic mean[J].Z Angew Math,1996,76(7):385 390.
[3] PITTENGER A O.The logarithmic mean in variables[J].Amer Math Monthly,1985,92(2):99 -104.
[4] STOLARSKY K B.Generalizations of the logarithmic means[J].Math Mag,1975,48:87 -92.
[5] KOUBA O.New bounds for the identric mean of two arguments[J].JIPAM.J Inequal Pure Appl Math,2008,9(3):6.
[6] BURK F.The geometric logarithmic and arithmetic mean inequality[J].Amer Math,1987,94(6):27 -528.
[7] QI F,CUO B N.An inequality between ratio of the extended logarithmic and ratio of the exponential means[J].Taiwanese J Math,2003,7(2):229-237.
[8] CARLSON B C.The logarithmic mean[J].Amer Math,1972,79:615 -618.
[9] CHU Yuming,ZONG Cheng,WANG Fendi.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].Journal Math Inequal,2011,5(3):429 -434.
(責(zé)任編輯:王蘭英)
Optimal convex combination bounds for logarithmic mean
MENG Xiangju1,PAN Xuegong2,GAO Menghan1
(1.Department of Mathematics and Computer Science,Baoding College,Baoding 071000,China;
2.Division of Students Affairs,Hebei Software Institute,Baoding 071000,China)
The esimates among the logarithmic mean,the second contraharmonic mean and the harmonic mean were considered.The optimal convex combination bounds of the logarithmic mean in terms of the second contraharmonic mean and the harmonic mean were established.These results are extensions and developments of classical optimal bilateral inequalities.
logarithmic mean;harmonic mean;the second contraharmonic mean;inequality
O178
A
1000 -1565(2014)05 -0471 04
10.3969/j.issn.1000 -1565.2014.05.005
2013 11 -06
河北省科技廳軟科學(xué)基金資助項(xiàng)目(11457242);保定學(xué)院自然科學(xué)基金資助項(xiàng)目(2012Z06);保定市科協(xié)課題資助項(xiàng)目(KX2013A21)
孟祥菊(1971 ),女,河北盧龍人,保定學(xué)院副教授,主要從事均值不等式方向研究.E-mail:mengxiangju328@163.com
book=34,ebook=31