• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      對(duì)數(shù)平均的最優(yōu)凸組合界

      2014-10-11 05:06:44孟祥菊潘學(xué)功高夢(mèng)涵
      關(guān)鍵詞:學(xué)生處計(jì)算機(jī)系調(diào)和

      孟祥菊,潘學(xué)功,高夢(mèng)涵

      (1.保定學(xué)院數(shù)學(xué)與計(jì)算機(jī)系,河北保定 071000;2.河北軟件職業(yè)技術(shù)學(xué)院學(xué)生處,河北保定 071000)

      對(duì)數(shù)平均的最優(yōu)凸組合界

      孟祥菊1,潘學(xué)功2,高夢(mèng)涵1

      (1.保定學(xué)院數(shù)學(xué)與計(jì)算機(jī)系,河北保定 071000;2.河北軟件職業(yè)技術(shù)學(xué)院學(xué)生處,河北保定 071000)

      考慮對(duì)數(shù)平均、調(diào)和平均、第2類反調(diào)和平均之間的估計(jì)式,建立了對(duì)數(shù)平均關(guān)于調(diào)和平均、第2類反調(diào)和平均的最優(yōu)凸組合界.這些結(jié)果都是經(jīng)典平均構(gòu)建的最佳雙邊不等式的推廣和發(fā)展.

      對(duì)數(shù)平均;調(diào)和平均;第2類反調(diào)和平均;不等式

      MSC2010:26D20

      近幾年來(lái),二變量平均值理論已經(jīng)成為數(shù)學(xué)研究的熱門課題,它在物理學(xué)、經(jīng)濟(jì)學(xué)、氣象學(xué)等方面都有廣泛的應(yīng)用.國(guó)內(nèi)外學(xué)者們建立了一系列精確的不等式[19].

      [1] TOMINAGA M.Specht's ratio and logarithmic mean in the Young inequality[J].Math Inequal Appl,2004,7(1):113-125.

      [2] KAHLIG P,MATKOWSKI J.Functional equations involving the logarithmic mean[J].Z Angew Math,1996,76(7):385 390.

      [3] PITTENGER A O.The logarithmic mean in variables[J].Amer Math Monthly,1985,92(2):99 -104.

      [4] STOLARSKY K B.Generalizations of the logarithmic means[J].Math Mag,1975,48:87 -92.

      [5] KOUBA O.New bounds for the identric mean of two arguments[J].JIPAM.J Inequal Pure Appl Math,2008,9(3):6.

      [6] BURK F.The geometric logarithmic and arithmetic mean inequality[J].Amer Math,1987,94(6):27 -528.

      [7] QI F,CUO B N.An inequality between ratio of the extended logarithmic and ratio of the exponential means[J].Taiwanese J Math,2003,7(2):229-237.

      [8] CARLSON B C.The logarithmic mean[J].Amer Math,1972,79:615 -618.

      [9] CHU Yuming,ZONG Cheng,WANG Fendi.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].Journal Math Inequal,2011,5(3):429 -434.

      (責(zé)任編輯:王蘭英)

      Optimal convex combination bounds for logarithmic mean

      MENG Xiangju1,PAN Xuegong2,GAO Menghan1
      (1.Department of Mathematics and Computer Science,Baoding College,Baoding 071000,China;
      2.Division of Students Affairs,Hebei Software Institute,Baoding 071000,China)

      The esimates among the logarithmic mean,the second contraharmonic mean and the harmonic mean were considered.The optimal convex combination bounds of the logarithmic mean in terms of the second contraharmonic mean and the harmonic mean were established.These results are extensions and developments of classical optimal bilateral inequalities.

      logarithmic mean;harmonic mean;the second contraharmonic mean;inequality

      O178

      A

      1000 -1565(2014)05 -0471 04

      10.3969/j.issn.1000 -1565.2014.05.005

      2013 11 -06

      河北省科技廳軟科學(xué)基金資助項(xiàng)目(11457242);保定學(xué)院自然科學(xué)基金資助項(xiàng)目(2012Z06);保定市科協(xié)課題資助項(xiàng)目(KX2013A21)

      孟祥菊(1971 ),女,河北盧龍人,保定學(xué)院副教授,主要從事均值不等式方向研究.E-mail:mengxiangju328@163.com

      book=34,ebook=31

      猜你喜歡
      學(xué)生處計(jì)算機(jī)系調(diào)和
      五味調(diào)和醋當(dāng)先
      提高高中德育教學(xué)有效性的實(shí)踐策略
      家長(zhǎng)(2019年2期)2019-08-13 19:57:30
      計(jì)算機(jī)系簡(jiǎn)介
      從“調(diào)結(jié)”到“調(diào)和”:打造“人和”調(diào)解品牌
      調(diào)和映照的雙Lipschitz性質(zhì)
      又聽岔了
      童年趣事之不一起玩的理由
      童年趣事之不一起玩的理由
      英國(guó)教育部擬為學(xué)生處設(shè)置主席一職提升高教選拔性和競(jìng)爭(zhēng)性
      俺咋找不到女朋友呢?
      曲阳县| 溧水县| 金平| 习水县| 英吉沙县| 河南省| 佛冈县| 河源市| 昌黎县| 托里县| 昭通市| 哈尔滨市| 汉中市| 徐闻县| 沛县| 外汇| 铁岭市| 通道| 商洛市| 蒙城县| 新泰市| 越西县| 格尔木市| 乌拉特后旗| 简阳市| 武陟县| 本溪| 凌海市| 郴州市| 遵化市| 商河县| 香港 | 阿拉善左旗| 星子县| 高碑店市| 万载县| 志丹县| 通化市| 同江市| 乃东县| 晋城|