李文華,房曉紅,2,李 彬,曾凡桂
(1.太原理工大學(xué)地球科學(xué)與工程系,山西 太原 030024; 2.太原理工大學(xué) 新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,山西 太原 030024; 3.內(nèi)蒙古煤炭地質(zhì)調(diào)查院,內(nèi)蒙古 呼和浩特 010010)
近年來(lái),隨著一次能源消費(fèi)量的增加[1],我國(guó)將勘探開(kāi)發(fā)的重點(diǎn)逐漸轉(zhuǎn)向頁(yè)巖氣、致密砂巖氣和煤層氣等非常規(guī)天然氣[2].頁(yè)巖氣是以CH4為主要成分的天然氣體混合物,以吸附態(tài)、溶解態(tài)和游離態(tài)賦存于暗色泥頁(yè)巖中,其中50%以上是以吸附態(tài)賦存在儲(chǔ)層中[3],頁(yè)巖儲(chǔ)層主要是由蒙脫石、伊利石和高嶺石等黏土礦物組成[4],蒙脫石對(duì)CH4的吸附能力最強(qiáng)[5].
目前,我國(guó)非常規(guī)天然氣勘探開(kāi)發(fā)還處于探索階段[6-7],頁(yè)巖氣沉積環(huán)境[8]及地質(zhì)構(gòu)造不同于頁(yè)巖氣勘探開(kāi)發(fā)技術(shù)較為成熟的美國(guó)的,部分開(kāi)發(fā)技術(shù)適用性差[9].我國(guó)四川盆地已探明頁(yè)巖氣埋深較深,多為2~4km[10],難勘探、難準(zhǔn)確評(píng)價(jià)和難開(kāi)發(fā)[11]等是我國(guó)頁(yè)巖氣具有的特點(diǎn).我國(guó)頁(yè)巖氣的研究主要是以成藏機(jī)理和富集規(guī)律為主,Chen Shangbin等[12]和Zou Caineng等[13]從宏觀角度研究我國(guó)頁(yè)巖氣的地質(zhì)成藏特征和資源潛力,我國(guó)頁(yè)巖氣資源儲(chǔ)量大、儲(chǔ)層埋深較深;Titiloye O等[14-15]和Zhou Qing等[16]應(yīng)用分子模擬方法,從微觀角度研究CH4在蒙脫石層間域的賦存形式和運(yùn)移機(jī)理,雖然宏觀和微觀各有研究,但是對(duì)頁(yè)巖氣的吸附機(jī)制及其驅(qū)替置換研究甚少.因此,筆者采用巨正則蒙特卡洛(Grand Canonical Monte Carlo,GCMC)方法,模擬2~4km[17]埋深下(地溫梯度為30K/km,壓力梯度為15MPa/km,設(shè)定地表壓力為0.1MPa,熱力學(xué)溫度為280K,將0km和6km作為對(duì)比埋深)蒙脫石對(duì)CH4和CO2的吸附性能,探討CH4和CO2在頁(yè)巖儲(chǔ)層蒙脫石中的吸附機(jī)理,計(jì)算CH4和CO2在頁(yè)巖儲(chǔ)層蒙脫石中不同埋深的吸附量及CH4與CO2的競(jìng)爭(zhēng)吸附,確定利用CO2置換技術(shù)開(kāi)采頁(yè)巖氣藏的最佳埋深范圍,為頁(yè)巖氣的勘探開(kāi)發(fā)提供指導(dǎo)和基礎(chǔ)數(shù)據(jù).
蒙脫石模型數(shù)據(jù)來(lái)源于實(shí)驗(yàn)數(shù)據(jù)[18],模擬初始單位晶胞空間群為C2/m,單斜晶系,晶格參數(shù)為:a=0.523nm,b=0.906nm,c=1.550nm,α=90°,β=99°,γ=90°,分子式為:.模擬體系超晶胞是在 Materials Studio(MS)5.5空間群為P1下建立的4a×2b×c蒙脫石超晶胞(supercell)模型,XOY平面大小為:2.092nm×1.812nm,單元結(jié)構(gòu)中類質(zhì)同象替換分為兩部分,即Si—O四面體中Si被Al替換,Al—O八面體中Al被Mg替換.單元結(jié)構(gòu)類質(zhì)同象替換產(chǎn)生的層間電荷為-0.75e,層間電荷由層間陽(yáng)離子Na+平衡,模型層間含有64個(gè)水分子和6個(gè)Na+(見(jiàn)圖1).
1.2.1 位能模型選取
蒙脫石原子電荷數(shù)據(jù)采用Smith D E[19]數(shù)據(jù)(見(jiàn)表1).目前已報(bào)道的水分子勢(shì)能模型主要有MCY(Matsuoka O、Clementi E and Yoshimine M)、TIP4P[20](Four Point Transferable Intermolecular)和SPC/E[21-23](Extended Simple Point Charge),3種位能模型各有優(yōu)缺點(diǎn)[24].選取SPC/E做為水分子的位能模型,它可以準(zhǔn)確描述水分子的平衡和動(dòng)力學(xué)特征,假設(shè)水分子為剛性體,SPC/E模型的勢(shì)能Vij為
式中:ε0為介電常數(shù);qi、qj為模擬體系原子電荷;rij為i和j原子之間距離;σij和εij為Jennard-Jones作用的能量參數(shù)和尺寸參數(shù)(見(jiàn)表1),由Lorentz-Berthelot定律得到
表1 蒙脫石和SPC/E水電荷及Jennard-Jones參數(shù)Table1 Charges qand Jennard-Jones parameters of montmorillonite atoms and extended simple
1.2.2 構(gòu)型優(yōu)化
為獲得穩(wěn)定吸附劑模型,首先對(duì)初始構(gòu)建的蒙脫石超晶胞模型在MS 5.5Forcite模塊下,采用Smart進(jìn)行構(gòu)型優(yōu)化.在構(gòu)型優(yōu)化過(guò)程中保持黏土層片為剛性,即a、b、α、γ固定;c、β可變,層間Na+和水分子可以自由運(yùn)動(dòng),力場(chǎng)采用普適力場(chǎng)(Universal Forcefield,UFF),電荷采用電荷平衡法(QEq)[25],范德華力作用采用Atom based法,截?cái)喟霃剑–utoff distance)為0.9nm,鍵齒寬度(Spline width)為0.1nm,緩沖寬度(Buffer width)為0.05nm;靜電長(zhǎng)程作用采取Ewald求和法,模擬步數(shù)為4.0×104,收斂精度為Ultra-fine.應(yīng)用同樣方法獲得吸附質(zhì)CH4和CO2的穩(wěn)定構(gòu)型.
1.2.3 巨正則蒙特卡洛(GCMC)模擬
吸附模擬在MS 5.5Sorption模塊下,采用Fixed Pressure Metropolis方法進(jìn)行模擬,模擬總步數(shù)為1.0×107步,平衡步數(shù)為1.0×106步,力場(chǎng)參數(shù)設(shè)置與構(gòu)型優(yōu)化過(guò)程中力場(chǎng)參數(shù)設(shè)置相同.
幾何優(yōu)化后的Na-蒙脫石穩(wěn)定構(gòu)型見(jiàn)圖2.由圖1和2可以看出,在蒙脫石構(gòu)型優(yōu)化過(guò)程中得到穩(wěn)定構(gòu)型的同時(shí)蒙脫石結(jié)構(gòu)也發(fā)生明顯的變化,主要表現(xiàn)在2個(gè)方面:
(1)水分子和層間Na+的變化.優(yōu)化前水分子隨機(jī)置于層間域中較為緊湊,優(yōu)化后水分子變得均勻松散,分布于整個(gè)層間域中;優(yōu)化前Na+位于層間域中央,優(yōu)化后向四面體和八面體類質(zhì)同象替代位置靠近.
(2)硅氧四面體和鋁氧八面體的變化.優(yōu)化前蒙脫石構(gòu)型中硅氧四面體和鋁氧八面體為規(guī)則多面體,優(yōu)化后為不規(guī)則多面體.
蒙脫石能量?jī)?yōu)化參數(shù)見(jiàn)表2.由表2可以看出,在蒙脫石構(gòu)型優(yōu)化過(guò)程中除扭轉(zhuǎn)能略有升高外,其余價(jià)鍵能和非價(jià)鍵能都有不同程度的降低,其中價(jià)鍵能中的鍵伸縮能和非價(jià)鍵能中的范德華能降低幅度最大.優(yōu)化得到蒙脫石穩(wěn)定構(gòu)型的總能量較優(yōu)化前的大幅度降低,優(yōu)化前總能量主要為范德華能的貢獻(xiàn)最多,優(yōu)化后總能量主要為非價(jià)鍵作用庫(kù)侖力的貢獻(xiàn)最多.
圖2 幾何優(yōu)化后的Na-蒙脫石穩(wěn)定構(gòu)型Fig.2 The stable configuration of Na-montmorillonite after geometry optimization
表2 蒙脫石能量?jī)?yōu)化參數(shù)Table 2Parameters of energy minimization of montmorillonite
2.2.1 蒙脫石吸附CH4、CO2
不同溫度(T)、壓力(p)下蒙脫石對(duì)CH4、CO2吸附量與吸附能的影響見(jiàn)表3和表4.由表3和表4可以看出,蒙脫石吸附CH4、CO2的吸附量隨著溫度和壓力的增加先急劇增加后緩慢減小.原因是隨著溫度的升高,蒙脫石層間粒子動(dòng)能增大使運(yùn)動(dòng)加劇,蒙脫石活性表面上水分子數(shù)量減少,蒙脫石表面活性增強(qiáng)使CH4、CO2吸附量增加;隨著溫度的進(jìn)一步升高,層間粒子獲得更大的動(dòng)能,布朗運(yùn)動(dòng)加劇,CH4、CO2分子動(dòng)能突破蒙脫石活性表面吸附能壘,導(dǎo)致吸附量減小趨近于平衡.在壓力為30.0MPa、熱力學(xué)溫度為340K、埋深為2km時(shí)平均吸附量達(dá)到最大;與Kvenvolden Keith A[26]研究結(jié)果相吻合,小于吉利明等[5]實(shí)驗(yàn)數(shù)據(jù).因?yàn)榍罢邽楹擅撌?,后者?shí)驗(yàn)樣品為無(wú)水干燥蒙脫石,蒙脫石吸附CH4包括層間域吸附、表面吸附、斷面吸附及孔隙吸附等,模擬中吸附只考慮層間域吸附;蒙脫石中水占據(jù)一定蒙脫石活性表面,導(dǎo)致CH4吸附量降低,說(shuō)明所構(gòu)建模型及所選力場(chǎng)參數(shù)較為合理并具有預(yù)測(cè)性.蒙脫石吸附CH4和CO2的平均吸附能也呈現(xiàn)相應(yīng)的變化,最大吸附能分別為45.55、81.39kJ·mol-1.由此可知,蒙脫石吸附CH4和CO2為物理吸附,蒙脫石吸附CH4和CO2的吸附量隨溫度和壓力的增加先急劇增加后緩慢減小,頁(yè)巖氣藏在埋深為2~4km時(shí)頁(yè)巖儲(chǔ)層蒙脫石中CH4吸附氣聚集量最大.
表3 不同溫度、壓力下蒙脫石對(duì)CH4的吸附量及吸附能的影響Table3 The effect of sorption amount and sorption energy of the sorption of methane in montmorillonite at different temperatures and pressures
表4 不同溫度、壓力下蒙脫石對(duì)CO2的吸附量及吸附能的影響Table4 The effect of sorption amount and sorption energy of the sorption of carbon dioxide in montmorillonite at different temperatures and pressures
2.2.2 蒙脫石吸附CH4/CO2
不同溫度、壓力下蒙脫石對(duì)CH4/CO2吸附量與吸附能的影響見(jiàn)表5.由表5可以看出,蒙脫石吸附CH4/CO2吸附量隨著溫度和壓力的增加先增加后減小.原因是模擬初期隨著溫度的升高,CH4和CO2獲得更大動(dòng)能而運(yùn)動(dòng)加劇,CH4和CO2與黏土活性表面接觸概率增加使其吸附量增大;當(dāng)模擬溫度進(jìn)一步升高,層間粒子運(yùn)動(dòng)加劇受到黏土片層的引力作用減弱吸附量減??;CH4與黏土片層和層間域水分子的相互作用力,與CO2和黏土片層及層間水分子間的相互作用力并不相同[15,27].另外,CO2吸附量在壓力為30.0MPa,熱力學(xué)溫度為340K,埋深為2km達(dá)到最大;CH4吸附量在壓力為60.0MPa,熱力學(xué)溫度為400K,埋深為4km達(dá)到最大.CO2的存在使蒙脫石對(duì)CH4吸附能明顯減小(見(jiàn)表3和表5).從蒙脫石吸附CH4/CO2的吸附能可知,蒙脫石吸附CH4和CO2為物理吸附,在相同溫度和壓力條件下,CO2吸附量大于CH4吸附量(見(jiàn)表5),CO2和CH4在蒙脫石層間域發(fā)生競(jìng)爭(zhēng)吸附,CO2的存在使CH4最大吸附量位置由30.0MPa、340K(埋深2km)(見(jiàn)表3)變?yōu)?0.0MPa、400K(埋深4km)(見(jiàn)表5),CO2和CH4發(fā)生最明顯競(jìng)爭(zhēng)吸附深度約為2km,隨埋深的增加競(jìng)爭(zhēng)吸附減小趨于等量吸附(埋深6km).由此可知,注CO2置換CH4開(kāi)采頁(yè)巖氣具有合理性和可行性,即埋深約為2km時(shí)效果較為理想,在埋深約為4km時(shí)效果較差.
表5 不同溫度、壓力下蒙脫石對(duì)CH4/CO2的吸附量及吸附能的影響Table5 The effect of sorption amount and sorption energy of the sorption of methane and carbon dioxide in montmorillonite at different temperatures and pressures
(1)優(yōu)化后蒙脫石構(gòu)型較優(yōu)化前總能量大幅度降低,水分子均勻散布于層間域,Na+向類質(zhì)同象替代位置靠近.
(2)蒙脫石吸附CH4和CO2的吸附量隨埋藏深度的增加先急劇增加后緩慢減小.蒙脫石吸附CH4/CO2時(shí),CH4和CO2在蒙脫石層間域發(fā)生競(jìng)爭(zhēng)吸附,蒙脫石對(duì)CO2的吸附量大于對(duì)CH4的吸附量,CO2更易于被吸附.
(3)在泥頁(yè)巖儲(chǔ)層蒙脫石吸附過(guò)程中利用CO2驅(qū)替置換CH4具有合理性和可行性,即在頁(yè)巖氣開(kāi)采中注CO2置換CH4在埋深約為2km效果較理想,埋深約為4km時(shí)置換效果較差.
(References):
[1]童曉光.大力提高天然氣在能源構(gòu)成中比例的意義和可能性[J].天然氣工業(yè),2010,30(10):1-6.Tong Xiaoguang.Significance and possibilities of improving the percentage of natural gas in energy structure in China[J].Natural Gas Industry,2010,30(10):1-6.
[2]胡文瑞.中國(guó)非常規(guī)天然氣資源開(kāi)發(fā)與利用[J].大慶石油學(xué)院學(xué)報(bào),2010,34(5):9-16.Hu Wenrui.Development and utilization of non-conventional natural gas resources in China[J].Journal of Northeast Petroleum University,2010,34(5):9-16.
[3]Curtis J B.Fractured shale-gas system [J].AAPG Bull,2002,86(11):1921-1938.
[4]蔣裕強(qiáng),董大忠,漆麟,等.頁(yè)巖氣儲(chǔ)層的基本特征及其評(píng)價(jià)[J].天然氣工業(yè),2010,30(10):7-12.Jiang Yuqiang,Dong Dazhong,Qi Lin,et al.Basic features and evaluation of shale gas reservoirs[J].Natural Gas Industry,2010,30(10):7-12.
[5]吉利明,邱軍利,夏艷青,等.常見(jiàn)黏土礦物電鏡掃描微孔隙特征與甲烷吸附性[J].石油學(xué)報(bào),2012,33(2):249-256.Ji Liming,Qiu Junli,Xia Yanqing,et al.Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J].Acta Petrolei Sinica,2012,33(2):249-256.
[6]李建忠,董大忠,陳更生,等.中國(guó)頁(yè)巖氣資源前景與戰(zhàn)略地位[J].天然氣工業(yè),2009,29(5):11-16.Li Jianzhong,Dong Dazhong,Chen Gengsheng,et al.Prospects and strategic position of shale gas resources in China[J].Natural Gas Industry,2009,29(5):11-16.
[7]潘仁芳,黃曉松.頁(yè)巖氣及國(guó)內(nèi)勘探前景展望[J].中國(guó)石油勘探,2009,14(3):1-5.Pan Renfang,Huang Xiaosong.Shale gas and its exploration prospects in China[J].China Petroleum Exploration,2009,14(3):1-5.
[8]楊鐿婷,張金川,王香增,等.陸相頁(yè)巖氣的泥頁(yè)巖評(píng)價(jià)——以延長(zhǎng)下寺灣區(qū)上三疊統(tǒng)延長(zhǎng)組長(zhǎng)7段為例[J].東北石油大學(xué)學(xué)報(bào),2012,36(4):10-17.Yang Yiting,Zhang Jinchuan,Wang Xiangzeng,et al.Source rock evaluation of continental shale gas:A case study of Chang 7of Mesozoic Yanchang formation in Xia siwan area of Yanchang[J].Journal of Northeast Petroleum University,2012,36(4):10-17.
[9]翟光明.關(guān)于非常規(guī)油氣資源勘探開(kāi)發(fā)的幾點(diǎn)思考[J].天然氣工業(yè),2008,28(10):1-3.Zhai Guangming.Speculation on the exploration and development of unconventional hydrocarbon resources[J].Natural Gas Industry,2008,28(10):1-3.
[10]李登華,李建忠,王社教,等.頁(yè)巖氣藏形成條件分析[J].天然氣工業(yè),2009,29(5):22-26.Li Denghua,Li Jianzhong,Wang Shejiao,et al.Analysis of controls on gas shale reservoirs[J].Natural Gas Industry,2009,29(5):22-26.
[11]王蘭生,廖仕孟,陳更生,等.中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)面臨的問(wèn)題與對(duì)策[J].天然氣工業(yè),2011,31(12):119-122.Wang Lansheng,Liao Shimeng,Chen Gengsheng,et al.Bottlenecks and countermeasures in shale gas exploration and development of China[J].Natural Gas Industry,2011,31(12):119-122.
[12]Chen Shangbin,Zhu Yanming,Wang Hongyan,et al.Shale gas reservoir characterization:A typical case in the southern Sichuan basin of China[J].Energy,2011,36(11):6609-6616.
[13]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
[14]Titiloye J O,Skipper N T.Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures[J].Molecular Physics,2001,99(10):899-906.
[15]Titiloye J O,Skipper N T.Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures[J].Journal of Colloid and Interface Science,2005,282(2):422-427.
[16]Zhou Qing,Lu Xiancai,Liu Xiandong,et al.Hydration of methane intercalated in Na-smectites with distinct layer charge:Insinghts from molecular simulation[J].Journal Colloid and Interface Science,2001,355(1):237-242.
[17]王社教,王蘭生,黃金亮,等.上揚(yáng)子區(qū)志留系頁(yè)巖氣成藏條件[J].天然氣工業(yè),2009,29(5):45-50.Wang Shejiao,Wang Lansheng,Huang Jinliang,et al.Accumulation conditions of shale gas reservoirs in Silurian of the upper Yangtzl Region[J].Natural Gas Industry,2009,29(5):45-50.
[18]潘兆櫓,萬(wàn)撲.應(yīng)用礦物學(xué)[M].武漢:武漢工業(yè)大學(xué)出版,1993:219-221.Pan Zhaolu,Wan Pu.Applied mineralogy[M].Wuhan:Wuhan University of Technology,1993:219-221.
[19]Smith D E.Molecule computer simulations of interlayer swelling properties and interlayer structure of cesium montmorillonite[J].Langmuir,1998,14(20):5959-5967.
[20]Jorgensen W L,Chandrasekhar J,Madura J D,et al.Comparison of simple potential functions for simulating liquid water[J].The Journal of Chemical Physics,1983,79(2):926-933.
[21]Marry V,Turq P,Cartailler T,et al.Microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite[J].The Journal of Chemical Physics,2002,117(7):3454-3463.
[22]Marry V,Turq P.Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites[J].The Journal of Chemical Physics,2003,107(8):1832-1839.
[23]Young D A,Smith D E.Simulation of clay mineral swelling and hydration:Dependence upon interlayer ion size and charge[J].The Journal of Chemical Physics B,2002,104(39):9163-9170.
[24]Guillot B.A reappraisal of what we have learnt during three decades of computer simulations on water[J].Journal of Molecular Liquids,2002,101(1-3):219-260.
[25]那平,張帆,李艷妮.水化 Na-蒙脫石和 Na/Mg-蒙脫石的分子動(dòng)力學(xué)模擬[J].物理化學(xué)學(xué)報(bào),2006,22(9):1137-1142.Na Ping,Zhang Fan,Li Yanni.Molecular dynamics simulation of Na-montmorillonite and Na/Mg-montmorillonite hydrates[J].Acta Physico-Chimica Sinica,2006,22(9):1137-1142.
[26]Kvenvolend K A.A review of the geochemistry of methane in natural gas hydrate[J].Organic Geochemistry,1995,23(11/12):997-1008.
[27]Alexandra B,Benjamin R.Carbon dioxide in montmorillonite clay hydrates:Thermodynamics,structure,and transport from molecular simulation[J].The Journal of Chemical Physics C,2001,114(35):14962-14969.