• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      麥角甾酮的藥理活性、藥代動力學及含量測定研究進展

      2014-11-11 10:21:48陳晗陳丹倩李全福李鵬飛陳華趙英永
      中國中藥雜志 2014年20期
      關鍵詞:藥代動力學慢性腎臟病利尿

      陳晗+陳丹倩+李全福+李鵬飛+陳華+趙英永

      [摘要]麥角甾酮是多種藥用真菌的主要化學成分之一,具有利尿、抗腫瘤、免疫抑制、治療慢性腎臟病等多種生物活性?;谝褕蟮赖南嚓P文獻,該文綜述了麥角甾酮的波譜特征、含量測定、藥理活性及藥代動力學等研究進展,為深入研究與開發(fā)利用麥角甾酮提供一定價值的參考。

      [關鍵詞]麥角甾酮;利尿;慢性腎臟病;細胞毒活性;藥代動力學;含量測定

      麥角甾-4,6,8(14),22-四烯-3-酮[麥角甾酮,ergosta-4,6,8(14),22-tetraen-3-one,ergone,結(jié)構(gòu)式見圖1]屬于甾體類化合物,廣泛分布于冬蟲夏草Cordyceps sinensis (Berk) Sacc.[1],豬苓Polyporus umbellatus (Pers.) Fries[2-3],Vietnamese Xylaria sp.[4],黃心柿Diospyros maritima Blume[5],Zopfiella longicaudata (Cain) Arx[6],Pleurotus ostreatus (Jacq. ex Fr.) Kumm[7]等多種真菌和地衣。麥角甾酮有利尿、抗腫瘤、免疫抑制和治療慢性腎臟病等多種生物活性[1-9]。本文通過檢索Web of Science,Pubmed,ScienceDirect,Springer,Google Scholar,中國知網(wǎng)等數(shù)據(jù)庫,查到國內(nèi)外相關麥角甾酮的文獻,現(xiàn)將近幾十年麥角甾酮的藥理活性、藥代動力學、波譜特征及含量測定方法等方面的研究進展進行總結(jié),為深入研究和開發(fā)利用麥角甾酮提供科學依據(jù)。

      1 麥角甾酮的結(jié)構(gòu)表征

      麥角甾酮為淡黃色晶體(石油醚),C28H40O,相對分子質(zhì)量392;mp 113~115 ℃;氫譜與碳譜數(shù)據(jù)如下:1H NMR(CDCl3,500 MHz) 5.73(1H,s,H-4),6.03(1H,d,J=9.5 Hz,H-6),6.61(1H,d,J=9.5 Hz,H-7),0.96(3H,s,H-18),1.00(3H,s,H-19),1.06(3H,d,J=6.7 Hz,H-21),5.20(1H,dd,J=15.3,7.3 Hz,H-22),5.46(1H,dd,J=15.3,7.3 Hz,H-23),0.83(3H,d,J=6.7 Hz,H-26),0.85(3H,d,J=7.0 Hz,H-27),0.93(3H,d,J=7.0 Hz,H-28);13C-NMR(CDCl3,125 MHz):34.3(C-1),34.4(C-2),199.4(C-3),123.3(C-4),164.4(C-5),124.7(C-6),134.1(C-7),124.7(C-8),44.7(C-9),37.0(C-10),19.2(C-11),35.9(C-12),44.2(C-13),156.1(C-14),25.6(C-15),27.8(C-16),56.0(C-17),19.2(C-18),16.8(C-19),39.4(C-20),21.4(C-21),135.2(C-22),132.8(C-23),43.1(C-24),33.3(C-25),19.8(C-26),20.1(C-27),17.8(C-28)。

      2 麥角甾酮的藥理活性

      2.1 利尿作用 Yuan等報道麥角甾酮給藥組與未給藥組正常大鼠之間的尿量及Na+/K+排泄量比值無明顯差異,而摘除腎上腺及給予deoxycoricosterone acetate(DOCA)大鼠尿量及Na/K排泄量比有明顯差異;對摘除腎上腺及未給予DOCA大鼠尿量及Na/K排泄量比無明顯差異[10]。有文獻報道5,10,20 mg·kg-13個不同劑量的麥角甾酮對正常大鼠均有增加排尿量的趨勢,3個劑量組與給水對照組相比,大鼠尿量分別增加了33.4%,32.5%,46.8%。增加的尿量均超過30%,這提示麥角甾酮有較好的利尿效果。Na+,K+及Cl-排出量結(jié)果表明,麥角甾酮在增加尿量的同時,也可增加電解質(zhì)Na+,K+及Cl-的排出,5,10 mg·kg-1劑量的麥角甾酮均能夠增加尿液中Na+,K+及Cl-的排出量,但二者無顯著差異;20 mg·kg-1劑量麥角甾酮能夠顯著增加尿液中Na+,K+及Cl-的排出量,且Na+,K+及Cl-的排出量分別增加了30%,42%,27%,而Na+/K+的比值基本不變。目前,麥角甾酮的利尿作用機制尚未完全明確,可能由于其抑制了腎小管對電解質(zhì)和水的重吸收[11-12],也可能通過拮抗醛固酮使Na+-K+平衡發(fā)生改變[10]。

      2.2 治療慢性腎臟病作用 腺嘌呤是致動物慢性腎衰的常用藥物,進入體內(nèi)后通過黃嘌呤氧化酶的作用轉(zhuǎn)變?yōu)椴蝗苡谒?,8-二羥基腺瞟呤,從而影響氮質(zhì)化合物的排泄和電解質(zhì)Na+,K+,Ca2+,P-等物質(zhì)的代謝,引起腎小管功能減退甚至喪失,最終導致腎衰竭。研究顯示,麥角甾酮可以增加腺嘌呤誘導的慢性腎衰竭模型血紅蛋白含量,降低血清肌酐和血尿素氮,下調(diào)I,III型膠原蛋白及TGF-β1在腎組織的表達,并在改善腎功能、減少腺嘌呤代謝產(chǎn)物對腎臟的病理性損害方面具有較好作用。UPLC-MS代謝組學的研究結(jié)果顯示麥角甾酮對腺嘌呤所致的大鼠慢性腎衰竭有較好的防治作用[13]。血清代謝組學的實驗結(jié)果顯示磷脂(16∶0/18∶2)、溶血卵磷脂(18∶1)、溶血卵磷脂(17∶0)、溶血卵磷脂(16∶0)、二氫神經(jīng)鞘氨醇、植物鞘氨醇、色氨酸、肌酐、神經(jīng)酰胺(18∶0/16∶0)、神經(jīng)酰胺(18∶0/14∶0)等是腺嘌呤誘導的慢性腎衰竭大鼠血清的生物標示物,腺嘌呤提高了尿液中植物鞘氨醇、腎上腺甾酮、色氨酸、2,8-二羥基腺嘌呤、肌酐和二氫神經(jīng)鞘氨醇的水平,同時降低了尿液中N-乙酰亮氨酸、3-氧-甲基多巴、乙基-N2-乙酰-L-精氨酸鹽、多巴胺、苯丙氨酸、犬尿酸的水平,麥角甾酮對這些生物標示物有一定的逆轉(zhuǎn)作用[14]。另外,肌酐、脯氨酸、腎上腺甾酮、?;撬?、肌酸、苯丙氨酸、多巴胺、犬尿酸等也是慢性腎衰竭大鼠尿液生物標示物,麥角甾酮對這些生物標示物也有一定的逆轉(zhuǎn)作用[15]。這些結(jié)果表明慢性腎衰竭的發(fā)展進程受磷脂、 氨基酸等多個代謝途徑影響,麥角甾酮可通過改善相關內(nèi)源性物質(zhì)的代謝對慢性腎衰竭發(fā)揮治療作用。此外,基于UPLC-MS的糞便代謝組學研究結(jié)果顯示鵝去氧膽酸,棕櫚酸,植物鞘氨醇,MG(24∶1/0∶0/0∶0),12-hydroxy-3-oxocholadienic acid,lysoPE(18∶2/0∶0),lysoPE(16∶0/0∶0)及7-ketolithocholic acid是慢性腎衰竭大鼠的糞便的生物標示物,麥角甾酮對這些生物標示物有一定的逆轉(zhuǎn)作用[16-17]。endprint

      麥角甾酮對馬兜鈴酸誘導的慢性馬兜鈴酸腎病亦有較好的治療作用。實驗研究表明麥角甾酮對馬兜鈴酸引起的肌酐、尿素氮、尿蛋白及N-acetyl-b-D-glucosaminidase水平的上升有不同程度抑制作用,從而改善腎間質(zhì)的纖維化[18]。

      2.3 細胞毒活性及抗腫瘤活性 大量研究已證實麥角甾酮具有一定的細胞毒性,并且進一步的藥理及代謝組學研究表明,麥角甾酮在體內(nèi)有抗腫瘤的生物活性。

      Lee等報道麥角甾酮對人肝癌細胞Hep3B、結(jié)腸癌細胞HT-29、子宮頸癌細胞HeLa29和人胃癌細胞AGS抑制的IC50分別為5,7.2,26.3,22 mg·L-1[19]。結(jié)果顯示麥角甾酮對Hep3B和AGS細胞的增殖有較強的抑制作用。

      趙英永等采用活性導向篩選豬苓細胞毒活性成分,研究顯示豬苓中的麥角甾酮對人肝癌細胞HepG2、人喉癌細胞Hep-2、人子宮頸癌細胞Hela及正常細胞人臍靜脈細胞HUVEC的增殖有一定的抑制作用,麥角甾酮對HepG2,Hep-2,Hela及HUVEC增殖抑制的IC50分別為10.5,14.6,10.8,25.0 mg·L-1[20]。麥角甾酮對HepG2,Hep-2,Hela增殖抑制作用強于對正常HUVEC細胞,說明其對癌細胞有較強的選擇性。Tala等的研究成果也證明麥角甾酮對Hela增殖有一定的抑制效應[21]。趙英永等進一步研究了麥角甾酮誘導HepG2凋亡的作用機制,結(jié)果顯示麥角甾酮對HepG2細胞的抑制作用呈明顯濃度和時間依賴性;麥角甾酮對HepG2細胞周期的改變呈濃度依賴性分布;Annexin V-FITC/PI雙染法觀察不同濃度麥角甾酮對HepG2細胞凋亡的影響,早期凋亡率分別為1.2%,6.3%,10.5%,21%,晚期凋亡率則分別為 4.5%,7.8%,16.2%,29.9%;Hoechst 33258熒光染色法檢測結(jié)果顯示細胞核皺縮、熒光變得致密等細胞凋亡的典型形態(tài)學特征。Western blotting結(jié)果還顯示麥角甾酮在上調(diào)Bax及cleaved PARP的同時下調(diào)Bcl-2,procaspase-3,-8,-9,PARP及p-53。這些凋亡途徑顯示了麥角甾酮誘導人肝癌細胞HepG2凋亡及G2/M細胞周期阻滯的作用機制[22]。此外,F(xiàn)roufe等報道麥角甾酮對抗凋亡蛋白Bcl-2有抑制作用[23]。研究卷柏中分離的麥角甾酮及其類似物的結(jié)構(gòu)與細胞毒活性的關系,發(fā)現(xiàn)麥角甾酮的抗腫瘤活性可能與其3位氧有關[24]。

      Kuo等對黃心柿中分離得到的麥角甾酮進行體外細胞毒性評價,發(fā)現(xiàn)其對肝癌 HEPA-3B、鼻咽癌KB、結(jié)腸癌 COLO-205和宮頸癌 HELA細胞顯示出強的細胞毒作用[5]。

      其他研究顯示麥角甾酮-PEG脂質(zhì)體比游離麥角甾酮在固體荷瘤小鼠有更顯著的抗腫瘤活性[25]。Sun等報道葉酸修飾麥角甾酮的牛血清白蛋白的納米顆粒可以改善麥角甾酮的治療效果。體外實驗研究證明了緩釋的納米粒子在血液循環(huán)過程中增加藥物的靶點釋放。證明葉酸修飾麥角甾酮的細胞攝取增強。體內(nèi)實驗也證實可以產(chǎn)生強大的活動對葉酸修飾陽性腫瘤[26-27]。

      Lentinus polychrous菌絲體分離得到的麥角甾酮對人乳腺癌T47D細胞雌激素活性和抗雌激素活性的測定結(jié)果顯示,麥角甾酮無雌激素活性,但對雌二醇增強的T47D細胞增殖有抑制效應,說明麥角甾酮可高選擇性地競爭雌激素受體[28]

      2.4 麥角甾酮的免疫抑制活性 Fujimoto等從真菌Zopfiella longicaudata分離鑒定的麥角甾酮對伴刀豆球蛋白A 或脂多糖誘導小鼠脾淋巴細胞增殖顯示了強的免疫抑制活性[6]。分析其構(gòu)效關系后發(fā)現(xiàn)麥角甾酮分子結(jié)構(gòu)中的A,B,C 3個環(huán)可能對免疫抑制活性起著重要的作用。

      2.5 麥角甾酮抑制黑色素產(chǎn)生效應 Hong等從桑黃的子實體分離得到麥角甾酮可以降低小鼠黑色素瘤細胞B16F10內(nèi)激活的α-促黑素細胞激素,且在5~15 μmol·L-1呈現(xiàn)劑量依賴關系;在B16F10細胞內(nèi)麥角甾酮也以劑量依賴方式抑制酪氨酸酶蛋白的表達和mRNA的水平[29]。Leon等從褐環(huán)乳牛肝菌分離到麥角甾酮并評價麥角甾酮對人黑色素瘤細胞SK-MEL-1的細胞毒活性,測定麥角甾酮處理后72 h的IC50為10 μmol·L-1[30]。

      2.6 麥角甾酮抑制超氧陰離子產(chǎn)生、彈性蛋白酶釋放、植物生長效應 Thang等從無柄紫靈芝分離出麥角甾酮并測定其對超氧陰離子產(chǎn)生和彈性蛋白酶釋放的抑制效應,結(jié)果顯示麥角甾酮對超氧陰離子產(chǎn)生和彈性蛋白酶釋放有較強的抑制效應,其抑制的IC50分別為(2.30±0.38),(1.94±0.50) g·mL-1[31]。Macías等篩選Guanomyces polythrix植物毒素成分,分離得到的麥角甾酮對千穗谷和稗草生長有強的抑制活性,抑制生長活性的IC50分別為8.0×10-5,1.7×10-4mol·L-1[32]。Mata等研究從真菌Guanomyces polytrix分離的植物毒素,發(fā)現(xiàn)鈣存在時麥角甾酮抑制鈣調(diào)蛋白依賴煙酰胺腺嘌呤二核苷酸激酶和鈣調(diào)蛋白依賴環(huán)核苷酸磷酸二酯酶的活性[33]。endprint

      3 麥角甾酮的藥代動力學

      基于麥角甾酮體內(nèi)藥理學的研究基礎,文獻報道了采用高效液相色譜-紫外檢測器聯(lián)用(HPLC-UV)、高效液相色譜-熒光檢測器聯(lián)用(HPLC-FLD)、高效液相色譜-質(zhì)譜儀聯(lián)用(HPLC-MS)、RRLC-MSn和等測定方法研究了麥角甾酮及其代謝產(chǎn)物在血漿、大便、尿液和組織等分布及排泄。

      3.1 血漿藥代動力學 給大鼠灌胃劑量為20 mg·kg-1的麥角甾酮后,3.81 h達到最大血藥濃度1.29 mg·L-1[34-35]。報道顯示,麥角甾酮結(jié)合人血清白蛋白對于麥角甾酮的藥代動力學有重要的影響,構(gòu)象研究表明麥角甾酮的存在降低了人血清白蛋白中α螺旋的含量并誘導蛋白質(zhì)多肽輕微的展開[36-37]。麥角甾酮可以結(jié)合到人血清白蛋白的位點,與分子建模的結(jié)果一致。

      3.2 組織分布 趙英永等研究麥角甾酮在肺、脾、肝、腸、腎、心臟、胃、附睪、腦組織的組織分布,給藥后9 h麥角甾酮在不同組織的分布達到最大濃度,12 h后麥角甾酮在不同組織濃度顯著的降低。麥角甾酮在肺、脾和肝濃度較高,麥角甾酮在組織的分布與血流量有關。組織麥角甾酮AUC降序為肺、脾、肝、血漿、腸道、腎臟、心臟、胃、附睪、腦。麥角甾酮則主要分布在血液供給豐富的組織如肺、脾、肝、腎,表明麥角甾酮分布是依賴于血液流動或器官的灌注率。另外口服麥角甾酮后24 h麥角甾酮在膽汁排泄率為34.14%[38]。

      3.3 尿液及糞便的排泄 采用建立的HPLC-FLD方法測定麥角甾酮在血漿、大便及尿液中的含量,結(jié)果發(fā)現(xiàn)麥角甾酮在血漿及大便含量高,特別是在大便中的含量較高,24 h內(nèi)麥角甾酮給藥量約57%通過大便排出體外,6~8 h時達到最大排出量,而麥角甾酮在尿液中的含量低于檢測限,這一結(jié)果顯示麥角甾酮是在膽汁中經(jīng)大便排出。代謝產(chǎn)物epoxyergone僅僅在大便能夠被檢測到,而在血漿和尿液沒有檢測到代謝產(chǎn)物。在24 h內(nèi)有1%的麥角甾酮轉(zhuǎn)化為代謝產(chǎn)物,在8~10 h達到最大排出量,和麥角甾酮相比,代謝產(chǎn)物的排出遲于麥角甾酮2 h[39]。結(jié)果表明麥角甾酮的排泄途徑是通過大便排泄而不是尿液(藥物經(jīng)尿排泄可能造成腎損傷)。Sun等建立熒光分析方法測定麥角甾酮在血漿、大便及尿液中的含量,該方法能快速定量測定大鼠血漿,糞便和尿液中麥角甾酮含量[40]。

      4 麥角甾酮的含量測定研究

      到目前為止,文獻報道了HPLC-UV,HPLC-FLD,HPLC-MS等測定不同中藥中麥角甾酮的方法,但由于麥角甾酮含量極低,HPLC-UV方法無法精確測定麥角甾酮的含量。由于麥角甾酮有較強的熒光強度,HPLC-FLD是測定麥角甾酮的理想方法,文獻報道了HPLC-FLD測定豬苓中麥角甾酮的測定方法,同時與HPLC-UV方法進行了比較[41-43]。因為熒光檢測技術具有高的靈敏度和選擇性,復雜的物質(zhì)體系(如中藥提取物)中的微量成分能被直接的測定,因此應用HPLC-FLD方法對豬苓藥材中的麥角甾酮進行含量測定。

      趙英永等建立HPLC-MS方法測定豬苓中包括麥角甾酮在內(nèi)的8個甾體類化合物的含量[44]。相比傳統(tǒng)的HPLC-UV和HPLC-ELSD測定方法,HPLC-MS對低含量成分的測定顯示出良好的選擇性和高靈敏度,該方法可用于定量分析麥角甾酮。孫洋等研究麥角甾酮與人血清白蛋白和牛血清白蛋白的相互作用,吸收光譜和熒光光譜研究表明麥角甾酮與血清白蛋白結(jié)合導致藍移與顯著的強度變化[45]。

      麥角甾酮是雷丸藥材的主要成分之一,胡珊梅等建立了紫外-可見分光光度法測定雷丸中麥角甾酮含量的方法[46]。此方法操作簡便,重復性好,結(jié)果準確可靠,可用于雷丸的定性定量分析,以控制雷丸藥材及相關產(chǎn)品的質(zhì)量。

      5 展望

      近幾年,藥用真菌的研究越來越受到重視,尤其廣泛分布于多種藥用真菌的麥角甾酮吸引了研究者們更多的關注。研究已證實麥角甾酮有利尿、治療慢性腎臟病、抗癌、抗腫瘤、免疫抑制等多種生物活性。基于藥理學、代謝組學、細胞生物學的研究方法,從整體動物到細胞分子水平,麥角甾酮治療慢性腎病和細胞毒活性及其機制研究已經(jīng)取得了一些成果。麥角甾酮可通過誘導多種腫瘤細胞凋亡和抑制腫瘤轉(zhuǎn)移起到抗腫瘤作用。但目前的研究大多局限于細胞水平,對麥角甾酮在整體水平的抗腫瘤作用及其機制還有待更加深入地研究。麥角甾酮抗腫瘤方面的進一步研究能夠使麥角甾酮有望成為一種廣譜抗癌新藥。

      慢性腎臟病是威脅人類健康的重要疾病之一,相關研究成果已表明麥角甾酮對慢性腎臟病有較好的治療效果。藥代動力學的結(jié)果證明麥角甾酮是通過糞便排泄而不經(jīng)過尿液排泄,可以避免長期使用麥角甾酮而造成腎損傷。藥理和代謝組學的結(jié)果證明麥角甾酮對慢性腎臟病的治療顯示了良好的效果。雖然實驗研究顯示麥角甾酮在防治慢性腎臟病上有廣闊的應用前景,但現(xiàn)有的研究大部分還僅局限于體外細胞實驗和動物模型研究,而尚未有麥角甾酮臨床研究成果的報道。因此,對麥角甾酮進一步深入開展臨床研究是十分必要的,這可以為治療慢性腎臟病藥物的篩選和開發(fā)提供新的參考,進而為麥角甾酮及真菌類中藥的應用提供廣闊的前景。

      [參考文獻]

      [1] Bok J W,Lermer L,Chilton J,et al. Antitumor sterols from the mycelia of Cordyceps sinensis [J]. Phytochemistry,1999,51(7):891.

      [2] Zhao Y Y. Traditional uses,phytochemistry,pharmacology,pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries:a review [J]. J Ethnopharmacol,2013,149(1):35.endprint

      [3] Zhao Y Y,Yang L,Wang M,et al. 1β-hydroxylfriedelin,a new natural pentacylic triterpene from the sclerotia of Polyporus umbellatus [J]. J Chem Res,2009,11(11):699.

      [4] Quang D N,Bach D D. Ergosta-4,6,8(14),22-tetraen-3-one from Vietnamese Xylaria sp. possessing inhibitory activity of nitric oxide production [J]. Nat Prod Res,2008,22(10):901.

      [5] Kuo Y H,Chang C I,Li S Y,et al. Cytotoxic constituents from the stems of Diospyros maritima [J]. Planta Med,1997,63(4):363.

      [6] Fujimoto H,Nakamura E,Okuyama E,et al. Six immunosuppressive features from an ascomycete,Zopfiella longicaudata,found in a screening study monitored by immunomodulatory activity [J]. Chem Pharm Bull,2004,52(8):1005.

      [7] Chobot V,Opletal L,Jahodar L,et al. Ergosta-4,6,8,22-tetraen-3-one from the edible fungus,Pleurotus ostreatus (oyster fungus) [J]. Phytochemistry,1997,45(8):1669.

      [8] Kovganko N V. Ecdysteroids and related compounds in fungi [J]. Chem Nat Compd,1999,35(6):597.

      [9] Price M J,Worth G K. The occurrence of ergosta-4,6,8(14),22-tetraen-3-one in several fungi [J]. Aust J Chem,1974,27:2505.

      [10] Yuan D,Mori J,Komatsu K I,et al. An anti-aldosteronic diuretic component (drain dampness) in Polyporus Sclerotium [J]. Biol Pharm Bull,2004,27(6):867.

      [11] Moyer J H,Morton F. Edema mechanism and management[M]. London:WB Saunders Company,1960:173.

      [12] Pitts R F,Sartorius O W. Mechanism of action and therapeutic use of diuretics [J]. Pharmacol Rev,1950,2(1):161.

      [13] Zhao Y Y. Metabolomics in chronic kidney disease [J]. Clin Chim Acta,2013,422:59.

      [14] Zhao Y Y,Cheng X L,Cui J H,et al. Effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone) on adenine-induced chronic renal failure rat:a serum metabonomic study based on ultra performance liquid chromatography/high-sensitivity mass spectrometry coupled with MassLynx i-FIT algorithm [J]. Clin Chim Acta,2012,413(19/20):1438.

      [15] Zhao Y Y,Shen X,Cheng X L,et al. Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique [J]. Process Biochem,2012,47(12):1980.

      [16] Zhao Y Y,Cheng X L,Wei F,et al. Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique [J]. Biomarkers,2012,17(8):721.endprint

      [17] Zhao Y Y,Zhang L,Long F Y,et al. UPLC-Q-TOF/HSMS/MSE-based metabonomics for adenine-induced changes in metabolic profiles of rat faeces and intervention effects of ergosta-4,6,8(14),22-tetraen-3-one [J]. Chem-Biol Inter,2013,301(1/3):31.

      [18] Zhao Y Y,Zhang L,Mao J R,et al. Ergosta-4,6,8(14),22-tetraen-3-one isolated from Polyporus umbellatus prevents early renal injury in aristolochic acid-induced nephropathy rats [J]. J Pharm Pharmacol,2011,63(12):1581.

      [19] Lee W Y,Park Y,Ahn J K,et al. Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus [J]. Bull Korean Chem Soc,2005,26 (9):1464.

      [20] Zhao Y Y,Chao X,Zhang Y,et al. Cytotoxic steroids from Polyporus umbellatus [J]. Planta Med,2010,76(15):1755.

      [21] Tala M F,Wabo H K,Zeng,G Z,et al. A prenylated xanthone and antiproliferative compounds from leaves of Pentadesma butyracea [J]. Phytochem Lett,2013,6(3):326.

      [22] Zhao Y Y,Shen X,Chao X,et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2cells [J]. Biochim Biophys Acta-Gen Subjects,2011,1810(4):384.

      [23] Froufe H J C,Abreu R M V,Barros L,et al. Docking studies to evaluate mushrooms low molecular weight compounds as inhibitors of the anti-apoptotic protein BCL-2 [J]. Planta Med,2012,78(11):1247.

      [24] Roh E M,Jin Q,Jin H G,et al. Structural implication in cytotoxic effects of sterols from Sellaginella tamariscina [J]. Arch Pharm Res,2010,33(9):1347.

      [25] Sun Y,Ji Z,Zhao Y,et al. Enhanced distribution and anti-tumor activity of ergosta-4,6,8(14),22-tetraen-3-one by polyethylene glycol liposomalization [J]. J Nanosci Nanotech,2013,13(2):1435.

      [26] Liang X,Sun Y,Liu L,et al. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery [J]. Int J Pharm,2013,441(1/2):1.

      [27] Liang X,Sun Y,Liu L,et al. Folate-functionalized nanoparticles for controlled ergosta-4,6,8(14),22-tetraen-3-one delivery [J]. J Control Release,2013,172:e80.

      [28] Fangkrathok N,Sripanidkulchai B,Umehara K,et al. Bioactive ergostanoids and a new polyhydroxyoctane from Lentinus polychrous mycelia and their inhibitory effects on E2-enhanced cell proliferation of T47D cells [J]. Nat Prod Res,2013,27(18):1611.

      [29] Hong Y J,Jong A R,Yang K S. Inhibition of melanin production and tyrosinase expression of ergosterol derivatives from Phellinus pini [J]. Nat Prod Sci,2013,19(3):258.endprint

      [30] León F,Brouard I,Torres F,et al. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells[J]. Chem Biodivers,2008,5(1):120.

      [31] Thang T D,Kuo P C,Hwang T L,et al. Triterpenoids and steroids from Ganoderma mastoporum and their inhibitory effects on superoxide anion generation and elastase release [J]. Molecules,2013,19,18(11):14285.

      [32] Macías M,Gamboa A,Ulloa M,et al. Phytotoxic naphthopyranone derivatives from the coprophilous fungus Guanomyces polythrix [J]. Phytochemistry,2001,58(5):751.

      [33] Mata R,Gamboa A,Macias M,et al. Effect of selected phytotoxins from Guanomyces polythrix on the calmodulin-dependent activity of the enzymes cAMP phosphodiesterase and NAD-kinase [J]. J Agric Food Chem,2003,51(16):4559.

      [34] Zhao Y Y,Qin X Y,Zhang Y,et al. Quantitative HPLC method and pharmacokinetic studies of ergosta-4,6,8(14),22-tetraen-3-one,a natural product with diuretic activity from Polyporus umbellatus [J]. Biomed Chromatogr,2010,24(10):1120.

      [35] Zhao Y Y,Cheng X L,Zhang Y,et al. A fast and sensitive HPLC-MS/MS analysis and preliminary pharmacokinetic characterization of ergone in rats [J]. J Chromatogr B,2010,878(1):29.

      [36] Sun Y,Zhao Y Y,Li G,et al. Studies of interaction between ergosta-4,6,8(14),22-tetraen-3-one (ergone) and human serum albumin by molecular spectroscopy and modeling [J]. J Chin Chem Soc-Taipei,2011,58(5):602.

      [37] Liu L,Sun Y,Wei S,Hu X,Zhao Y,F(xiàn)an J. Solvent effect on the absorption and fluorescence of ergone:determination of ground and excited state dipole moments [J]. Spectrochim Acta A Mol Biomol Spectrosc,2012,86:120.

      [38] Zhao Y Y,Cheng X L,Wei F,et al. Ultra performance liquid chromatography coupled with electrospray and atmospheric pressure chemical ionization (ESCi)-quadrupole time-of-flight mass spectrometry with novel mass spectrometryElevated Energy (MSE) data collection technique:determination and pharmacokinetics,tissue distribution and biliary excretion study of ergone in rat [J]. J Sep Sci,2012,35(13):1619.

      [39] Zhao Y Y,Qin X Y,Cheng X L,et al. Rapid resolution liquid chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detection for metabolism and pharmacokinetic studies of ergosta-4,6,8(14),22-tetraen-3-one [J]. Anal Chim Acta,2010,675(2):199.

      [40] Sun Y,Liang X,Zhao Y,et al. A sensitive spectrofluorometric method for determination of ergosta-4,6,8(14),22-tetraen-3-one in rat plasma,feces,and urine for application to pharmacokinetic studies using Cerium(III) as a probe [J]. Appl Spectrosc,2013,67(1):106.endprint

      [41] Zhao Y Y,Zhao Y,Zhang Y M,et al. Qualitative and quantitative analysis of the diuretic component ergone in Polyporus umbellatus by HPLC with fluorescence detection and HPLC-APCI-MS/MS [J]. Pharmazie,2009,64(6):366.

      [42] 趙英永,程顯隆,張萍,等.HPLC法測定豬苓中麥角甾酮的含量[J].藥物分析雜志,2009,29(9):1579.

      [43] Yuan D,Yamamoto K,Bi K,et al. Studies on the marker compounds for standardization of traditional Chinese medicine “polyporus sclerotium (ChoRei)” [J]. Yakugaku Zasshi,2003,123(2):53.

      [44] Zhao Y Y,Cheng X L,Zhang Y,et al. Simultaneous determination of eight major steroids from Polyporus umbellatus by high-performance liquid chromatography coupled with mass spectrometry detections [J]. Biomed Chromatogr,2010,24(2):222.

      [45] 孫洋,趙英永,劉璐莎,等.血清蛋白對麥角甾-4,6,8,22-四烯-3-酮熒光光增強作用的研究及應用[J].化學學報,2011,69(22):2703.

      [46] 胡珊梅,李玲玲,肖新月,等.雷丸藥材定性和定量分析方法研究[J].藥物分析雜志,2010,30(9):1781.

      Research progress on pharmacology,pharmacokinetics and

      determination of ergosta-4,6,8(14),22-tetraen-3-one

      CHEN Han,CHEN Dan-qian,LI Quan-fu,LI Peng-fei,CHEN Hua,ZHAO Ying-yong*

      (Key Laboratory of Resource Biology and Biotechnology in Western China,Ministry of Education,

      the College of Life Sciences,Northwest University,Xi′an 710069,China)

      [Abstract] Ergosta-4,6,8(14),22-tetraen-3-one (ergone) is one of main components in many medicinal fungi. Ergone has been reported to possess the activities of diuresis,cytotoxicity,antitumor,immunosuppression,as well as treatment of chronic kidney disease. According to reported literatures,an overview of spectroscopy characteristics,content determination,pharmacological activity and pharmacokinetics,etc. for ergone is presented in this review. Furthermore,the present review can provide a certain reference value for the further study and development of ergone.

      [Key words] ergosta-4,6,8(14),22-tetraen-3-one; diuresis; chronic kidney disease; pharmacokinetics; content determination

      doi:10.4268/cjcmm20142004

      [責任編輯 張寧寧]endprint

      猜你喜歡
      藥代動力學慢性腎臟病利尿
      童安榮主任醫(yī)師辨證治療慢性腎臟病經(jīng)驗
      慢性腎病高血壓患者合用非洛地平與培哚普利的藥代動力學與藥效學觀察
      前列地爾治療高齡糖尿病并慢性腎臟病患者療效和安全性分析
      注射用頭孢曲松鈉動物體內(nèi)藥代動力學和相對生物利用度研究
      羥苯磺酸鈣聯(lián)合復方腎衰湯治療慢性腎臟病的護理體會
      慢性腎臟病合并高血壓患者食鹽的攝入與降壓藥的關系
      蕨類植物在利尿通淋中的藥用研究(二)
      貴州民族藥蕨類植物在利尿通淋中的藥用研究(三)
      抗利尿激素分泌異常綜合征1例報道
      恩諾沙星抗菌效果及藥代動力學研究進展
      会东县| 白城市| 兴业县| 自贡市| 内乡县| 临猗县| 南和县| 临沧市| 汶上县| 麻阳| 开鲁县| 麦盖提县| 德州市| 平阳县| 萨嘎县| 民和| 苍南县| 呼玛县| 德阳市| 普洱| 方正县| 柳州市| 大城县| 桐庐县| 信宜市| 库车县| 德惠市| 舟山市| 茌平县| 应用必备| 北票市| 嵊州市| 上栗县| 栖霞市| 乐业县| 平山县| 布尔津县| 嘉黎县| 福泉市| 澄江县| 红安县|