• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      隨機(jī)孔徑對(duì)非均質(zhì)多孔泡沫材料滲透性影響的數(shù)值模擬

      2014-12-09 09:07:00王濟(jì)平張新銘
      機(jī)械工程材料 2014年11期
      關(guān)鍵詞:滲透性均質(zhì)均勻度

      王濟(jì)平,張新銘,王 龍

      (1.中電投遠(yuǎn)達(dá)環(huán)保工程有限公司,重慶401122;2.重慶大學(xué)低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,重慶400040)

      0 引 言

      高孔隙率多孔泡沫材料具有高比表面積、低表觀密度、結(jié)構(gòu)與功能一體化等優(yōu)點(diǎn),是一類具有潛在應(yīng)用前景的新型工程材料[1]。多孔泡沫材料內(nèi)流體的擴(kuò)散過(guò)程廣泛存在于化工、能源、環(huán)境和生物工程等領(lǐng)域,如航空系統(tǒng)、地?zé)嵯到y(tǒng)、機(jī)載設(shè)備的緊湊型散熱器、汽車尾氣處理、工業(yè)污水處理、蒸餾工業(yè)、電子設(shè)備熱沉、微型系統(tǒng)熱管理等[2-4]。

      關(guān)于多孔泡沫材料滲透性的研究已有大量文獻(xiàn)報(bào)道[5-10]。但現(xiàn)有的研究通常將孔隙率作為影響滲透率的參數(shù),其前提是假定泡沫材料是均質(zhì)的,即孔隙結(jié)構(gòu)規(guī)則、周期性分布。然而,實(shí)際上多孔泡沫材料大都是非均質(zhì)的,孔隙結(jié)構(gòu)不均勻性等會(huì)對(duì)多孔泡沫材料的性能有著重要的影響[11-13]。

      為此,作者基于隨機(jī)孔徑的面心立方體單元,建立了非均質(zhì)多孔泡沫材料隨機(jī)模型,對(duì)孔隙內(nèi)空氣的流動(dòng)過(guò)程進(jìn)行數(shù)值模擬,引入孔隙均勻度作為表征孔徑隨機(jī)分布的參數(shù),討論當(dāng)孔徑尺寸不均勻時(shí),孔隙結(jié)構(gòu)隨機(jī)性對(duì)非均質(zhì)多孔泡沫材料滲透性的影響,提出了非均質(zhì)多孔泡沫材料滲透率與孔隙率、孔隙均勻度的函數(shù)關(guān)系式。

      1 計(jì)算模型

      1.1 幾何模型

      以多孔石墨泡沫為例,建立幾何模型。由圖1可以看出,多孔石墨泡沫的孔隙尺寸分布得相當(dāng)不均勻。采用面心立方體單元表征非均質(zhì)石墨泡沫的孔隙。設(shè)單元邊長(zhǎng)為a,隨機(jī)孔徑為ds,定義無(wú)量綱孔徑d*=ds/a,根據(jù)多孔泡沫材料的結(jié)構(gòu)特點(diǎn),為保證泡沫材料內(nèi)部固體骨架相連且孔隙相通,則d*的取值范圍為

      根據(jù)式(2)可計(jì)算出對(duì)應(yīng)單元孔隙率φ的范圍為0.523 6<φ <0.965 1。

      材料的比表面積β,即固流兩相界面面積與材料表觀體積之比,則可表示為

      式中:ε為泡沫模型的平均孔隙率(以下稱孔隙率)。

      圖1 多孔石墨泡沫的SEM形貌Fig.1 SEM morphology of porous graphite foam

      通過(guò)APDL編程,定義隨機(jī)孔徑ds,人工隨機(jī)建立非均質(zhì)多孔泡沫材料的幾何模型,如圖2所示,采用有限元分析軟件Ansys對(duì)孔隙內(nèi)空氣的流動(dòng)過(guò)程進(jìn)行數(shù)值模擬。

      1.2 孔隙均勻度

      為描述非均質(zhì)泡沫材料孔隙結(jié)構(gòu)的隨機(jī)性,定義基于局部孔隙率的孔隙均勻度U:

      式中:n為孔隙總數(shù)。

      圖2 非均質(zhì)多孔泡沫材料的模型Fig.2 Model of heterogeneous porous foam

      孔隙均勻度U∈(0,1]表征了各單元局部孔隙率與泡沫模型平均孔隙率的偏差統(tǒng)計(jì)值。U值小于1時(shí),泡沫材料為非均質(zhì)的。U值越小,說(shuō)明模型的結(jié)構(gòu)隨機(jī)性越大,孔隙結(jié)構(gòu)越不均勻;U值越大,則模型的結(jié)構(gòu)隨機(jī)性越小,孔隙結(jié)構(gòu)越均勻。U值等于1時(shí),泡沫材料為完全均質(zhì)的。

      1.3 控制方程和邊界條件

      連續(xù)性方程和動(dòng)量方程分別為

      以空氣進(jìn)口流速和出口壓力為邊界條件,空氣入口速度均勻分布,入口流速范圍為0~7m·s-1;出口邊界為自由出口,相對(duì)壓力為0;氣固接觸面為非滑移邊界條件。應(yīng)用Ansys有限元軟件進(jìn)行數(shù)值模擬,劃分網(wǎng)格數(shù)量約300 000,并進(jìn)行了網(wǎng)格無(wú)關(guān)性驗(yàn)證。

      2 模擬結(jié)果與分析

      由圖3可以看到,均質(zhì)泡沫材料中的壓力梯度(Δp/L)隨材料截面上空氣流速(u)增大而增大,隨孔隙率(ε)增大而減小,滿足 Ergun[14]方程:

      式中:μ為流體動(dòng)力黏度,kg·m-1·s-1;dp為球形顆粒直徑,mm;A 和B 均為常數(shù),A=150,B=1.75。

      由圖4可見(jiàn),泡沫材料中的Δp/L隨著u的增大而增大;但Δp/L還與孔隙均勻度有關(guān),U越大則Δp/L越大,即孔隙結(jié)構(gòu)越均勻,流動(dòng)阻力越大,說(shuō)明孔隙率已不是非均質(zhì)多孔泡沫材料唯一的結(jié)構(gòu)參數(shù),孔隙結(jié)構(gòu)的不均勻性對(duì)其滲透性也有影響。這主要是因?yàn)榭紫督Y(jié)構(gòu)的不均勻性使材料的比表面積發(fā)生變化所致。在相同的孔隙率下,非均質(zhì)泡沫材料的β值小于均質(zhì)泡沫材料的,從而導(dǎo)致流體與固體骨架表面的接觸面積減少,摩擦減小,壓降損失減小,因此材料的滲透性變好。

      圖3 不同孔隙率的均質(zhì)泡沫材料中Δp/L與u的關(guān)系(U=1)Fig.3 Δp/Lvs uin homogenous porous foams with different porosities(U=1)

      圖4 不同孔隙均勻度的泡沫材料中Δp/L與u關(guān)系(ε=0.8)Fig.4 Δp/Lvs uin porous foams with different pore uniformities(ε=0.8)

      由此可見(jiàn),孔隙率和孔隙均勻度同時(shí)影響多孔泡沫材料的滲透性,孔隙率是平均意義的孔隙結(jié)構(gòu)參數(shù),而孔隙均勻度則是表征孔隙結(jié)構(gòu)隨機(jī)性的參數(shù)。

      在較高空氣流速下,多孔泡沫材料內(nèi)的壓力梯度遵循 Darcy-Forchheimer[15]關(guān)系式:

      式中:K為滲透率;CF為慣性阻力系數(shù)。

      由式(8)即可求得多孔泡沫材料的滲透率。均質(zhì)泡沫模型(U=1)的模擬結(jié)果如表1所示,且與文獻(xiàn)報(bào)道結(jié)果進(jìn)行了比較。可見(jiàn),各均質(zhì)材料模型結(jié)果趨勢(shì)一致,滲透率隨孔隙率的增大而增大,這與現(xiàn)有文獻(xiàn)試驗(yàn)結(jié)果整體趨勢(shì)相同,滲透率出現(xiàn)的偏差是因?yàn)檫x用了不同的模型及流速范圍。另外,試驗(yàn)結(jié)果呈現(xiàn)出了一定的隨機(jī)性,如文獻(xiàn)[16]中ε=0.86和文獻(xiàn)[17]中ε=0.857時(shí)的滲透率,以及文獻(xiàn)[18]中ε=0.919和文獻(xiàn)[19]中ε=0.92時(shí)滲透率。

      表1 均質(zhì)多孔泡沫材料滲透率模擬結(jié)果與文獻(xiàn)結(jié)果的比較Tab.1 Comparison of the simulated permeability of homogeneous porous foams with results from other references

      由圖5可見(jiàn),在相同的孔隙均勻度下,滲透率隨孔隙率增大而增大;在相同的孔隙率下,滲透率隨孔隙均勻度的增大而減小,這很好地解釋了表1中試驗(yàn)數(shù)據(jù)呈現(xiàn)出的隨機(jī)性,因而本模型結(jié)果與參考文獻(xiàn)的試驗(yàn)結(jié)果更加吻合,采用本模型預(yù)測(cè)非均質(zhì)多孔泡沫材料的滲透率更為可靠。

      圖5 非均質(zhì)泡沫材料滲透率隨孔隙率、孔隙均勻度的變化曲線Fig.5 Permeation rate vs porosity(a)and pore uniformity(b)in the heterogeneous porous foams

      綜上所述,滲透率K可定義為孔隙率及孔隙均勻度U的函數(shù),即

      定義無(wú)量綱滲透率

      K*=Kβ2/[6(1-ε)]2(12)

      擬合得到非均質(zhì)多孔泡沫材料滲透率與孔隙率及孔隙均勻度的函數(shù)式:

      K*=0.664 1ε12.4026U-0.347(13)

      分析計(jì)算得出此擬合式的計(jì)算值與模擬結(jié)果偏差在5%以內(nèi)。

      3 結(jié) 論

      (1)流體流過(guò)非均質(zhì)多孔泡沫材料時(shí)壓力梯度滿足Darcy-Forchheimer關(guān)系,在相同的孔隙均勻度下,壓力梯度隨著孔隙率的增大而減小,滲透率隨孔隙率增大而增大;在相同的孔隙率下,壓力梯度隨著孔隙均勻度的增大而增大,滲透率隨孔隙均勻度增大而減??;孔隙率和孔隙均勻度同時(shí)影響泡沫著材料的滲透性。

      (2)模型的模擬結(jié)果相比可知,采用非均質(zhì)隨機(jī)模型的模擬結(jié)果與參考文獻(xiàn)的試驗(yàn)數(shù)據(jù)更加吻合,除孔隙率外,孔隙結(jié)構(gòu)的隨機(jī)分布對(duì)材料滲透性也有影響,非均質(zhì)泡沫材料滲透率如下冪函數(shù)表示K*=0.664 1ε12.4026U-0.347。

      [1]王新筑,彭向和,郭早陽(yáng).泡沫鋁準(zhǔn)靜態(tài)壓痕響應(yīng)的數(shù)值模擬[J].機(jī)械工程材料,2013,37(4):78-82.

      [2]韓永生,李建保,魏強(qiáng)民.多孔陶瓷材料應(yīng)用及制備的研究進(jìn)展[J].材料導(dǎo)報(bào),2002,16(3):262-269.

      [3]高鑫,李鑫鋼,魏娜,等.多孔介質(zhì)泡沫材料在蒸餾過(guò)程中的應(yīng)用[J].化工進(jìn)展,2013,32(6):1313-1319.

      [4]NIDIA C G,KLETT J W.Carbon foams for thermal management[J].Carbon,2003,41(7):1461-1466.

      [5]DESPOIS J F,MORTENSEN A.Permeability of open-pore microcellular materials[J].Acta Materialia,2005,53(5):1381-1388.

      [6]KHAYARGOLI P,LOYA V,LEFEBVRE L P,et al.The impact of microstructure on the permeability of metal foams[C]//Proceeding of CSME Forum.[S.l.]:[s.n.],2004:220-228.

      [7]BHATTACHARYA A,CALMIDI VV,MAHAJAN R L.Thermophysical properties of high porosity metal foams[J].International Journal of Heat Mass Transfer,2002,45(5):1017-1031.

      [8]DUPLESSIS J P,MONTILLET A,COMITI J,et al.Pressure drop prediction for flow through high porosity metallic foams[J].Chemical Engineering Science,1994,49(21):3545-3553.

      [9]DUKHAN N,PATEL P.Equivalent particle diameter and length scale for pressure drop in porous metals[J].Experimental Thermal and Fluid Science,2008,32(5):1059-1067.

      [10]呂兆華.泡沫型多孔介質(zhì)中非達(dá)西流動(dòng)特性的研究[J].工程力學(xué),1998,15(2):57-64.

      [11]施明恒,虞維平,王補(bǔ)宣.多孔介質(zhì)傳熱傳質(zhì)研究的現(xiàn)狀和展望[J].東南大學(xué)學(xué)報(bào),1994,24(增1):2-7.

      [12]李小川,施明恒,張東輝.非均勻多孔介質(zhì)有效熱導(dǎo)率分析[J].工程熱物理學(xué)報(bào),2006,27(4):644-646.

      [13]李莎,雍玉梅,尹小龍,等.多孔介質(zhì)的孔隙特性對(duì)氣體過(guò)程影響的直接數(shù)值模擬[J].化工學(xué)報(bào),2013,64(4):1242-1248.

      [14]ERGUN S.Fluid flow through packed columns[J].Chemical Engineering Progress,1952,48(2):89-94.

      [15]KOPANIDIS A,THEODORAKAKOS A,GAVAISES E,et al.3Dnumerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam[J].International Journal of Heat and Mass Transfer,2010,53(11):2539-2550.

      [16]LACROIX M,NGUYEN P,SCHWEICH D,et al.Pressure drop measurements and modeling on SiC foams[J].Chemical Engineering Science,2007,62(12):3259-3267.

      [17]RICHARDSON J T,PENG Y,REMUE D.Properties of ceramic foam catalyst supports:pressure drop[J].Applied Catalysis A:General,2000,204(1):19-32.

      [18] DUHAN N.Correlations for the pressure drop for flow through metal foam[J].Experiments in Fluids,2006,41(4):665-672.

      [19]KIM S Y,PAEK J W,KANG B H.Flow and heat transfer correlations for porous fin in plate-fin heat exchanger[J].Journal of Heat Transfer,2000,122(3):572-578.

      猜你喜歡
      滲透性均質(zhì)均勻度
      低播量下雜交稻產(chǎn)量形成對(duì)種植均勻度的響應(yīng)
      作物研究(2023年2期)2023-05-28 13:44:14
      不同固化劑摻量對(duì)濕陷性黃土強(qiáng)度和滲透性的影響
      視唱練耳課程與作曲技術(shù)理論的交叉滲透性探究
      均勻度控制不佳可致肉種雞晚產(chǎn)
      阿奇山1號(hào)巖體現(xiàn)場(chǎng)水文地質(zhì)試驗(yàn)及滲透性評(píng)價(jià)
      紡織基小口徑人工血管材料的體外水滲透性研究
      Orlicz對(duì)偶混合均質(zhì)積分
      錦綸長(zhǎng)絲染色均勻度判色新方法
      非均質(zhì)巖心調(diào)堵結(jié)合技術(shù)室內(nèi)實(shí)驗(yàn)
      復(fù)方丹參片中冰片的含量均勻度研究
      中成藥(2014年10期)2014-02-28 22:29:24
      清水河县| 新民市| 曲靖市| 新郑市| 巴中市| 四子王旗| 延川县| 九台市| 衡水市| 崇义县| 西丰县| 临汾市| 屯门区| 汤阴县| 黔江区| 永康市| 南郑县| 社旗县| 邹平县| 广汉市| 清苑县| 双峰县| 拜城县| 文登市| 阜新| 婺源县| 会同县| 田林县| 互助| 舟曲县| 钟山县| 四川省| 咸宁市| 巢湖市| 遂宁市| 麟游县| 长垣县| 寿宁县| 宁安市| 军事| 喀喇沁旗|