熊琪+李曉鋒+索效軍+張年+劉洋+陳明新
摘要:骨骼肌纖維的數(shù)目由出生前肌源細(xì)胞的成肌分化進(jìn)程所決定,直接影響家畜的生長潛能和肉質(zhì)。MyoD依賴的肌肉特異性基因的染色質(zhì)重塑激活是控制成肌分化的重要方式,其作用模式已有一些報(bào)道。PI3K/Akt和p38信號(hào)也參與了這一過程的調(diào)控。對(duì)這一研究進(jìn)展進(jìn)行了綜述。
關(guān)鍵詞:成肌分化;MyoD;染色質(zhì)重塑;肌纖維數(shù)目
中圖分類號(hào):Q952 ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:B ? ? ? ? ?文章編號(hào):0439-8114(2014)20-4780-03
DOI:10.14088/j.cnki.issn0439-8114.2014.20.002
MyoD-mediated Chromatin Remodeling Activation of Muscle Specific Gene and Myogeneis Regulation
XIONG Qi, LI Xiao-feng, SUO Xiao-jun, ZHANG Nian, LIU Yang, CHEN Ming-xin
(Institute of Animal and Veterinary Science/ Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Sciences,Wuhan 430064,China)
Abstract: In domestic animals, a change in the number of fibers that form during myogenesis can have a profound effect on the total muscle mass of the adult animal, long-term growth potential and meat quality of the animal. The MyoD-mediated chromatin remodeling activation of muscle-specific gene is an important way to control myogenesis. The action models were reported. The PI3K/Akt and p38 signaling pathway involved in the regulation were reviewed.
Key words: ?myogenesis;MyoD;chromatin remodeling;muscle fiber number
骨骼肌纖維是骨骼肌的主要組成部分,肌纖維的數(shù)目和大小直接影響家畜的胴體性狀。肌纖維的肥大主要發(fā)生在出生之后,而肌纖維數(shù)目則早在出生前就已定型,受骨骼肌源細(xì)胞的成肌分化所控制[1]。成肌轉(zhuǎn)錄因子(MRF)家族成員中最重要的成肌決定因子MyoD,不但介導(dǎo)成肌分化的定向,還控制著成肌細(xì)胞的融合與肌纖維的形成。其在成肌分化中的重要作用主要是通過控制特定時(shí)段基因的有序轉(zhuǎn)錄?,F(xiàn)已有大量關(guān)于MyoD與多種轉(zhuǎn)錄因子、乙酰轉(zhuǎn)移酶及染色質(zhì)修飾復(fù)合物介導(dǎo)下肌肉特異性基因染色質(zhì)重塑的報(bào)道,及其調(diào)控該過程的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路。為人們認(rèn)識(shí)成肌分化的控制因素及肌纖維數(shù)目的遺傳差異提供了參考。
1 ?成肌分化控制與肌纖維數(shù)目
家畜的肌纖維數(shù)目不僅影響骨骼肌的生長潛能和耐受性,還與肉質(zhì)密切相關(guān)。肌纖維的形成大致分為兩個(gè)成肌階段:①肌源干細(xì)胞增殖后,分化融合形成初級(jí)肌纖維;②繼發(fā)增殖的肌源細(xì)胞以初級(jí)肌纖維為支架,融合形成更小更多的次級(jí)肌纖維[2]。組織切片及基因表達(dá)研究表明,綿羊肌纖維的形成在胚胎期的第85天[3];牛初級(jí)肌纖維的形成在妊娠的第47天前,次級(jí)肌纖維的形成約在胚胎期的第90天[4];豬初級(jí)肌纖維和次級(jí)肌纖維的形成分別在胚胎的第30~60天及第54~90天[5]。不同物種的肌纖維數(shù)目及同一物種的不同品種間肌纖維數(shù)目存在差異的原因是,初級(jí)纖維和次級(jí)纖維的形成過程均受肌源細(xì)胞的增殖和分化控制,而多種因素都會(huì)影響這些過程。如生肌抑制素Myostatin基因突變后,肌源細(xì)胞的增殖和成肌分化不受控制[6],引起初級(jí)纖維和次級(jí)纖維形成的加速,最終導(dǎo)致肌纖維總數(shù)增加[2]。以生長快速著稱的瘦肉型皮特蘭豬與杜洛克豬的比較研究發(fā)現(xiàn),皮特蘭豬初級(jí)纖維形成期時(shí)成肌分化程度較低,次級(jí)纖維形成期時(shí)成肌分化程度較高,但最終肌纖維數(shù)目多于杜洛克豬,因此具備了出生后肌肉肥大的潛能[7]。以上的研究結(jié)果表明,肌纖維數(shù)目的多少與成肌分化的控制因素直接有關(guān)。
2 ?MyoD依賴的肌肉特異性基因的染色質(zhì)重塑激活是控制成肌分化的重要方式
肌肉細(xì)胞定向分化為終末肌管的過程中,基因組部分區(qū)域的染色質(zhì)需要進(jìn)行組蛋白修飾及結(jié)構(gòu)重塑,以維持新的基因表達(dá)模式。這種表達(dá)模式既需要抑制無關(guān)基因的表達(dá),也需要選擇性并有序地激活肌肉特異性基因的表達(dá)。如肌肉特異性基因調(diào)控區(qū)的染色質(zhì)結(jié)構(gòu)在未分化的增殖肌源細(xì)胞中呈抑制狀態(tài),在分化的肌細(xì)胞中呈開放狀態(tài)[8,9]。而增殖相關(guān)基因調(diào)控區(qū)域的染色質(zhì)結(jié)構(gòu)在未分化的增殖肌源細(xì)胞中呈開放狀態(tài),在分化的肌細(xì)胞中呈抑制狀態(tài)[10]。Strahl等[11]發(fā)現(xiàn)組蛋白的不同修飾狀態(tài)影響染色質(zhì)結(jié)構(gòu)及染色質(zhì)開放程度。
MyoD家族基因?qū)儆趬A性螺旋一環(huán)一螺旋(bHLH)轉(zhuǎn)錄因子,是肌肉特異性基因表達(dá)的主要調(diào)控因子。高通量的CHIP測(cè)序研究表明在成肌分化過程中,MyoD可與基因組的約25 000個(gè)位點(diǎn)結(jié)合,但是其中只有1 953個(gè)基因表達(dá)改變[12]。說明僅有MyoD的結(jié)合不足以激活基因的表達(dá),還需要其他因子的參與。組蛋白乙酰基轉(zhuǎn)移酶(Histone acetyltransferases,HATs),去乙?;福╤istone deacetylases,HDACs)和染色質(zhì)重塑復(fù)合物(SWItch/Sucrose NonFermentable,SWI/SNF)等染色質(zhì)修飾因子協(xié)同MyoD調(diào)控肌肉特異位點(diǎn)的機(jī)制已被廣泛報(bào)道[9,13,14]。HDACs通過抑制MyoD的活性,阻止其在未分化的細(xì)胞中激活靶基因。而HATs則與募集的SWI/SNF共同正調(diào)控MyoD,激活肌肉特異性基因的表達(dá),促進(jìn)肌肉發(fā)育。在未分化肌源細(xì)胞中,組蛋白H3的乙?;稽c(diǎn)K9、K14受去乙?;窼ir2(一種Ⅲ類HDAC)復(fù)合物的抑制(圖1a),K27位點(diǎn)被YY1–Ezh2–HDAC1復(fù)合物中的甲基轉(zhuǎn)移酶Ezh2所甲基化(圖1c),肌肉特異性基因轉(zhuǎn)錄受抑;分化開始后,[NAD+]/[NADH]比例的下降使Sir2失活, MyoD從Sir2介導(dǎo)的阻抑中釋放出來,被PCAF乙?;?,組蛋白H3的K9、K14位點(diǎn)被乙?;▓D1b),YY1-Ezh2-HDAC1抑制復(fù)合物也被MyoD、HATs及SWI/SNF等激活復(fù)合物所取代,使組蛋白H3的K27位點(diǎn)去甲基化(圖1d),肌肉特異性基因轉(zhuǎn)錄激活。
以上描述的是MyoD介導(dǎo)肌肉特異性基因轉(zhuǎn)錄激活的一般模式,MyoD介導(dǎo)激活肌肉特異基因表達(dá)的形式是可變的。例如,在晚期階段基因的轉(zhuǎn)錄激活是由MyoD產(chǎn)生的前饋機(jī)制所介導(dǎo),即MyoD作用于晚期基因(如Des、Myl1、Mylpf、Myh3等)的轉(zhuǎn)錄需要先激活早期基因MEF2D的表達(dá)[15]。另有研究報(bào)道晚期基因的染色質(zhì)結(jié)構(gòu)重塑還需要轉(zhuǎn)錄因子Myogenin的結(jié)合[16]。在一些肌肉特異基因的啟動(dòng)子區(qū),核小體可能會(huì)阻礙MyoD與E-box的結(jié)合,MyoD可能需要其他因子的輔助才能結(jié)合上去,如Pbx在MyoD對(duì)Myogenin的轉(zhuǎn)錄激活中就扮演這樣的角色[13]。因此MyoD作用于肌肉特異性基因的染色質(zhì)重塑是個(gè)復(fù)雜的有序的過程。一個(gè)模型不完全適用于所有肌肉特異基因的轉(zhuǎn)錄激活。
3 ?MyoD依賴的肌肉特異位點(diǎn)的染色質(zhì)重塑受PI3K/Akt和p38信號(hào)共同調(diào)控
PI3K-Akt和p38信號(hào)通路被認(rèn)為是兩條平行的級(jí)聯(lián)通路,在肌肉特異位點(diǎn)的染色質(zhì)重塑過程中交匯,共同介導(dǎo)MyoD依賴的肌肉特異性基因的轉(zhuǎn)錄。
3.1 ?PI3K/AKT信號(hào)
胰島素樣生長因子(IGFs)軸被認(rèn)為在肌肉細(xì)胞的分化和生長過程中具有重要正向調(diào)控作用,IGFs在次級(jí)纖維的形成過程中分子表達(dá)量增加,它的作用是刺激成肌細(xì)胞增殖,維持肌纖維的分化。IGF2在成肌分化過程中自分泌,結(jié)合于IGF1受體上,激活PI3K/AKT信號(hào),調(diào)控肌肉特異基因的表達(dá)[17]。其重要機(jī)制是級(jí)聯(lián)激活的AKT1和AKT2通過磷酸化乙酰轉(zhuǎn)移酶p300的C端區(qū)域,促進(jìn)MyoD與乙酰轉(zhuǎn)移酶(p300、PCAF)形成復(fù)合體,對(duì)肌肉特異性基因的染色質(zhì)進(jìn)行乙?;揎?加入PI3K信號(hào)通路抑制劑會(huì)阻礙乙酰轉(zhuǎn)移酶P300和PCAF募集到肌肉特異基因的啟動(dòng)子/增強(qiáng)子區(qū),導(dǎo)致肌肉特異位點(diǎn)染色質(zhì)組蛋白乙?;茏?,甲基轉(zhuǎn)移酶Ezh2則富集于染色質(zhì)上甲基化組蛋白H3的K27位點(diǎn),讓肌衛(wèi)星細(xì)胞處于靜息狀態(tài)[18]。
3.2 ?p38信號(hào)
p38激酶是調(diào)節(jié)成肌分化的主要信號(hào)蛋白。MKK6和MKK3是p38激酶應(yīng)答分化信號(hào)的激活劑。它們的添加有助于p38激活,使成肌細(xì)胞提前分化[19]。p38信號(hào)可參與調(diào)節(jié)成肌分化過程中的細(xì)胞周期,外源表達(dá)MKK6EE激活的p38信號(hào)能使骨骼和心臟成肌細(xì)胞退出細(xì)胞周期[20]。P38信號(hào)與其他細(xì)胞信號(hào)的交叉對(duì)話也決定了p38信號(hào)通路在成肌分化的重要作用:p38信號(hào)通過抑制JNK信號(hào)通路的活性負(fù)調(diào)控細(xì)胞增殖[21]。p38激酶還通過磷酸化MEF2、促進(jìn)MyoD/E47異源二聚體的形成及募集染色質(zhì)修飾復(fù)合物SWI/SNF到肌肉特異位點(diǎn),對(duì)染色質(zhì)進(jìn)行重塑,激活肌肉特異性基因的轉(zhuǎn)錄。抑制p38信號(hào)則肌肉特異位點(diǎn)染色質(zhì)得不到重塑,細(xì)胞也處于增殖狀態(tài)而不分化。而重建P38信號(hào)時(shí),這種表型又立即轉(zhuǎn)化為激活狀態(tài),即染色質(zhì)得到重塑,肌肉特異性基因的表達(dá)得以促進(jìn)。另外,P38還是MyoD靶向分化晚期階段基因表達(dá)的限速激酶。這些基因包括肌肉結(jié)構(gòu)基因和收縮蛋白等。Penn等[15]證明p38促進(jìn)MyoD與MEF2結(jié)合在分化晚期階段基因的啟動(dòng)子區(qū)以募集RNA聚合酶-II(Pol II),當(dāng)P38活性達(dá)到一定程度時(shí),MyoD和MEF2D才能結(jié)合于分化晚期基因的啟動(dòng)子。而MEF2D和有活性的p38提前出現(xiàn)時(shí),分化晚期基因也能提前表達(dá)。
4 ?展望
MyoD介導(dǎo)的肌肉特異性基因染色質(zhì)重塑激活是控制骨骼肌細(xì)胞成肌分化的關(guān)鍵機(jī)制。有意思的是,MyoD不僅介導(dǎo)正調(diào)控成肌分化相關(guān)因子的表達(dá)(Myogenin、MCK、MEF2、IGF2等),還介導(dǎo)負(fù)調(diào)控成肌分化相關(guān)因子的表達(dá)[22,23]。因此,MyoD除正向誘導(dǎo)成肌分化外,還存在負(fù)調(diào)控機(jī)制,這也是構(gòu)建MyoD調(diào)控網(wǎng)絡(luò)所需要進(jìn)一步研究的方向。更多調(diào)控肌肉特異基因染色質(zhì)重塑的信號(hào)通路、MyoD的反饋抑制環(huán)路以及MyoD介導(dǎo)染色質(zhì)重塑的其他模式等都值得深入探討。只有弄清控制肌肉分化進(jìn)程的關(guān)鍵機(jī)理,才能進(jìn)一步揭示家畜重要經(jīng)濟(jì)性狀——肌纖維數(shù)量的遺傳差異。
參考文獻(xiàn):
[1] DAVOLI R, BRAGLIA S, RUSSO V, et al. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs[J]. J Anim Breed Genet, 2011, 128(1): 15-27.
[2] MATSAKAS A, OTTO A,ELASHRY M I,et al.Altered primary and secondary myogenesis in the myostatin-null mouse[J].Rejuvenation Res,2010,13(6):717-727.
[3] FAHEY A J, BRAMELD J M, PARR T, et al. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus[J].J Anim Sci,2005,83(10):2330-2338.
[4] LEHNERT S A,REVERTER A, BYRNE K A,et al. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds[J].BMC Dev Biol,2007, 7:95.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.