萬會(huì)達(dá),李 丹,夏詠梅*
(江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,化學(xué)與材料工程學(xué)院,江蘇 無錫 214122)
甜菊糖苷類物質(zhì)的功能性研究進(jìn)展
萬會(huì)達(dá),李 丹,夏詠梅*
(江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,化學(xué)與材料工程學(xué)院,江蘇 無錫 214122)
甜菊糖苷是一類從甜葉菊葉子中提取的高甜度、低熱值的甜味劑,是一種非常理想的蔗糖替代品。毒理學(xué)實(shí)驗(yàn)表明,甜菊糖苷不具有致畸、致癌和致突變毒性。除了作為優(yōu)良的甜味劑應(yīng)用在食品、飲料中,甜菊糖苷還表現(xiàn)出許多功能活性,如降血壓、降血糖、抗腫瘤、抑菌、抗腹瀉、增溶等。由于甜菊糖苷的結(jié)構(gòu)可調(diào)性,可以對其進(jìn)行定向修飾,得到更多具有潛在應(yīng)用價(jià)值的衍生物,這方面的研究對于甜菊糖苷的深入開發(fā)利用具有重要意義,本文將圍繞近幾年有關(guān)甜菊糖苷功能性的研究展開討論。
甜菊糖苷;甜菊苷;功能性
甜葉菊為菊科宿根多年生草本植物,數(shù)百年前南美洲土著人就已經(jīng)開始使用這種植物的葉子作為甜味劑。雖然已經(jīng)發(fā)現(xiàn)有多達(dá)100多個(gè)甜葉菊品種,其中只有Stevia rebaudiana的葉子中含有大量甜菊糖苷[1-2]。甜菊糖苷是一類天然的高甜度低熱值甜味劑,被譽(yù)為繼甘蔗和甜菜之后的“第三糖源”。從2008年美國食品藥品監(jiān)督管理局批準(zhǔn)甜菊糖苷中瑞鮑迪苷A(rebaudioside A,Reb A)為“一般認(rèn)為安全(generally recognized as safe,GRAS)”物質(zhì),再到2011年歐盟委員會(huì)最終批準(zhǔn)甜菊糖苷可以用作食品添加劑,甜菊糖苷已經(jīng)被廣泛地認(rèn)可和使用,而我國已經(jīng)成為世界上甜菊糖苷最大的生產(chǎn)國,約占全球80%份額[3],時(shí)隔16年,我國重新修訂甜菊糖苷國家標(biāo)準(zhǔn),并于2015年7月28日實(shí)施新版GB 8270—2014《食品添加劑 甜菊糖苷》。甜菊糖苷不會(huì)引起齲齒[4],毒理學(xué)實(shí)驗(yàn)表明其不具有致畸、致癌和致突變毒性[5]。與三氯蔗糖、阿巴斯甜等人工合成的高倍甜味劑相比,甜菊糖苷是一種性能優(yōu)良的天然甜味劑,但其不僅僅是甜味劑,還表現(xiàn)出多種功能活性和藥理活性,亦可作為合成其他功能性化合物的前體物質(zhì)。本文將分別討論甜菊糖苷類物質(zhì)的藥理功能和理化功能。
甜菊糖苷是一類至少由9種甜味成分組成的四環(huán)二萜類化合物,包括甜菊苷(stevioside,St)、Reb A、Reb B、Reb C、Reb E、Reb F、甜茶苷、杜克苷、甜菊雙糖苷等。它們具有相同的苷元——甜菊醇(steviol)(圖1),僅C19和C13位上連接不同數(shù)量的葡萄糖基、鼠李糖基或木糖基,從而形成味質(zhì)、理化性能各異的甜菊糖苷(表1)[6]。其中含量最高的為甜菊苷和Reb A,占甜菊糖苷的80%以上,是甜菊糖苷味質(zhì)的主成分。除了上述9種甜菊糖苷,從甜葉菊葉子中提取的甜菊糖苷粗品中還有多種含量稀少的甜菊糖苷(表1),而且近幾年已有學(xué)者開始對這些稀有甜菊糖苷開展研究[7-8]。此外,為了去除甜菊苷不愉快的后苦澀味和促進(jìn)其功能性質(zhì)的開發(fā),一些酶催化轉(zhuǎn)糖基甜菊糖苷也被相繼合成,但其安全性還需要進(jìn)一步評估[9-11]。
圖1 甜菊醇苷元[6]Fig.1 The aglycone of steviol glycosides[6]
表1 甜菊糖苷類物質(zhì)的分子結(jié)構(gòu)Table1 Chemical structures of steviol glycosides
除了表1列出的多種甜菊糖苷,新的甜菊糖苷仍然不斷被分離、純化和鑒定出來,如Ibrahim等[12]除了分離得到Reb E、Reb M、Reb N、Reb O和甜菊苷以外,還發(fā)現(xiàn)了兩種新的甜菊糖苷(圖2)。
圖2 兩種新型甜菊糖苷的結(jié)構(gòu)式[12]Fig.2 Chemical structures of two novel steviol glycosides[12]
2.1 降血壓降血糖
人們最先了解甜菊糖苷的兩種藥理功能是降血壓和血糖。早在數(shù) 百年前南美洲土著人使用甜菊糖苷作為甜味劑之初,就意識到了甜菊糖苷的這兩種神奇功效。研究表明其降血壓原理可歸結(jié)于三方面的作用:降低細(xì)胞外Ca2+的內(nèi)流、減少Na+再吸收和刺激血管舒張劑前列腺素的生成[13]。臨床實(shí)驗(yàn)表明,服用甜菊苷1a后輕中度高血壓患者的收縮壓和舒張壓明顯下降且未見副作用(收縮壓從(166.0±9.4)mmHg降至(152.6±6.8)mmHg、舒張壓從(104.7±5.2)mmHg降至(90.3±3.6)mmHg(P<0.05))[14];服用甜菊苷2a的高血壓患者血壓顯著降低,身體質(zhì)量指數(shù)及血液生理生化指標(biāo)等均未產(chǎn)生重大變化(收縮壓從(150.0±7.3)mmHg降至(140.0±6.8)mmHg、舒張壓從(95.0±4.2)mmHg降至(89.0±3.2)mmHg(P<0.05))[15]。同時(shí)甜菊糖苷這種降血壓作用對于血壓正常人群并無影響,所以甜菊糖苷適合于各類人群食用[16-17]。
前文已敘述,甜菊糖苷具有高甜度、低熱值的特點(diǎn),甜菊糖苷的甜度是蔗糖甜度的200~350倍,而熱量僅為蔗糖的1/300。這能滿足健康人群、愛美人士、肥胖患者、尤其是糖尿病人對甜味的需求,同時(shí)還具有輔助治療糖尿病的作用。體內(nèi)、體外實(shí)驗(yàn)均表明甜菊苷及其相關(guān)化合物通過以下幾個(gè)途徑調(diào)節(jié)血糖平衡:刺激胰島素的分泌和周圍組織對胰島素的敏感性,促進(jìn)血液中葡萄糖的代謝[18];抑制腸道中葡萄糖的吸收和肝臟中葡萄糖的生成,通過抑制葡萄糖合成關(guān)鍵酶來減少血糖輸入(圖3)[19]。連續(xù)給糖尿病小鼠喂食甜葉菊提取物2.5 g/(kg·d),1周后小鼠血糖水平明顯降低(給藥前為(21.5±3.0)mmol/L,給藥后為(6.5±3.3)mmol/L)[20]。Toskulkao等[21]進(jìn)行體外實(shí)驗(yàn)(使用空腸環(huán)組織和外翻囊)研究甜菊苷和甜菊醇對葡萄糖吸收的影響,甜菊苷在5 mmol/L時(shí)沒有對葡萄糖的吸收出現(xiàn)抑制作用,但是1 mmol/L的甜菊醇卻抑制了約40%葡萄糖的吸收。甜菊糖苷可刺激胰島素分泌和增強(qiáng)胰島素敏感性,甜菊醇可通過改善血脂含量調(diào)節(jié)血糖平衡[22-23]。近期研究發(fā)現(xiàn),甜菊糖苷降血糖的主要機(jī)理是其能夠激活μ-阿片受體和促進(jìn)肝糖原的形成[24]。此外,甜菊糖苷只在高血糖情況下才發(fā)揮降血糖的功效,因而對健康人而言,食用甜菊糖苷是安全的[23]。
圖3 甜菊苷及其類似物可能的降血糖原理[19]Fig.3 Possible anti-hyperglycemic actions of stevioside and its analogs[19]
2.2抗炎抗腫瘤
甜菊苷及甜菊醇對結(jié)腸癌細(xì)胞Caco-2、乳腺炎細(xì)胞(S. aureus-infected mouse mammary gland)具有抗炎和免疫調(diào)節(jié)活性,它們經(jīng)由IκBα/NF-κB途徑影響細(xì)胞因子表達(dá),從而削弱脂多糖(lipopolysaccharides,LPS)誘導(dǎo)的促炎因子的生成[25-27]。通過加速Bax蛋白和細(xì)胞色素c的表達(dá)和釋放到細(xì)胞質(zhì)中,甜菊苷能夠加速去血清所誘導(dǎo)的PC12細(xì)胞凋亡[28]。佛波酯(12-O-tetrade canoylphorbol-13-acetate,TPA)能夠引起局部炎癥和皮膚癌,而甜菊苷和甜菊醇能夠有效抑制TPA的生成[29]。異甜菊醇(甜菊醇酸性重排產(chǎn)物)同樣對TPA誘發(fā)的炎癥具有抑制作用;此外異甜菊醇能夠阻礙3種人體癌細(xì)胞的生長,通過抑制DNA聚合酶和DNA拓?fù)洚悩?gòu)酶Ⅱ來治療炎癥和癌癥[30]。Akihisa等[31]通過微生物發(fā)酵法得到了5種異甜菊醇衍生物,然后考察了包括甜菊苷和異甜菊醇在內(nèi)的其中糖苷對腫瘤的抑制活性,選取的模型為Raji細(xì)胞中由TPA誘導(dǎo)的EPSTEIN-BARR病毒早期抗原(EBV-EA)。
2.3 抗腹瀉
Tomita等[32]首先報(bào)道甜葉菊提取物能夠殺滅包括腸出血型大腸桿菌(enterohemorrhagicEsherichia coli)在內(nèi)的食物污染菌,這種菌能夠?qū)е聡?yán)重的出血性腹瀉,因此甜菊糖苷具有治療腹瀉的潛質(zhì)。輪狀病毒(rotavirus,RV)是一種雙鏈核糖核酸病毒,它是嬰幼兒腹瀉的單一主因,除了對人類健康的影響之外,輪狀病毒也會(huì)感染動(dòng)物,是家畜的病原體之一。體內(nèi)(豬仔)和體外(porcine rotavirus G5[P7] strain)實(shí)驗(yàn)表明,甜菊苷和苦參提取物復(fù)配使用具有抑制輪狀病毒的功效,但單一使用其中任意一種會(huì)使抑制效果降低[33]。Wang等[34]研究發(fā)現(xiàn)給斷奶仔豬喂食甜菊苷和Reb A可以明顯降低仔豬的腹瀉發(fā)病率,最優(yōu)平均日攝取量分別為250 mg/kg和191~213 mg/kg。
2.4 治療失憶
Sharma等[35]給大鼠服用東莨菪堿(0.5 mg/kg)使之產(chǎn)生記憶障礙,然后進(jìn)行經(jīng)典的Morris水迷宮測試用于評估老鼠的學(xué)習(xí)和記憶能力。通過測定大鼠腦部乙酰膽堿酯酶(acetylcholinestrase enzyme,AChE)活性來評估中樞膽堿能的活性,同時(shí)對大鼠腦部硫代巴比妥酸反應(yīng)性物質(zhì)(thiobarbituric acid-reactive species,TBARS)及還原型谷胱甘肽(reduced glutathione,GSH)的水平進(jìn)行測定,以評估大鼠發(fā)生氧化應(yīng)激的程度。結(jié)果表明,東莨菪堿誘發(fā)大鼠學(xué)習(xí)和記憶發(fā)生顯著障礙,通過Morris水迷宮的能力顯著下降。東莨菪堿也顯著增強(qiáng)了大鼠腦部AChE活性和氧化應(yīng)激水平(增加TBARS含量和減少GSH含量)。給予大鼠口服甜菊苷(250 mg/kg)可以降低東莨菪堿誘發(fā)的大鼠腦部AChE活性和腦氧化應(yīng)激水平升高,顯著逆轉(zhuǎn)東莨菪堿誘發(fā)的學(xué)習(xí)和記憶障礙。
3.1 增溶劑
Reb A和甜茶苷是優(yōu)良的增溶劑:質(zhì)量分?jǐn)?shù)大于12.5%的Reb A可以提高甜菊苷的穩(wěn)定性和溶解性[36];甜茶苷可以用于增加疏水性抗癌物質(zhì)如紫杉醇、姜黃素、依托泊苷、辣椒素的水溶性,同時(shí)保持甚至增加化合物的藥理活性[37-41]。為增強(qiáng)白藜蘆醇(resveratrol,RES)這種天然抗氧化劑在食品系統(tǒng)中的的功效,利用甜菊苷(St)的增溶性質(zhì)提高RES的溶解性,并考察St-RES復(fù)合物對大豆分離蛋白(soybean protein isolate,SPI)乳狀液穩(wěn)定性的影響,評價(jià)了其物理性質(zhì)及抗氧化性能(圖4)。當(dāng)甜菊苷濃度達(dá)到其臨界膠束濃度時(shí),RES的水溶性增加,推測RES增溶在St自組裝膠束中。St膠束與SPI競爭吸附在油-水界面上,由此降低了SPI乳狀液顆粒尺寸,并提高了SPI乳狀液的物理穩(wěn)定性。當(dāng)形成St-RES復(fù)合物后,減少了脂質(zhì)過氧化物和揮發(fā)性醛的生成,SPI乳狀液表現(xiàn)出抗氧化穩(wěn)定性增強(qiáng)。這種增強(qiáng)效應(yīng)主要?dú)w因于甜菊苷對RES的增溶作用[42]。Wan Zhili等[43]進(jìn)一步研究了甜菊苷與SPI的協(xié)同作用,來解釋乳狀液穩(wěn)定性的成因。
圖4 St-RES復(fù)合物對大豆分離蛋白乳狀液穩(wěn)定性的影響[42]Fig.4 Schematic illustration of the formation of O/W emulsion stabilized by SPI and St-RES[42]
3.2 抑菌劑
目前關(guān)于甜菊糖苷抑菌性的報(bào)道,主要集中于甜葉菊的提取物方面。甜葉菊的乙醇和丙酮提取物表現(xiàn)出最佳的抗食源性致病菌性能,其中包括粘質(zhì)沙雷氏菌(Serratia marcescens)、肺炎克雷伯菌(Klebsiella pneumonia)、蠟狀芽孢桿菌(Bacillus cereus)、銅綠假單胞菌(Pseudomonas aeruginosa)、枯草芽孢桿菌(B. subtilis)、脫氮產(chǎn)堿桿菌(Alcaligenes denitrificans)、鼠傷寒沙門氏菌(Salmonella typhimurium)等,甜菊苷能夠抑制枯草芽孢桿菌(B. subtilis)、肺炎克雷伯菌(K. pneumonia)和鼠傷寒沙門氏菌(S. typhimurium)等細(xì)菌的生長,這有利于延長食品的貨架期[44]。Jayaraman等[45]也指出甜葉菊丙酮提取物的抗菌活性較其他提取物更高。甜葉菊丙酮提取物對革蘭氏陽性菌的抗菌活性強(qiáng)于對革蘭氏陰性菌的抗菌活性??赡苁怯捎谔鹑~菊提取物在這些有機(jī)溶劑中溶解度更大,丙酮和乙醇提取物有更高抗菌活性。甜葉菊乙酸乙酯提取物對毛癬菌和白色念珠菌表現(xiàn)出高抑制活性,這可能是由于活性物質(zhì)在溶劑中可長時(shí)間保持良好的穩(wěn)定性。也有一些結(jié)論相反的報(bào)道稱,甜葉菊氯仿提取物對芽孢桿菌、傷寒桿菌、大腸桿菌均沒有明顯抑制活性,對葡萄球菌也不存在抑制活性,甜葉菊水提取物對所測試的微生物均無抗菌效果[46-49]。但由于溶劑提取液是一個(gè)復(fù)雜的混合物,其中包括甜菊糖苷類物質(zhì)、黃酮、尼克酸、核黃素、生物堿、單寧等,究竟是哪一種或幾種成分起主導(dǎo)抗菌效果還需進(jìn)一步逐一研究。
甜菊苷還可以作為一種保護(hù)劑,使山梨酸鉀這種高安全性、普遍應(yīng)用的防腐劑在含水酸性體系中免遭破壞從而達(dá)到提高抑菌效果的目的,并且在一定條件下,甜菊糖苷類物質(zhì)具有抑制非酶促褐變反應(yīng)的功效[50]。
3.3 前體物質(zhì)
甜菊糖苷類物質(zhì)具有貝殼杉烯的苷元結(jié)構(gòu),通過簡單的水解即可得到甜菊醇和異甜菊醇,以此為先導(dǎo)化合物,進(jìn)一步衍生化可以得到具有保護(hù)心腦細(xì)胞、抑菌、抗炎、抗腫瘤等生物活性的物質(zhì)[9]。因而借助生物催化和化學(xué)催化手段,對甜菊醇和異甜菊醇進(jìn)行修飾與改造,已成為甜菊糖苷類化合物應(yīng)用研究方向之一。目前,主要方法是在甜菊糖苷骨架結(jié)構(gòu)的C13位羥基、C19位羧基連接已知活性分子,在C15、C16和C17位引入氮或氧雜環(huán)、含活潑氫的羥基或氨基、exo-亞甲基環(huán)戊酮及α-亞甲基內(nèi)酯等活性片段[51]。異甜菊醇衍生物(NC-8,圖5a)具有抵抗乙型肝炎病毒(hepatitis B virus,HBV)的活性,似乎是通過干擾復(fù)制和HBV的基因表達(dá)以及抑制宿主TLR2/NF-κB信號通路來介導(dǎo)的[52]。從甜菊苷和Reb A出發(fā),水解制備得到12種異甜菊醇的甲基甲氧醚衍生物。通過四甲基偶氮唑藍(lán)實(shí)驗(yàn)發(fā)現(xiàn)其中兩種物質(zhì)(圖5b、5c)對人肺癌細(xì)胞H1299具有較強(qiáng)的抑制活性,IC50值分別為14、21μmol/L。同時(shí)這兩種物質(zhì)對人正常肺細(xì)胞NL-20的毒性較小,同時(shí)能誘導(dǎo)人肺癌細(xì)胞H1299更快凋亡[53]。
圖5 3 種異甜菊醇衍生物的分子結(jié)構(gòu)[53]Fig.5 Chemical structures of three isosteviol derivatives[53]
本文綜述了甜菊糖苷類化合物除作為甜味劑以外的功能性質(zhì)的研究進(jìn)展,包括藥理活性、增溶劑、作為前體物質(zhì)等。但仍然有些問題制約著甜菊糖苷的發(fā)展和應(yīng)用,如甜菊糖苷在人體內(nèi)代謝過程及機(jī)理的研究還處于數(shù)據(jù)積累階段,而這一問題實(shí)際上關(guān)系到甜菊糖苷類物質(zhì)的安全性;各種研究所用的甜菊糖苷純度各異,導(dǎo)致所得到的結(jié)論有一定差異;由于甜菊苷類物質(zhì)經(jīng)由腸道細(xì)菌代謝之后,主要產(chǎn)生甜菊醇及甜菊醇葡萄糖醛酸,而關(guān)于這方面的研究還比較缺乏。我國是世界上最大的甜菊糖苷生產(chǎn)國,但4/5的甜菊糖苷用于出口,國內(nèi)消費(fèi)者對甜菊糖苷知之甚少,如何擴(kuò)大甜菊糖苷內(nèi)需、提高國內(nèi)消費(fèi)者的認(rèn)知度,也是國內(nèi)學(xué)者需要考慮的問題之一。
參考文獻(xiàn):
[1] GONZ?LEZ C, TAPIA M, P REZ E, et al. Main properties of steviol glycosides and their potential in the food industry∶ a review[J]. Fruits, 2014, 69(2)∶ 127-141.
[2] W?LWER-RIECK U. The leaves of Stevia rebaudiana (bertoni), their constituents and the analyses thereof∶ a review[J]. Journal of Agricultural and Food Chemistry, 2012, 60(4)∶ 886-895.
[3] GUPTA E, PURWAR S, SUNDARAM S, et al. Nutritional and therapeutic values of Stevia rebaudiana∶ a review[J]. Journal of Medicinal Plants Research, 2013, 7(46)∶ 3343-3353.
[4] BRAMBILLA E, CAGETTI M G, IONESCU A, et al. An in vitro and in vivo comparison of the effect of Stevia rebaudiana extracts on different caries-related variables∶ a randomized controlled trial pilot study[J]. Caries Research, 2013, 48(1)∶ 19-23.
[5] URBAN J D, CARAKOSTAS M C, BRUSICK D J. Steviol glycoside safety∶ is the genotoxicity database sufficient?[J]. Food and Chemical Toxicology, 2013, 51∶ 386-390.
[6] XU Zhongwei, LI Yuqiang, WANG Yonghua, et al. Production of β-fructofuranosidase by Arthrobacter sp. and its application in the modification of stevioside and rebaudioside A[J]. Food Technology and Biotechnology, 2009, 47(2)∶ 137-143.
[7] NIKIFOROV A I, RIHNER M O, EAPEN A K, et al. Metabolism and toxicity studies supporting the safety of rebaudioside D[J]. International Journal of Toxicology, 2013, 32(4)∶ 261-273.
[8] PURKAYASTHA S, PUGH G, Jr, LYNCH B, et al. In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions∶comparison with rebaudioside A[J]. Regulatory Toxicology and Pharmacology, 2014, 68(2)∶ 259-268.
[9] MOONS N, de BORGGRAEVE W, DEHAEN W. Stevioside and steviol as starting materials in organic synthesis[J]. Current Organic Chemistry, 2012, 16(17)∶ 1986-1995.
[10] LU Tong, XIA Yongmei. Transglycosylation specificity of glycosyl donors in transglycosylation of stevioside catalysed by cyclodextrin glucanotransferase[J]. Food Chemistry, 2014, 159∶ 151-156.
[11] MUSA A, MIAO Ming, ZHANG Tao, et al. Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction[J]. Food Chemistry, 2014, 146∶ 23-29.
[12] IBRAHIM M A, RODENBURG D L, ALVES K, et al. Minor diterpene glycosides from the leaves of Stevia rebaudiana[J]. Journal of Natural Products, 2014, 77(5)∶ 1231-1235.
[13] TIRAPELLI C R, AMBROSIO S R, de OLIVEIRA A M, et al. Hypotensive action of naturally occurring diterpenes∶ a therapeutic promise for the treatment of hypertension[J]. Fitoterapia, 2010, 81(7)∶690-702.
[14] CHAN P, TOMLINSON B, CHEN Y J, et al. A double-blind placebocontrolled study of the effectiveness and tolerability of oral stevioside in human hypertension[J]. British Journal of Clinical Pharmacology, 2000, 50(3)∶ 215-220.
[15] HSIEH M H, CHAN P, SUE Y M, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension∶ a two-year, randomized, placebo-controlled study[J]. Clinical Therapeutics, 2003, 25(11)∶ 2797-2808.
[16] BARRIOCANAL L A, PALACIOS M, BENITEZ G, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics[J]. Regulatory Toxicology and Pharmacology, 2008, 51(1)∶ 37-41.
[17] MAKI K C, CURRY L L, CARAKOSTAS M C, et al. The hemodynamic effects of rebaudioside A in healthy adults with normal and low-normal blood pressure[J]. Food and Chemical Toxicology, 2008, 46(7)∶ 40-46.
[18] JEPPESEN P B, GREGERSEN S, POULSEN C R, et al. Stevioside acts directly on pancreatic β cells to secrete insulin∶ actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitivie K+-channel activity[J]. Metabolism-Clinical and Experimental, 2000, 49(2)∶ 208-214.
[19] CHATSUDTHIPONG V, MUANPRASAT C. Stevioside and related compounds∶ therapeutic benefits beyond sweetness[J]. Pharmacology & Therapeutics, 2009, 121(1)∶ 41-54.
[20] 曹芳, 馮文靜, 陳明, 等. 甜菊糖苷降血糖作用研究[J]. 中國藥物與臨床, 2009, 9(2)∶ 127.
[21] T O S K U L K A O C, S U T H E E R A W A T T A N A N O N M, PIYACHATURAWAT P. Inhibitory effect of steviol, a metabolite of stevioside, on glucose-absorption in everted hamster intestine in vitro[J]. Toxicology Letters, 1995, 80(1/3)∶ 153-159.
[22] NORDENTOFT I, JEPPESEN P B, HONG J, et al. Isosteviol increases insulin sensitivity and changes gene expression of key insulin regulatory genes and transcription factors in islets of the diabetic KKAy mouse[J]. Diabetes Obesity & Metabolism, 2008, 10(10)∶939-949.
[23] LAILERD N, SAENGSIRISUWAN V, SLONIGER J A, et al. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle[J]. Metabolism-Clinical and Experimental, 2004, 53(1)∶ 101-107.
[24] YANG P S, LEE J J, TSAO C W, et al. Stimulatory effect of stevioside on peripheral mu opioid receptors in animals[J]. Neuroscience Letters, 2009, 454(1)∶ 72-75.
[25] BOONKAEWWAN C, BURODOM A. Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells[J]. Journal of the Science of Food and Agriculture, 2013, 93(15)∶ 3820-3825.
[26] YINGKUN N, ZHENYU W, JING L, et al. Stevioside protects LPS-induced acute lung injury in mice[J]. Inflammation, 2013, 36(1)∶ 242-250.
[27] WANG Tiancheng, GUO Mengyao, SONG Xiaojing, et al. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands[J]. Inflammation, 2014, 37(5)∶ 1837-1846.
[28] TAKAHASHI K, SUN Y, YANAGIUCHI I, et al. Stevioside enhances apoptosis induced by serum deprivation in PC12 cells[J]. Toxicology Mechanisms and Methods, 2012, 22(4)∶ 243-249.
[29] YASUKAWA K, KITANAKA S, SEO S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin[J]. Biological & Pharmaceutical Bulletin, 2002, 25(11)∶ 1488-1490.
[30] MIZUSHINA Y, AKIHISA T, UKIYA M, et al. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors[J]. Life Sciences, 2005, 77(17)∶ 2127-2140.
[31] AKIHISA T, HAMASAKI Y, TOKUDA H, et al. Microbial transformation of isosteviol and inhibitory effects on epstein∶ barr virus activation of the transformation products[J]. Journal of Natural Products, 2004, 67(3)∶ 407-410.
[32] TOMITA T, SATO N, ARAI T, et al. Bactericidal activity of a fermented hot-water extract from Stevia rebaudiana Bertoni towards enterohemorrhagic Escherichia coli O157∶H7 and other foodborne pathogenic bacteria[J]. Microbiology and Immunology, 1997, 41(12)∶1005-1009.
[33] ALFAJARO M M, RHO M C, KIM H J, et al. Anti-rotavirus effects by combination therapy of stevioside and Sophora fl avescens extract[J]. Research in Veterinary Science, 2014, 96(3)∶ 567-575.
[34] WANG L S, SHI Z, SHI B M, et al. Effects of dietary stevioside/ rebaudioside A on the growth performance and diarrhea incidence of weaned piglets[J]. Animal Feed Science and Technology, 2014, 187∶104-109.
[35] SHARMA D, PURI M, TIWARY A K, et al. Antiamnesic effect of stevioside in scopolamine-treated rats[J]. Indian Journal of Pharmacology, 2010, 42(3)∶ 164-167.
[36] GOTO A, CLEMENTE E. Rebaudioside A influence on the flavor and solubility of stevioside[J]. Food Science and Technology, 1998, 18(1)∶3-6.
[37] JEANSONNE D P, KOH G Y, ZHANG F, et al. Paclitaxel-induced apoptosis is blocked by camptothecin in human breast and pancreatic cancer cells[J]. Oncology Reports, 2011, 25(5)∶ 1473-1480.
[38] ZHANG F, KOH G Y, JEANSONNE D P, et al. A novel solubilityenhanced curcumin formulation showing stability and maintenance of anticancer activity[J]. Journal of Pharmaceutical Sciences, 2011, 100(7)∶ 2778-2789.
[39] ZHANG F, KOH G Y, HOLLINGSWORTH J, et al. Reformulation of etoposide with solubility-enhancing rubusoside[J]. International Journal of Pharmaceutics, 2012, 434(1/2)∶ 453-459.
[40] LIU Dongwu, CHEN Zhiwei. The effect of curcumin on breast cancer cells[J]. Journal of Breast Cancer, 2013, 16(2)∶ 133-137.
[41] NGUYEN T T H, JUNG S J, KANG H K, et al. Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide[J]. Enzyme and Microbial Technology, 2014, 64/65∶ 38-43.
[42] WAN Zhili, WANG Jinmei, WANG Liying, et al. Enhanced physical and oxidative stabilities of soy protein-based emulsions by incorporation of a water-soluble stevioside∶ resveratrol complex[J]. Journal of Agricultural and Food Chemistry, 2013, 61(18)∶ 4433-4440.
[43] WAN Zhili, WANG Liying, WANG Jinmei, et al. Synergistic interfacial properties of soy protein∶ stevioside mixtures∶ relationship to emulsion stability[J]. Food Hydrocolloids, 2014, 39∶ 127-135.
[44] PURI M, SHARMA D. Antibacterial activity of stevioside towards food-borne pathogenic bacteria[J]. Engineering in Life Sciences, 2011, 11(3)∶ 326-329.
[45] JAYARAMAN S, MANOHARAN M S, ILLANCHEZIAN S. Invitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts[J]. Tropical Journal of Pharmaceutical Research, 2008, 7(4)∶ 1143-1149.
[46] ALONSO PAZ E, CERDEIRAS M, FERNANDEZ J, et al. Screening of uruguayan medicinal plants for antimicrobial activity[J]. Journal of Ethnopharmacology, 1995, 45(1)∶ 67-70.
[47] VLIETINCK A J, van HOOF L, TOTT J, et al. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties[J]. Journal of Ethnopharmacology, 1995, 46(1)∶ 31-47.
[48] LIN J, OPOKU A R, GEHEEB-KELLER M, et al. Preliminary screening of some traditional zulu medicinal plants for antiinflammatory and anti-microbial activities[J]. Journal of Ethnopharmacology, 1999, 68(1/2/3)∶ 267-274.
[49] TADHANI M B, SUBHASH R. In vitro antimicrobial activity of Stevia rebaudiana Bertoni leaves[J]. Tropical Journal of Pharmaceutical Research, 2007, 5(1)∶ 557-560.
[50] HRACEK V M, GLIEMMO M F, CAMPOS C A. Effect of steviosides and system composition on stability and antimicrobial action of sorbates in acidified model aqueous systems[J]. Food Research International, 2010, 43(8)∶ 2171-2175.
[51] 王婷婷, 陳莉. 異甜菊醇衍生物的生物活性及構(gòu)效關(guān)系研究進(jìn)展[J].藥學(xué)進(jìn)展, 2013(4)∶ 152-160.
[52] HUANG T J, CHOU B H, LIN C W, et al. Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus[J]. Phytochemistry, 2014, 99∶ 107-114.
[53] MALKI A, LAHA R, BERGMEIER S C. Synthesis and cytotoxic activity of MOM-ether analogs of isosteviol[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(4)∶ 1184-1187.
Progress in Functions of Steviol Glycosides
WAN Huida, LI Dan, XIA Yongmei*
(School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
Steviol glycosides are high-potency and low-calorie sweeteners extracted from the leaves ofStevia rebaudiana. They are considered as the most ideal altern ative to sucrose. In toxicological tests, steviol glycosides do not exert serious acute toxic, genotoxic, or carcinogenic effects. In addition to being an excellent sweetener, steviol glycosides possess a lot of functional attributes such as anti-hypertensive, anti-hyperglycaemic, anti-tumour, antibacterial, anti-inflammatory, etc. Owing to their highly adjustable structu res, steviol glycosides have been used as precursors for the synthesis of the derivatives which have many potential applications. Recent progress in understanding the func tions of steviol glycosides is discussed in this review to guide future exploitation of these bioactive compounds.
steviol glycosides; stevioside; functionality
Q946.3
1002-6630(2015)17-0264-06
10.7506/spkx1002-6630-201517049
2014-11-05
國家自然科學(xué)基金面上項(xiàng)目(31171752;31371837);江南大學(xué)青年自主科研課題(1042050205141410)
萬會(huì)達(dá)(1984—),男,副教授,博士,研究方向?yàn)樯锎呋?。E-mail:huidawan@jiangnan.edu.cn
*通信作者:夏詠梅(1965—),女,教授,博士,研究方向?yàn)樯锎呋?xì)化學(xué)品合成。E-mail:ymxia@jiangnan.edu.cn