談文娟綜述,高春玲審校
(1.廈門(mén)大學(xué)附屬成功醫(yī)院放療科,福建廈門(mén) 361003;2.廈門(mén)大學(xué)醫(yī)學(xué)院,福建廈門(mén) 361000)
神經(jīng)纖毛蛋白-1(Neuropilin-1,NRP-1)作為一個(gè)功能性受體在神經(jīng)生物學(xué)中的重要性已經(jīng)明確,但它在腫瘤中的作用直到最近才被發(fā)現(xiàn)。一些研究發(fā)現(xiàn)NRP-1在多種癌細(xì)胞中表達(dá),并且NRP-1過(guò)表達(dá)能增強(qiáng)腫瘤血管生成和腫瘤生長(zhǎng)[1-2]。相比之下,抑制NRP-1的表達(dá)會(huì)阻止內(nèi)皮細(xì)胞生存和遷移,抑制腫瘤生長(zhǎng)[1]。NRP-1影響腫瘤的具體機(jī)制尚未完全闡明,需要我們進(jìn)一步探究。本文將NRP-1最近的相關(guān)研究進(jìn)展作一綜述。
神經(jīng)纖毛蛋白(Neuropilin)包括NRP-1和神經(jīng)纖毛蛋白2(Neuropilin-2,NRP-2),它們是脊椎動(dòng)物特有的一種跨膜糖蛋白。NRP-1由Fujisawa和他的同事在1987年第一次提出來(lái),最初命名為A5[3],它被定義為一個(gè)單克隆抗體的抗原,這個(gè)單克隆抗體是結(jié)合在非洲爪蟾蝌蚪視頂蓋上的神經(jīng)細(xì)胞表面蛋白。NRP-1最初確認(rèn)為3級(jí)信號(hào)素(Semaphorin3,SEMA3)的神經(jīng)元受體,SEMA3是化學(xué)排斥導(dǎo)向分子家族中的一員,能排斥軸突和使生長(zhǎng)錐塌陷,該發(fā)現(xiàn)表明NRP-1在軸突生長(zhǎng)和導(dǎo)向中起著至關(guān)重要的作用。隨后,NRP-1被發(fā)現(xiàn)是血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF)165的共受體,能增強(qiáng)VEGF與VEGFR-2相互作用,提高VEGF的生物學(xué)活性,包括內(nèi)皮細(xì)胞的遷移和血管生成[4]。
NRP-1和NRP-2都是分子量為120~130 kDa的多功能單跨膜糖蛋白,它們具有相同的結(jié)構(gòu)域,都包括一個(gè)大型的氨基末端胞外結(jié)構(gòu)域,一個(gè)短的跨膜結(jié)構(gòu)域和一個(gè)小的胞質(zhì)結(jié)構(gòu)域[5]。其中胞外區(qū)又有三個(gè)不同結(jié)構(gòu)域,分別稱為a1/a2,b1/b2和c。其中a1/a2結(jié)構(gòu)域與b1/b2結(jié)構(gòu)域是NRP-1與配體(SEMA3A)結(jié)合的位點(diǎn),b1/b2區(qū)負(fù)責(zé)與VEGF165結(jié)合并與NRP-1介導(dǎo)的細(xì)胞的黏附作用有關(guān),a1/a2區(qū)和c區(qū)負(fù)責(zé)形成NRP二聚體。近膜的c結(jié)構(gòu)域與NRP-1傳導(dǎo)其配體的信號(hào)密切相關(guān)[6]。NRP-1胞質(zhì)結(jié)構(gòu)域由44個(gè)氨基酸和一個(gè)包含C-末端三個(gè)氨基酸的PDZ結(jié)構(gòu)域結(jié)合基序SEA構(gòu)成,它可以結(jié)合PDZ蛋白結(jié)構(gòu)域,也可結(jié)合C-末端的GAIP相互作用蛋白(GIPC),GIPC也被稱為NRP-1相互作用蛋白(NIP)[7]。神經(jīng)纖毛蛋白也以可溶性的形式存在,自然條件下產(chǎn)生的可溶性NRP-1首次從人前列腺癌PC3細(xì)胞系克隆出來(lái)的[8]??扇苄訬RP(SNRP),其中包含 a1/a2和 b1/b2結(jié)構(gòu)域,缺乏跨膜-C區(qū)和胞質(zhì)結(jié)構(gòu)域,可作NRP的天然抑制劑[9]。
在胚胎發(fā)育過(guò)程中,NRP-1在動(dòng)脈上大量表達(dá)[10],NRP-2 主要表達(dá)在靜脈和淋巴管[11];通過(guò)對(duì)NRP-1過(guò)表達(dá)的小鼠嵌合體和NRP-1缺失的突變小鼠進(jìn)行分析[12],NRP-1轉(zhuǎn)基因的小鼠有大量的毛細(xì)血管[13],然而NRP-1敲除的小鼠顯示嚴(yán)重的血管和軸突發(fā)育缺陷[10],表明NRP-1對(duì)正常胚胎的神經(jīng)和心血管系統(tǒng)發(fā)育是必不可少的[12]。研究發(fā)現(xiàn)NRP-1以低表達(dá)的形式廣泛分布在人體多種正常組織中[14],而在多種腫瘤中呈高表達(dá)如膠質(zhì)瘤[15],胰腺癌[16],胃癌,結(jié)腸癌[17],乳腺癌[18],非小細(xì)胞肺癌[19]等。
VEGF又稱血管通透性因子(VPF),被認(rèn)為是最主要的促血管生長(zhǎng)因子。它與腫瘤血管形成增多,腫瘤生長(zhǎng),人類多種腫瘤的不良預(yù)后有緊密聯(lián)系。血管內(nèi)皮細(xì)胞生長(zhǎng)因子信號(hào)轉(zhuǎn)導(dǎo)涉及三個(gè)酪氨酸激酶受體VEGFR-1(Flt-1),VEGFR-2(KDR/Flk-1),和VEGFR-3(Flt-4)和兩個(gè)非酪氨酸激酶受體NRP-1 和 NRP-2[20]。NRP-1 作為 VEGF165(VEGF的一種主要同構(gòu)體)的共受體表達(dá)在內(nèi)皮細(xì)胞上,調(diào)節(jié)VEGF與VEGFR-2結(jié)合,表明NRP-1在調(diào)節(jié)VEGF誘導(dǎo)的血管生成中發(fā)揮重要作用[21]。NRP-1除了與VEGF相互作用,還與其他促血管生成的肝素結(jié)合細(xì)胞因子相互作用,包括成纖維細(xì)胞生長(zhǎng)因子家族和肝細(xì)胞生長(zhǎng)因子(HGF)[22]。NRP-1還能結(jié)合并促進(jìn)血小板源性生長(zhǎng)因子-B(PDGF-B)[23]以及轉(zhuǎn)化生長(zhǎng)因子β1信號(hào)通路[24],從而有助于激活和招募血管周細(xì)胞[25]。遺傳學(xué)研究提供強(qiáng)有力的證據(jù)表明NRP-1為血管形態(tài)形成所必需。NRP-1的缺失會(huì)導(dǎo)致血管重建和分支缺陷[10]。在一些腫瘤模型如小鼠肝細(xì)胞癌[14]、人結(jié)腸癌[26]及非小細(xì)胞肺癌[27]中,NRP-1的表達(dá)已證明能增加致瘤性,這可能是通過(guò)促進(jìn)VEGF介導(dǎo)的血管生成實(shí)現(xiàn)的。Wang等[28]發(fā)現(xiàn) NRP-1不僅能增強(qiáng) VEGF165與VEGFR2的結(jié)合,放大 VEGF效應(yīng),也可不依賴VEGF促進(jìn)內(nèi)皮細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)。綜上所述,NRP-1可通過(guò)依賴于VEGF的方式或獨(dú)立于VEGF的方式參與腫瘤新生血管的形成。
NRP-1不僅在內(nèi)皮細(xì)胞上表達(dá),NRP-1也在腫瘤細(xì)胞中表達(dá),并發(fā)現(xiàn)NRP-1在231乳腺癌和PC3前列腺癌等腫瘤組織中的表達(dá)水平要明顯高于正常組織[21]。Yaqoob 等[29]提出 NRP-1 可協(xié)調(diào)腫瘤微環(huán)境中肌成纖維細(xì)胞和可溶性纖維連接蛋白之間的相互作用,從而促進(jìn)a5β1整合素依賴的纖維連接蛋白聚集,基質(zhì)纖維化以及腫瘤生長(zhǎng),抗NRP-1抗體可以抑制腫瘤生長(zhǎng)和纖維連接蛋白聚集。Li等[30]用NRP-1SiRNA轉(zhuǎn)染U373膠質(zhì)瘤細(xì)胞系,發(fā)現(xiàn)能夠顯著促進(jìn)膠質(zhì)瘤細(xì)胞增殖,并誘導(dǎo)細(xì)胞周期阻滯在G1期。
Berge等[31]發(fā)現(xiàn)在小鼠原發(fā)性肝癌模型中,拮抗NRP-1的小干擾RNA(siRNA)可以抑制腫瘤生長(zhǎng)。然而,Pan等[1]在SK-MES-1非小細(xì)胞肺癌的異種移植實(shí)驗(yàn)結(jié)果顯示,抗VEGF抗體顯示出52%腫瘤生長(zhǎng)抑制作用,單劑量抗NRP-1B抗體引起37%腫瘤生長(zhǎng)抑制作用,抗NRP-1A抗體對(duì)腫瘤生長(zhǎng)抑制作用無(wú)顯著影響。當(dāng)與抗VEGF抗體結(jié)合時(shí),抗NRP-1A抗體腫瘤生長(zhǎng)抑制作用提高至70%,抗NRP-1B抗體腫瘤生長(zhǎng)抑制作用升高到77%(其中抗NRP-1A抑制SEMA3A結(jié)合NRP-1,抗NRP-1B抑制VEGF結(jié)合NRP-1)。結(jié)果顯示抗NRP-1抗體對(duì)腫瘤生長(zhǎng)的抑制作用不大,但與抗VEGF抗體聯(lián)合使用時(shí),可以顯著增加抗VEGF抗體抑制腫瘤生長(zhǎng)的作用,這表明NRP-1與抗VEGF抗體聯(lián)合應(yīng)用可作為一種抗腫瘤靶向治療策略。
腫瘤的浸潤(rùn),轉(zhuǎn)移是惡性腫瘤重要的生物學(xué)特征,與疾病的預(yù)后密切相關(guān)。臨床前研究顯示NRP-1的過(guò)表達(dá)與惡性腫瘤的侵襲潛能、腫瘤分期、臨床分級(jí)呈正相關(guān)。Timoshenko等[32]發(fā)現(xiàn)通過(guò)siRNA阻斷了NRP-1表達(dá)后,VEGF-C對(duì)乳腺癌 MDA-MB-231和Hs578T細(xì)胞株的遷移有部分抑制作用。Li等[30]發(fā)現(xiàn)NRP-1 siRNA通過(guò)下調(diào)Bcl-2家族的表達(dá)和阻滯絲裂原活化蛋白激酶(MAPK)信號(hào)途徑,能顯著抑制膠質(zhì)瘤細(xì)胞的增殖和凋亡。Banerjee等[33]提出 VEGF165可通過(guò)激活 NRP-1-VEGFR1-PI3K軸誘導(dǎo)血管平滑肌細(xì)胞的遷移,并證實(shí)MCF-7和MDAMB-231乳腺癌細(xì)胞也可通過(guò)此機(jī)制誘導(dǎo)血管平滑肌細(xì)胞的遷移,最終刺激腫瘤血管形成,促進(jìn)新生血管成熟。Ling等[34]在斑馬魚(yú)模型中,提出NRP-1特異性調(diào)控內(nèi)皮細(xì)胞的抗凋亡途徑是通過(guò)NRP-1相互作用蛋白(NIP/GIPC)激活PI3K/AKT,隨后使 P53通路和 FoxOs失活,以及 P21激活。Wey等[2]發(fā)現(xiàn)胰腺癌細(xì)胞中過(guò)表達(dá)的NRP-1可通過(guò)ERK和JNK途徑來(lái)加強(qiáng)MAPK信號(hào)通路,并誘導(dǎo)下游抗凋亡基因包括MCL-1的產(chǎn)生,從而提高細(xì)胞存活率。由此可知,NRP-1對(duì)腫瘤的遷移和凋亡是不可或缺的。Zeng等[35]通過(guò)實(shí)驗(yàn)證明靶向抗NRP-1b1b2抗體能夠抑制MCF7乳腺癌細(xì)胞的增殖及其與纖維連接蛋白的粘附。并且抗NRP-1單克隆抗體可以降低a5β1整合素-NRP-1復(fù)合物的形成,抑制FAK/p130cas信號(hào)通路,最終導(dǎo)致肌動(dòng)蛋白應(yīng)力纖維的形成,使細(xì)胞粘附受到抑制。
最近報(bào)道NRP-1在人類正常免疫系統(tǒng)中也發(fā)揮著重要作用,被認(rèn)為是T細(xì)胞活化的一種新的標(biāo)志物。在人類,NRP-1僅表達(dá)在漿細(xì)胞樣樹(shù)突狀細(xì)胞(pDCs)和從次級(jí)淋巴組織中分離出來(lái)的調(diào)節(jié)性T細(xì)胞(Tregs)亞群及外周血、淋巴結(jié)中小CD4+T細(xì)胞群。在淋巴結(jié)中,表達(dá)有NRP-1的T細(xì)胞可延長(zhǎng)其與未成熟NRP-1+pDCs的相互作用,進(jìn)而增強(qiáng)T 細(xì)胞的活化[36]。Tordjman等[37]證實(shí) NRP-1 介導(dǎo)活化的DCs細(xì)胞和靜息T細(xì)胞之間的相互作用,這對(duì)于啟動(dòng)初次免疫應(yīng)答是必不可少的。Gorelik等[38]用抗NRP-1抗體孵育DCs或靜息T細(xì)胞,發(fā)現(xiàn)它可以抑制DC細(xì)胞誘導(dǎo)的靜息T細(xì)胞增殖。Milpied等[39]發(fā)現(xiàn)人類 FoxP3+Tregs 并不表達(dá)NRP-1。然而,在人類次級(jí)淋巴器官中可以檢測(cè)到大量FoxP3-NRP-1+T細(xì)胞,當(dāng)用抗CD3/CD28抗體激活T細(xì)胞后,可誘導(dǎo)NRP-1在T細(xì)胞上的表達(dá)。一些研究發(fā)現(xiàn),腫瘤患者外周血和轉(zhuǎn)移淋巴結(jié)中T細(xì)胞表面NRP-1表達(dá)水平上調(diào),主要發(fā)揮免疫抑制作用,因此NRP-1也被看作是某些腫瘤的預(yù)后標(biāo)志物。Chaudhary等[36]提出,在小鼠,NRP-1 選擇性表達(dá)在胸腺來(lái)源的調(diào)節(jié)性T細(xì)胞(Tregs),可明顯提高它們的免疫抑制作用,NRP-1對(duì)CD4+T細(xì)胞也具有免疫抑制功能。NRP-1也可通過(guò)抑制MEK/ERK信號(hào)轉(zhuǎn)導(dǎo),調(diào)節(jié)針對(duì)腫瘤細(xì)胞的T細(xì)胞活化作用以及細(xì)胞毒活性[40]。NRP-1在免疫細(xì)胞和腫瘤細(xì)胞都呈高表達(dá)水平,這可能跟腫瘤免疫耐受的形成有關(guān),免疫耐受形成的機(jī)制還待進(jìn)一步研究。Campos-Mora等[41]發(fā)現(xiàn) NRP-1(+)調(diào)節(jié)性 T 細(xì)胞可以促進(jìn)皮膚移植物的存活,并能調(diào)節(jié)效應(yīng)性CD4(+)細(xì)胞的表型特征,因此NRP-1可作為免疫治療的新靶點(diǎn)。
NRP-1作為VEGF的共受體,在絕大多數(shù)腫瘤細(xì)胞和內(nèi)皮細(xì)胞中高表達(dá),參與腫瘤的增殖、生存、侵襲,并能提高多種癌細(xì)胞的化療敏感性。Xin等[42]將一個(gè)抗NRP-1單克隆抗體 MNRP1685A使用在進(jìn)展性實(shí)體腫瘤患者的I期臨床試驗(yàn)中,發(fā)現(xiàn)它可以阻滯VEGF通路進(jìn)而明顯降低荷瘤率。并證明當(dāng)抗NRP-1mAb與抗VEGFmAb如貝伐單抗聯(lián)合使用時(shí)療效更加顯著。Liang等[43]小鼠移植瘤模型實(shí)驗(yàn)結(jié)果提示抗NRP-1聯(lián)合抗VEGF治療能更有效地阻斷腫瘤血管生成。Wey等[2]發(fā)現(xiàn)當(dāng)胰腺癌細(xì)胞株P(guān)G暴露于吉西他濱和5-FU時(shí),過(guò)表達(dá)的NRP-1可增強(qiáng)凋亡抵抗并提高細(xì)胞的存活率。相比之下,用siRNA降低人胰腺癌Panc-1細(xì)胞NRP-1表達(dá)水平可顯著提高其對(duì)吉西他濱的化療敏感性。Yue等[44]通過(guò)研究發(fā)現(xiàn),抑制NRP-1的表達(dá)可抑制骨肉瘤SaOS-2細(xì)胞增殖并提高其對(duì)多柔比星化療敏感性。相反,過(guò)表達(dá)的NRP-1可促進(jìn)MG-63細(xì)胞增殖并明顯增強(qiáng)其對(duì)多柔比星的藥物抵抗。上述研究表明NRP-1可能直接參與耐藥的發(fā)生。
近年來(lái),腫瘤血管靶向藥物已經(jīng)成為一種有效的抗腫瘤策略。多種抗腫瘤血管生成的藥物如VEGF特異性阻斷劑貝伐單抗和酪氨酸激酶受體抑制劑索拉非尼,已經(jīng)批準(zhǔn)進(jìn)入臨床使用。這些藥物與化療聯(lián)用時(shí)能顯著抑制腫瘤生長(zhǎng),并延長(zhǎng)患者生存期。目前許多臨床前和臨床研究發(fā)現(xiàn),抗腫瘤血管生成療法取得一定的臨床療效。VanCutseme等[45]研究顯示抗血管靶向藥物僅有短暫和輕微的療效,長(zhǎng)期使用會(huì)出現(xiàn)耐藥性,甚至在使用數(shù)月后,患者病情復(fù)發(fā)。因此,探求一種新的分子靶點(diǎn)和途徑,以提高抗血管生成療法的治療效果是很有必要的,抗 NRP-1是否可以代替抗 VEGF治療或者NRP-1與抗VEGF治療聯(lián)合使用能否顯著提高腫瘤治療效果及其機(jī)制還需要進(jìn)一步研究。
放射治療也是惡性腫瘤最常見(jiàn)的治療方法之一,在臨床上約有半數(shù)以上的腫瘤患者在治療過(guò)程中接受過(guò)放射治療。盡管近年來(lái)精確放療技術(shù)取得很大的進(jìn)步,但精確放療帶來(lái)的療效提高還不能令人滿意。這可能是腫瘤細(xì)胞自身出現(xiàn)乏氧,對(duì)射線敏感性降低,從而產(chǎn)生放療抵抗。Teicher等[46]最早發(fā)現(xiàn)抑制血管的生成可以加強(qiáng)放療的治療效果,還可減少達(dá)到相同抗腫瘤效應(yīng)所需的放射治療的劑量。臨床前研究表明抗血管生成治療可暫時(shí)使腫瘤血管正?;?,從而有效運(yùn)輸氧氣改善腫瘤乏氧,對(duì)腫瘤放射治療有增敏作用。Fang等[47]研究發(fā)現(xiàn),重組人血管內(nèi)皮抑素(恩度)能使腫瘤血管正?;?,表現(xiàn)為血管減少,基底膜和周細(xì)胞覆蓋率增加。并提出CNE-2和5-8F鼻咽癌裸鼠移植瘤血管正?;翱谄诜謩e在恩度治療后的5~8天和3~5天,較未處理組或單用恩度組或單用照射組小鼠相比,在恩度治療后的第5天或第3天給予放射治療,可顯著減小CNE2或5-8F腫瘤體積,表明恩度能提高放療敏感性。
目前已明確的是抗NRP-1治療可以明顯抑制腫瘤新生血管形成,是一種很有潛力的抗血管靶向藥物。那么,抗NRP-1治療與放療聯(lián)合應(yīng)用是否會(huì)出現(xiàn)血管正常化時(shí)間窗,是否具有腫瘤放療增敏作用,能否提高腫瘤治療效果尚不清楚,以及如何與放射治療最佳聯(lián)合應(yīng)用,都有待今后進(jìn)一步研究。
[1] Pan Q,Chanthery Y,Liang WC,et al.Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth[J].Cancer Cell,2007,11(1):53-67.
[2] Wey JS,Gray MJ,F(xiàn)an F,et al.Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells[J].Br J Cancer,2005,93(2):233-241.
[3] Takagi S,Tsuji T,Amagai T,et al.Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies[J].Dev Biol,1987,122(1):90-100.
[4] Fuh G,Garcia KC,de Vos AM.The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1[J].J Biol Chem,2000,275(35):26690-26695.
[5] Pellet-Many C,F(xiàn)rankel P,Jia H,et al.Neuropilins:structure,function and role in disease[J].Biochem J,2008,411(2):211-226.
[6] Roskoski R.Vascular endothelial growth factor(VEGF)signaling in tumor progression[J].Crit Rev Oncol Hematol,2007,62(3):179-213.
[7] Cai H,Reed RR.Cloning and characterization of neuropilin-1-interacting protein:a PSD-95/Dlg/ZO-1 domain containing protein that interacts with the cytoplasmic domain of neuropilin-1[J].J Neurosci,2008,19(15):6519-6527.
[8] Gagnon ML,Bielenberg DR,Gechtman Z,et al.Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor:in vivo expression and antitumor activity[J].Proc Natl Acad Sci USA,2000,97(6):2573-2578.
[9] Wild JR,Staton CA,Chapple K,et al.Neuropilins:expression and roles in the epithelium[J].Int J Exp Path,2012,93(2):81-103.
[10] Kawasaki T,Kitsukawa T,Bekku Y,et al.A requirement for neuropilin-1 in embryonic vessel formation[J].Development,1999,126(21):4895-4902.
[11] Yuan L,Moyon D,Pardanaud L,et al.Abnormal lymphatic vessel development in neuropilin 2 mutant mice[J].Development,2002,129(20):4797-4806.
[12] Kolodkin AL,Levengood DV,Rowe EG,et al.Neuropilin is a semaphorin III receptor[J].Cell,1997,90(4):753-762.
[13] Kitsukawa T,Shimono A,Kawakami A,et al.Overexpression of a membrane protein,neuropilin,in chimeric mice causes anomalies in the cardiovascular system,nervous system and limbs[J].Development,1995,121(12):4309-4318.
[14] Berge M,Allanic D,Bonnin P,et al.Neuropilin-1 is upregulated in hepatocellular carcinoma and contributes to tumour growth and vascular remodelling[J].J Hepatol,2011,55(4):866-875.
[15] Evans IM,Yamaji M,Britton G,et al.Neuropilin-1 signaling through p130Cas Tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells[J].Mol Cell Biol,2011,31(6):1174-1185.
[16] Parikh AA,Liu WB,F(xiàn)an F,et al.Expression and regulation of the novel vascular endothelial growth factor receptor neuropilin-1 by epidermal growth factor in human pancreatic carcinoma[J].Cancer,2003,98(4):720-729.
[17] Ochiumi T,Kitadai Y,Tanaka S,et al.Neuropilin-1 is involved in regulation of apoptosis and migration of human colon cancer[J].Int J Oncol,2006,29(1):105-116.
[18] Castro-Rivera E,Ran S,Brekken RA,et al.Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells[J].Cancer Res,2008,68(20):8295-8303.
[19] Hong TM,Chen YL,Wu YY,et al.Targeting neuropilin-1 as an antitumor strategy in lung cancer[J].Clin Cancer Res,2007,13(16):4759-4768.
[20] Zachary IC,F(xiàn)rankel P,Evans IM,et al.The role of neuropilins in cell signalling[J].Biochem Soc Trans,2009,37(Pt 6):1171-1178.
[21] Soker S,Takashima S,Miao HQ,et al.Neuropilin-1 isexpressed by endothelial and tumor cells as an isoform-specific receptor forvascular endothelial growth factor[J].Cell,1998,92(6):735-745.
[22] Sulpice E,Plouet J,Berge M,et al.Neuropilin-1 and neuropilin-2 act as coreceptors,potentiating proangiogenic activity[J].Blood,2008,111(4):2036-2045.
[23] Banerjee S,Sengupta K,Dhar K,et al.Breastcancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1[J].Mol Carcinog,2006,45(11):871-880.
[24] Glinka Y,Prud’homme GJ.Neuropilin-1 is a receptor for transforming growth factor beta-1,activates its latent form,and promotes regulatory T cellactivity[J].J Leukoc Biol,2008,84(1):302-310.
[25] Cao S,Yaqoob U,Das A,et al.Neuropilin-1promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGFbeta signaling in hepatic stellate cells[J].J Clin Invest,2010,120(7):2379-2394.
[26] Parikh AA,F(xiàn)an F,Liu WB,et al.Neuropilin-1 in human colon cancer:expression,regulation,and role in induction of angiogenesis[J].Am J Pathol,2004,164(6):2139-2151.
[27] Kawakami T,Tokunaga T,Hatanaka H,et al.Neuropilin-1 and neuropilin-2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma[J].Cancer,2002,95(10):2196-2201.
[28] Wang L,Zeng H,Wang P,et al.Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration[J].J Biol Chem,2003,278(49):48848-48860.
[29] Yaqoob U,Cao S,Shergill U,et al.Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment[J].Cancer Res,2012,72(16):4047-4059.
[30] Li XY,Tang T,Lu XZ,et al.RNA interference targeting NRP-1 inhibits human glioma cell proliferation and enhances cell apoptosis[J].Mol Med Rep,2011,4(6):1261-1266.
[31] Berge M,Bonnin P,Sulpice E,et al.Small interfering RNAs induce target-independent inhibition of tumor growth and vasculatureremodeling in a mouse model of hepatocellular carcinoma[J].Am J Pathol,2010,177(6):3192-3201.
[32] Timoshenko AV,Rastogi S,Lala PK.Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cell[J].Br J Cancer,2007,97(8):1090-1098.
[33] Banerjee S,Mehta S,Haque I,et al.VEGF-A(165)induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis[J].Biochemistry,2008,47(11):3345-3351.
[34] Ling W,Shamit KD,Tatsuyoshi K,et al.Neuropilin-1 modulates p53/Caspases axis to promote endothelial cell survival[J].PLoS One,2007,2(11):e1161.
[35] Zeng FW,Luo FH,Sha LV,et al.A monoclonal antibody targeting neuropilin-1 inhibits adhesion of MCF7 breast cancer cells to fibronectin by suppressing the FAK/p130cas signaling pathway[J].Anti-Cancer Drugs,2014,25(6):663-672.
[36] Chaudhary B,Khaled YS,Ammori BJ,et al.Neuropilin 1:function and therapeutic potential in cancer[J].Cancer Immunol Immunother,2004,63(2):81-99.
[37] Tordjman R,Lepelletier Y,Lemarchandel V,et al.A neuronal receptor,neuropilin-1,is essential for the initiation of the primaryimmune response[J].Nat Immunol,2002,3(5):477-482.
[38] Gorelik G,Richardson B.Aberrant T cell ERK pathway signaling and chromatinstructure in lupus[J].Autoimmun Rev,2009,8(3):196-198.
[39] Milpied P,Renand A,Bruneau J,et al.Neuropilin-1 is not a marker of human Foxp3+Treg[J].Eur J Immunol,2009,39(6):1466-1471.
[40] Sarris M,Andersen KG,Randow F,et al.Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigenrecognition[J].Immunity,2008,28(3):402-413.
[41] Campos-Mora M,Morales RA,Perez F,et al.Neuropilin-1(+)regulatory T cells promote skin allograft survival and modulate effector CD4(+)T cells phenotypic signature[J].Immunol Cell Biol,2015,93(2):113-119.
[42] Xin Y,Li J,Wu J,et al.Pharmacokinetic and pharmacodynamic analysis of circulating biomarkers of anti-NRP1,a novel antiangiogenesis agent,in two phase I trials in patients with advanced solid tumors[J].Clin Cancer Res,2012,18(21):6040-6048.
[43] Liang WC,Dennis MS,Stawicki S,et al.Function blocking antibodies to neuropilin-1 generated from a designed human synthetic antibody phage library[J].J Mol Biol,2007,366(3):815-829.
[44] Yue B,Ma JF,Yao G,et al.Knockdown of neuropilin-1 suppresses invasion,angiogenesis,and increases the chemosensitivity to doxorubicin in osteosarcoma cells-an in vitro study[J].Eur Rev Med Pharmacol Sci,2014,18(12):1735-1741.
[45] Van Cutseme E,Lambrechts D,Prenen H,et al.Lessons from the adjuvant bevacizumab trial on coloncancer:what next?[J].J Clin Oncol,2011,29(1):1-4.
[46] Teicher BA,Holden SA,Ara G,et al.Influence of all anti-angiogenic treatment on 9L gliosarcoma,oxygenation and response to cytotoxic therapy[J].Int J Cancer,1995,61(5):732-737.
[47] Peng F,Xu Z,Wang J,et al.Recombinant human endostatin normalizes tumor vasculature and enhances radiation response in Xenografted human nasopharyngeal carcinoma models[J].PLoS One,2012,7(4):e34646.