魏翔,劉曉莉
(北京師范大學(xué)體育與運(yùn)動(dòng)學(xué)院,北京 100875)
?
帕金森病大鼠模型運(yùn)動(dòng)行為測(cè)評(píng)方法的研究進(jìn)展
魏翔,劉曉莉*
(北京師范大學(xué)體育與運(yùn)動(dòng)學(xué)院,北京100875)
【摘要】帕金森病(Parkinson’s disease,PD)是以靜止性震顫、肌強(qiáng)直、動(dòng)作遲緩、姿勢(shì)平衡障礙為主要臨床特征的神經(jīng)退行性疾病。動(dòng)物模型實(shí)驗(yàn)是PD研究的重要組成方面,針對(duì)PD動(dòng)物模型運(yùn)動(dòng)行為的評(píng)價(jià)不僅有利于闡述PD的發(fā)病原因及發(fā)病機(jī)制,而且有利于判定新型治療方法的療效。本文以偏側(cè)6-OHDA大鼠模型為研究對(duì)象,著重介紹非藥物誘導(dǎo)行為學(xué)測(cè)試方法對(duì)PD大鼠運(yùn)動(dòng)功能障礙進(jìn)行測(cè)試與評(píng)價(jià)的研究進(jìn)展。
【關(guān)鍵詞】帕金森病;大鼠;運(yùn)動(dòng)功能;行為學(xué)測(cè)試
帕金森病(Parkinson’s disease,PD)是由于黑質(zhì)-紋狀體系統(tǒng)中多巴胺(dopamine,DA)能神經(jīng)元退行性病變而引發(fā)的中樞神經(jīng)系統(tǒng)疾病。目前,PD的發(fā)病原因尚不明確,但普遍認(rèn)為其發(fā)病源于年齡老化,環(huán)境因子,先天易感基因攜帶等多種因素的作用[1]。PD的臨床癥狀以運(yùn)動(dòng)功能障礙為主[1-3],包括靜止性震顫、肌強(qiáng)直、動(dòng)作遲緩及姿勢(shì)平衡障礙。PD的病理學(xué)特征表現(xiàn)為中腦黑質(zhì)DA能神經(jīng)元脫失,黑質(zhì)細(xì)胞質(zhì)內(nèi)出現(xiàn)一種嗜酸性包涵體(Lewy小體)[1]。雖然PD是目前唯一已知死亡細(xì)胞類型、細(xì)胞聚集位置及相關(guān)通路與生理機(jī)能的神經(jīng)退行性疾病,但包括藥物治療、神經(jīng)核團(tuán)損毀術(shù)、腦深部電刺激術(shù)、神經(jīng)組織移植治療、干細(xì)胞移植治療[4]、基因治療、物理治療在內(nèi)的多種治療手段均不能最終治愈疾病[5]。因而,針對(duì)PD動(dòng)物模型的研究在闡釋PD發(fā)病機(jī)制及尋求新型治療方法中具有重要的意義。
1偏側(cè)帕金森病大鼠模型
PD動(dòng)物模型的制備以靈長類與嚙齒類動(dòng)物為主,雖然靈長類模型在模擬生理病理特征及臨床表象方面更接近人類PD,但考慮到其制備成本,目前科研實(shí)驗(yàn)中仍以嚙齒類模型(化學(xué)損毀,機(jī)械物理損毀,轉(zhuǎn)基因造模)的應(yīng)用為主[6-8]。
1970年Ungerstedt[9]首次報(bào)道了利用腦立體定向注射6-羥基多巴胺(6-hydroxydopamine,6-OHDA)損毀大鼠黑質(zhì)DA能神經(jīng)傳導(dǎo)束制備大鼠偏側(cè)帕金森病模型的方法。鑒于6-OHDA不能有效地透過血腦屏障,故需要直接注射于黑質(zhì)-紋狀體束(nigrostriatal tract),注射位點(diǎn)可選取[6]:(1)黑質(zhì)致密部(substantia nigra pars compacta,SNpc);(2)內(nèi)側(cè)前腦束(median forebrain bundle,MFB);(3)紋狀體(striatum,STR)。與PD患者所表現(xiàn)的雙側(cè)腦半球DA系統(tǒng)損傷不同,6-OHDA嚙齒類模型多選擇一側(cè)損毀,以規(guī)避因雙側(cè)損毀而帶來的諸多副作用及高死亡率[8]。通過注射位點(diǎn)及劑量的變化,6-OHDA模型可有效地模擬早期PD(DA能神經(jīng)元損耗50%~80%)與晚期PD(DA能神經(jīng)元損耗大于90%)[1,6,10]。6-OHDA嚙齒類模型亦包含下述諸多優(yōu)點(diǎn)[1,7,8]:(1)實(shí)驗(yàn)個(gè)體可進(jìn)行解剖、生化分析,模擬多種PD生化特征;(2)模型癥狀穩(wěn)定、持久,可量化損傷的位點(diǎn)及損傷程度;(3)偏側(cè)PD模型本身的損傷側(cè)與健側(cè)可進(jìn)行比較分析;(4)可進(jìn)行量化的藥物誘導(dǎo)旋轉(zhuǎn)行為檢測(cè);(5)造模技術(shù)簡單易行且成本低廉。綜上所述,6-OHDA嚙齒類模型仍是DA能神經(jīng)元細(xì)胞凋亡機(jī)制及多種治療方法研究的首選。
2PD大鼠模型藥物誘導(dǎo)的行為學(xué)測(cè)試
眾所周知,PD是以運(yùn)動(dòng)功能障礙為主要臨床特征的神經(jīng)系統(tǒng)疾病,而行為學(xué)作為神經(jīng)系統(tǒng)功能輸出的終路,其相關(guān)研究不僅可直觀、定性、定量地反映PD模型的外顯癥狀表象,還可及時(shí)同步地推測(cè)PD模型的生理生化改變,并準(zhǔn)確、有效地評(píng)估各類治療方法在改善PD模型行為功能方面的成效。
藥物誘導(dǎo)的旋轉(zhuǎn)行為是偏側(cè)6-OHDA損傷大鼠模型(以下簡稱PD大鼠)的重要特征之一,同時(shí)也是最早用于6-OHDA模型的行為學(xué)測(cè)試方法[9,11]。以阿樸嗎啡(apomorphine)為代表的DA受體激動(dòng)劑(可引起動(dòng)物向健側(cè)旋轉(zhuǎn))和以安非他命(amphetamine)為代表的DA釋放制劑(使動(dòng)物向損毀側(cè)旋轉(zhuǎn))的使用最為普遍[1,8]。實(shí)踐中,常以30 min內(nèi)阿樸嗎啡誘導(dǎo)的一側(cè)旋轉(zhuǎn)圈數(shù)(向健側(cè)旋轉(zhuǎn)圈數(shù)減去向損毀側(cè)旋轉(zhuǎn)圈數(shù)≥210 r)作為衡量PD大鼠模型成模的標(biāo)準(zhǔn)(此時(shí)黑質(zhì)DA損耗量≥80%)[12],且常以阿樸嗎啡誘導(dǎo)的一側(cè)旋轉(zhuǎn)圈數(shù)的減少作為評(píng)價(jià)左旋多巴(L-dopa)類藥物治療效果的標(biāo)準(zhǔn)之一[13]。盡管藥物誘導(dǎo)的旋轉(zhuǎn)行為測(cè)試已廣泛地應(yīng)用于評(píng)估黑質(zhì)-紋狀體的損傷程度及諸多治療策略的效果,但隨著PD基礎(chǔ)研究的不斷深入,藥物誘導(dǎo)的行為學(xué)測(cè)試亦顯現(xiàn)出其自身不可避免的種種缺陷與應(yīng)用范圍的局限性,例如:(1)藥物誘導(dǎo)的行為學(xué)測(cè)試無法精確反映PD模型的運(yùn)動(dòng)功能障礙[14,47];(2)STR內(nèi)DA損耗低于80%時(shí),阿樸嗎啡無法有效地誘導(dǎo)旋轉(zhuǎn)行為[12];而PD臨床運(yùn)動(dòng)障礙多在STR內(nèi)DA能神經(jīng)元損耗60%~80%出現(xiàn)時(shí)[15];(3)反復(fù)使用DA能激動(dòng)劑(如阿樸嗎啡)所引發(fā)的副作用可能混淆行為學(xué)測(cè)試的結(jié)果[16,17];(4)藥物誘導(dǎo)的行為學(xué)測(cè)試無法有效地評(píng)估某些治療方法對(duì)PD的改善效果,例如神經(jīng)移植[18]。
3PD大鼠模型非藥物誘導(dǎo)的行為學(xué)測(cè)試
近些年來,為了彌補(bǔ)藥物誘導(dǎo)的行為學(xué)測(cè)試方法存在的種種缺陷,滿足日益增長的基礎(chǔ)研究需求,諸多非藥物誘導(dǎo)行為學(xué)測(cè)試方法相繼被應(yīng)用于PD模型的感覺運(yùn)動(dòng)功能、精細(xì)運(yùn)動(dòng)功能、自主運(yùn)動(dòng)功能及運(yùn)動(dòng)協(xié)調(diào)性的測(cè)試與評(píng)價(jià)。
3.1PD大鼠模型自發(fā)性感覺運(yùn)動(dòng)功能的測(cè)試
3.1.1圓筒測(cè)試
Schallert等[20]率先使用圓筒測(cè)試(cylinder test)觀察PD大鼠在進(jìn)行豎直-橫向運(yùn)動(dòng)時(shí)前肢運(yùn)動(dòng)的不對(duì)稱性。實(shí)驗(yàn)在安靜、昏暗的室內(nèi)進(jìn)行。將兩端開口的透明樹脂玻璃圓筒(內(nèi)徑20 cm,高30 cm)置于水平桌面上,在圓筒一端放置攝像機(jī)以記錄大鼠前肢觸碰筒壁的活動(dòng),另一端呈一定角度放置鏡面,以確保動(dòng)物在背對(duì)攝像機(jī)時(shí)依然可以記錄到其前肢的活動(dòng)情況。測(cè)試持續(xù) 3~10 min,然后由第三方計(jì)數(shù)大鼠站立時(shí)每側(cè)前肢分別觸碰筒壁的次數(shù)(包括在筒壁上的移動(dòng)步伐)和兩側(cè)前肢同時(shí)觸碰筒壁的次數(shù)(同時(shí)或交替)。將數(shù)據(jù)代入公式:[同側(cè)(未受損側(cè))肢體碰壁次數(shù)+0.5兩側(cè)同時(shí)碰壁次數(shù)(同時(shí)或交替)]/前肢碰壁總次數(shù)(同側(cè) + 對(duì)側(cè) + 兩側(cè)同時(shí))計(jì)算。計(jì)算結(jié)果為0.5時(shí)表示動(dòng)物在觸碰筒壁時(shí)均等地使用了兩側(cè)前肢,得分高于0.5時(shí)表示動(dòng)物更依賴于未受損側(cè)前肢,得分低于0.5則表示動(dòng)物更依賴于受損側(cè)前肢。諸多研究表明,圓筒測(cè)試可間接地反映損毀側(cè)STR內(nèi)DA含量輕度[1],中度[19],重度[20]的損傷情況。此外,O’Dell[21],Tajiri等[22]通過圓筒測(cè)試測(cè)評(píng)了PD大鼠在接受運(yùn)動(dòng)干預(yù)后前肢運(yùn)動(dòng)不對(duì)稱性的變化情況,提示運(yùn)動(dòng)可以改善PD大鼠前肢運(yùn)動(dòng)功能的缺陷。
3.1.2網(wǎng)格測(cè)試
網(wǎng)格測(cè)試(grid-walking test)又稱腳步錯(cuò)誤測(cè)試(foot-fault test),已證實(shí)網(wǎng)格測(cè)試可有效地測(cè)評(píng)嚙齒類PD模型的感覺運(yùn)動(dòng)功能障礙[23]。Chao等[24]使用自制金屬網(wǎng)格(41 cm × 41 cm,每單元格3.5 cm × 3.5 cm, 測(cè)試架高41 cm)協(xié)同高速攝像機(jī)記錄了PD大鼠在網(wǎng)格上的行為,觀察指標(biāo)包括:前、后肢腳步滑落;總步數(shù);啟動(dòng)時(shí)間;外周區(qū)域停留時(shí)長及移動(dòng)距離等以分析PD大鼠的精細(xì)步態(tài),協(xié)調(diào)性及肢體放置的準(zhǔn)確性。研究發(fā)現(xiàn),STR及MFB偏側(cè)染毒大鼠均出現(xiàn)對(duì)側(cè)前肢滑落次數(shù)增加的現(xiàn)象,而經(jīng)由L-dopa治療后對(duì)側(cè)前肢的滑落次數(shù)顯著降低。上述結(jié)果提示,網(wǎng)格測(cè)試不僅可用于評(píng)價(jià)PD大鼠的感覺運(yùn)動(dòng)功能障礙,而且可有效測(cè)評(píng)藥物治療后PD大鼠感覺運(yùn)動(dòng)功能障礙的改善狀況。
3.1.3提升軀體搖擺測(cè)試
Borlongan等[25]首次將提升軀體搖擺測(cè)試(elevated body swing test,EBST)用于評(píng)價(jià)偏側(cè)黑質(zhì)6-OHDA染毒大鼠的運(yùn)動(dòng)不對(duì)稱行為。篩選無偏移搖擺行為的大鼠作為實(shí)驗(yàn)對(duì)象,將大鼠置于樹脂玻璃箱中(40 cm × 40 cm ×35.5 cm)2 min,待其適應(yīng)環(huán)境后,從大鼠尾根1英寸處將其軀干提起,使其頭部距地約1英寸,保持靜止(大鼠軀干未向左或右偏移開豎直軸10°時(shí)為垂直位),當(dāng)大鼠頭部向左側(cè)或右側(cè)偏移垂直位時(shí)視為搖擺行為。在進(jìn)行每一次搖擺活動(dòng)之前,大鼠的軀干必須恢復(fù)至垂直位后方可再次記錄,如其向某一方向連續(xù)搖擺而未恢復(fù)至垂直位時(shí),僅記錄為1次搖擺行為。測(cè)試中大鼠超過5 s仍未恢復(fù)至垂直位或是爬抓其尾部,立即將其放回箱中,待恢復(fù)自然狀態(tài)后再次測(cè)試。當(dāng)大鼠超過5 s仍未開始搖擺,可輕捏尾部以誘導(dǎo)活動(dòng)。測(cè)試由一人手持大鼠,另一人計(jì)時(shí)并記錄搖擺的方向及頻率,為期45 s,測(cè)試結(jié)果用向左或右側(cè)偏移的次數(shù)除以偏移總次數(shù)所得的百分比表示其向左或右側(cè)偏移的比率。研究發(fā)現(xiàn),PD大鼠不僅出現(xiàn)顯著的軀體偏移搖擺行為,且偏移方向與阿樸嗎啡誘導(dǎo)旋轉(zhuǎn)方向一致,偏移搖擺行為與阿樸嗎啡誘導(dǎo)的旋轉(zhuǎn)行為之間存在顯著的正相關(guān)[25]。Roghani等[26]發(fā)現(xiàn),EBST可評(píng)價(jià)PD早期階段出現(xiàn)的運(yùn)動(dòng)不對(duì)稱行為,但很難區(qū)分黑質(zhì)-紋狀體系統(tǒng)不同劑量染毒后發(fā)生的運(yùn)動(dòng)不對(duì)稱行為[27]。且鼠種、鼠齡、藥物注射的劑量以及注射位點(diǎn)選取的不同均有可能影響早期PD大鼠EBST的測(cè)試結(jié)果[28]。
3.2PD大鼠模型精細(xì)運(yùn)動(dòng)功能的測(cè)試
3.2.1蒙托亞階梯測(cè)試
上肢技巧性伸觸是人類在嬰兒時(shí)期形成的精細(xì)運(yùn)動(dòng)[29]。研究發(fā)現(xiàn)PD患者存有明顯的技巧性伸觸缺陷,而PD大鼠模型也存在這一行為缺陷[30]。盡管嚙齒類動(dòng)物主要依靠嗅覺判定物體的方位,而人類則依賴視覺,但二者在骨骼,肌肉的使用以及在運(yùn)動(dòng)的神經(jīng)調(diào)控方面基本一致[1,31]。
Montoya利用其自主設(shè)計(jì)的階梯測(cè)試首次測(cè)評(píng)了PD大鼠在執(zhí)行技巧性伸出及抓取作業(yè)時(shí),兩側(cè)前肢獨(dú)立執(zhí)行精細(xì)運(yùn)動(dòng)的情況,后命名為蒙托亞階梯測(cè)試(Montoya staircase test)[32]。測(cè)試設(shè)備由三部分組成:透明樹脂玻璃測(cè)試箱(285 mm ×60 mm × 90 mm);木質(zhì)站臺(tái)(210 mm ×21 mm × 48 mm)置于測(cè)試箱內(nèi)底部中央,站臺(tái)頂部表面加裝一平板(210 mm × 27 mm × 2 mm),以防止大鼠沿站臺(tái)兩側(cè)墻壁提取食物;站臺(tái)前端左、右兩側(cè)各嵌入一分離式階梯,每個(gè)階梯共有7階,每階(14 mm× 14 mm × 6 mm)表面有一直徑12 mm,深度3 mm的凹槽以放置食物小球。測(cè)試時(shí),將大鼠置于站臺(tái)平板的上方,記錄15 min內(nèi)大鼠一側(cè)前肢從每層臺(tái)階上抓取食物及進(jìn)食的過程,并計(jì)數(shù)食物小球遺留在各層臺(tái)階上的數(shù)量。此后,Wishaw[33]與Kloth等[34]分別引入高速攝像分析技術(shù)與色彩小球,對(duì)PD大鼠執(zhí)行精細(xì)運(yùn)動(dòng)時(shí)前肢,后肢及軀干損傷的特征進(jìn)行更為準(zhǔn)確的定性、定量分析。目前,蒙托亞階梯測(cè)試已廣泛應(yīng)用于PD大鼠模型建立以及各種治療方法效果的測(cè)評(píng)[1,31,41]。
3.2.2單個(gè)小球伸觸測(cè)試
單個(gè)小球伸觸測(cè)試(single-pellet reaching test)由食物托盤測(cè)試(food tray task)演變而來,旨在測(cè)評(píng)嚙齒類動(dòng)物的技巧性伸觸能力[35]。測(cè)試設(shè)備為一封閉透明樹脂玻璃空箱(45 cm ×13.1 cm × 40 cm),箱體正前方距底部上4 cm橫置一水平樹脂板(13.1 cm × 3 cm × 1 cm)與箱體額狀面相互垂直。箱體額狀面中間自上而下開一寬1.3 cm空隙,大鼠前肢可由此空隙伸出。橫板距空隙兩內(nèi)緣1.5 cm處各有一放置食物小球的凹槽(直徑5 mm,深1.5 mm)供大鼠從中抓取食物[36]。正式測(cè)試前大鼠接受2周預(yù)訓(xùn)練,每天抓取20個(gè)食物小球(重約190 mg),使大鼠熟悉測(cè)試環(huán)境的同時(shí)習(xí)得抓取小球的技能。訓(xùn)練中,待大鼠完成一次抓取并回到箱體后方進(jìn)食后再放入下一粒小球,以確保每次伸觸抓取動(dòng)作的獨(dú)立性。訓(xùn)練中可用特定手鐲固定大鼠的一側(cè)前肢(手鐲僅阻止大鼠前肢伸出空隙而不影響其他功能),以確定大鼠的優(yōu)勢(shì)側(cè)肢并最大限度地鼓勵(lì)、鞏固其優(yōu)勢(shì)側(cè)肢的伸觸抓取活動(dòng)。當(dāng)大鼠用優(yōu)勢(shì)側(cè)肢迅速、準(zhǔn)確地完成20個(gè)小球的定位、伸觸、抓取、收回、進(jìn)食動(dòng)作時(shí)標(biāo)志預(yù)訓(xùn)練成功。正式測(cè)試時(shí),由高速攝像機(jī)記錄大鼠每側(cè)前肢20次抓取小球的活動(dòng)過程,將前肢準(zhǔn)確伸出空隙抓取小球后收回進(jìn)食定義為“成功”,記“0”分;如果動(dòng)作執(zhí)行有輕微異常,但仍可完成整套動(dòng)作,記“1”分;如果動(dòng)作無法執(zhí)行,記“2”分。最后計(jì)算總得分[37]?;?qū)⒚刻讋?dòng)作的完成劃分為“成功”、“失敗”,最終代入公式:總成功率(%)=(“成功”次數(shù)/20)× 100計(jì)算其前肢伸觸抓取活動(dòng)的成功率[38]。Wishaw等[37-39]利用高速攝像機(jī)對(duì)PD大鼠的前肢伸觸及軀體姿勢(shì)調(diào)整活動(dòng)做出了更為詳盡的定性分析,清晰地界定出大鼠在執(zhí)行技巧性前肢伸觸運(yùn)動(dòng)時(shí)依次執(zhí)行了:定位;前肢舉起;爪收縮;指向;前伸;爪張開;掌旋前(手掌向下);抓??;掌旋后Ⅰ;掌旋后Ⅱ;釋放。Wishaw指出一側(cè)STR DA損耗不僅損傷其對(duì)側(cè)前肢的技巧性運(yùn)動(dòng),同時(shí)其同側(cè)的前肢在執(zhí)行掌旋前及旋后動(dòng)作時(shí)亦出現(xiàn)障礙,但隨著同側(cè)前肢的代償性使用,障礙逐漸得到恢復(fù)。此外,Wishaw指出PD大鼠存有明顯的姿勢(shì)調(diào)整障礙,即大鼠執(zhí)行正?;顒?dòng)時(shí)前、后肢的“對(duì)角線模式”消失,取而代之的是借助損傷同側(cè)后肢的支撐以獲得姿勢(shì)調(diào)整[37,38,40]。上述結(jié)果提示:(1)技巧性運(yùn)動(dòng)不同于一般意義的自發(fā)性運(yùn)動(dòng)或感覺運(yùn)動(dòng),暗示運(yùn)動(dòng)皮質(zhì)-基底神經(jīng)節(jié)系統(tǒng)在調(diào)控、執(zhí)行運(yùn)動(dòng)時(shí)存在不同;(2)姿勢(shì)調(diào)整并非軀體的被動(dòng)行為,而是先于前肢伸觸行為的主觀既定活動(dòng);(3)同側(cè)前肢的損傷表明雙側(cè)黑質(zhì)-紋狀體之間可能存在某種聯(lián)系;(4)同側(cè)前肢的使用及姿勢(shì)調(diào)整異常的出現(xiàn)表明受損機(jī)體存有代償行為;(5)行為學(xué)訓(xùn)練可能促進(jìn)肢體技巧性運(yùn)動(dòng)功能的恢復(fù)。此后,Wishaw通過對(duì)PD患者技巧性運(yùn)動(dòng)研究[30,31,42],闡明人類、靈長類與嚙齒類動(dòng)物在技巧性運(yùn)動(dòng)方面具有同源性,這不僅肯定了PD動(dòng)物實(shí)驗(yàn)研究的價(jià)值意義,同時(shí)對(duì)技巧性運(yùn)動(dòng)測(cè)試在人類PD患者運(yùn)動(dòng)功能評(píng)價(jià)方面的應(yīng)用提供了富有遠(yuǎn)見的啟發(fā)。
3.3PD大鼠模型感覺運(yùn)動(dòng)整合功能的測(cè)試
3.3.1歩態(tài)測(cè)試
運(yùn)動(dòng)不能與步態(tài)障礙是PD的主要臨床癥狀,Schallert等[43]首先使用“調(diào)整歩態(tài)測(cè)試”(adjusting steps test)評(píng)估PD大鼠在人為改變其軀體重心時(shí),自主調(diào)整前肢歩態(tài)以使軀體恢復(fù)姿勢(shì)穩(wěn)定的能力。測(cè)試開始,實(shí)驗(yàn)者用一手托起大鼠的后肢及軀干,使軀體懸空,另一只手固定大鼠的左側(cè)前肢,令右側(cè)前肢支撐軀體于桌面上。人為移動(dòng)大鼠軀干重心不斷向前,記錄右側(cè)前肢做出調(diào)整步伐的次數(shù),同理測(cè)試左側(cè)前肢調(diào)整歩伐的次數(shù),每側(cè)前肢均測(cè)試3次,每次10 s。測(cè)試中可以直接觀察到單側(cè)黑質(zhì)-紋狀體受損大鼠的對(duì)側(cè)前肢在軀體重心發(fā)生改變時(shí)呈現(xiàn)的拖拽步態(tài)。結(jié)果取3次測(cè)試的平均值代入公式:[同側(cè)步數(shù)/(同側(cè)步數(shù)+對(duì)側(cè)步數(shù))—對(duì)側(cè)步數(shù)/(同側(cè)步數(shù)+對(duì)側(cè)步數(shù))]計(jì)算[44]。Olsson等[45]對(duì)Schallert的方案做出改進(jìn),增加了前肢歩進(jìn)發(fā)起時(shí)間、歩進(jìn)長度、正手調(diào)整步態(tài)及反手調(diào)整步態(tài)的測(cè)試。Olsson指出正、反手調(diào)整步態(tài)測(cè)試不易受實(shí)驗(yàn)員、鼠種、環(huán)境變化的影響,因而在評(píng)價(jià)PD大鼠運(yùn)動(dòng)不能及步態(tài)障礙方面更為準(zhǔn)確。Kirik等[46]研究發(fā)現(xiàn)STR內(nèi)酪氨酸羥化酶(tyrosine hydroxylase,TH)陽性纖維密度損耗到達(dá)60%~70%時(shí),大鼠出現(xiàn)前肢步態(tài)障礙。而Chang等[47]在其研究中指出,一側(cè)MFB注射6-OHDA后前肢步態(tài)的障礙并不與黑質(zhì)-紋狀體系統(tǒng)內(nèi)DA的損耗程度呈線性相關(guān),而是在DA損耗超過80%時(shí)才出現(xiàn),即DA損耗大于80%是產(chǎn)生前肢步態(tài)障礙的閾值。二者在閾值界定方面的分歧可能是由于藥物注射位點(diǎn)及測(cè)定指標(biāo)的選擇不同而造成的。
3.3.2觸須誘導(dǎo)前肢前伸測(cè)試
Schallert等[20]利用正常大鼠在軀體懸空時(shí)可以快速、準(zhǔn)確地前伸前肢以觸碰其同側(cè)觸須所感識(shí)到的物體這一特性,用觸須誘導(dǎo)前肢前伸測(cè)試(vibrissae-elicited forelimb placing test)來測(cè)評(píng)PD大鼠的感覺運(yùn)動(dòng)功能及本體感覺功能。測(cè)試時(shí),實(shí)驗(yàn)者用手托起大鼠軀體令其四肢懸空并確保其受測(cè)一側(cè)前肢活動(dòng)自由,然后向前移動(dòng)大鼠頭部靠近桌緣,用左側(cè)(或右側(cè))觸須上下往復(fù)地摩擦桌面一角,觀察同側(cè)前肢前伸夠觸桌面的情況,左右側(cè)各測(cè)試10次。測(cè)試間歇,允許大鼠四肢同時(shí)接觸桌面以減少其掙扎、肌肉緊張以及懸空而產(chǎn)生的壓力。如大鼠未能快速、準(zhǔn)確地前伸受測(cè)前肢觸碰桌面以回應(yīng)同側(cè)觸須感受到的刺激則視為觸碰失敗,結(jié)果用觸碰成功次數(shù)除以測(cè)試次數(shù)的百分比表示。研究發(fā)現(xiàn)[48],當(dāng)STR內(nèi)DA損耗超過80 %時(shí),受損前肢同側(cè)或?qū)?cè)的觸須刺激均不能誘發(fā)患肢的前伸行為,反之,未受損側(cè)前肢均能夠前伸以回應(yīng)其同側(cè)或?qū)?cè)的觸須刺激,從而證實(shí)了PD大鼠前肢運(yùn)動(dòng)障礙主要源于運(yùn)動(dòng)功能的損傷而非感覺功能。Tillerson[49]與Ciucci等[50]相繼發(fā)現(xiàn),運(yùn)動(dòng)可以改善PD大鼠觸須誘導(dǎo)前肢前伸行為的障礙。Anstrom等[50]將觸須誘導(dǎo)前肢前伸作為一種運(yùn)動(dòng)方式(感覺-運(yùn)動(dòng)訓(xùn)練),發(fā)現(xiàn)PD大鼠在染毒前、后即刻接受大量、重復(fù)的觸須誘導(dǎo)前肢前伸訓(xùn)練會(huì)對(duì)其受損側(cè)前肢的行為功能起到有益的影響。
3.4PD大鼠模型平衡能力與協(xié)調(diào)性的測(cè)試
3.4.1轉(zhuǎn)筒測(cè)試
1997年,Rozas等[52]首次使用轉(zhuǎn)筒測(cè)試(rotarod test)評(píng)價(jià)PD大鼠的基本運(yùn)動(dòng)能力。轉(zhuǎn)筒測(cè)試儀的構(gòu)成包括:(1)直徑7~8 cm的轉(zhuǎn)筒;(2)驅(qū)動(dòng)轉(zhuǎn)筒所需的馬達(dá)(供調(diào)節(jié)轉(zhuǎn)速);(3)固定于轉(zhuǎn)筒上的隔檔(供多只大鼠同時(shí)測(cè)試);(4)底座托盤(防止大鼠摔傷);(5)外接電腦(設(shè)定轉(zhuǎn)速,記錄掉落時(shí)間)。測(cè)試前對(duì)大鼠進(jìn)行1~2d的預(yù)訓(xùn)練,使大鼠可從實(shí)驗(yàn)者手中自行登上轉(zhuǎn)筒并學(xué)習(xí)伴隨轉(zhuǎn)筒旋轉(zhuǎn)行進(jìn)的技能,同時(shí)盡可能減少因適應(yīng)儀器、環(huán)境而產(chǎn)生的壓力。正式測(cè)試時(shí),大鼠從實(shí)驗(yàn)者手中自行登上轉(zhuǎn)筒,頭部方向與轉(zhuǎn)筒旋轉(zhuǎn)方向相反,以確保向前運(yùn)動(dòng)時(shí)可以停留在旋轉(zhuǎn)的轉(zhuǎn)筒上。測(cè)試從最低轉(zhuǎn)速開始(5 r/min),逐漸提速,記錄大鼠停留在轉(zhuǎn)筒上的時(shí)長(每個(gè)時(shí)速至多5 min)。變更速度期間需要休息20~30 min,以減緩壓力和疲勞。正式實(shí)驗(yàn)以連續(xù)3d測(cè)試作為一個(gè)周期。測(cè)試結(jié)果用“ORP值”(overall rod performance)表示[53]。Rozas發(fā)現(xiàn):(1)隨著轉(zhuǎn)筒轉(zhuǎn)速的增加,因黑質(zhì)-紋狀體系統(tǒng)受損而引發(fā)的運(yùn)動(dòng)缺陷愈加明顯;(2)PD大鼠在注意力受到干擾時(shí)更易從轉(zhuǎn)筒上掉落,暗示其很難執(zhí)行同時(shí)性任務(wù);(3)轉(zhuǎn)筒測(cè)試可以有效地識(shí)別偏側(cè)6-OHDA染毒后黑質(zhì)-紋狀體系統(tǒng)的最大程度損傷與部分損傷;(4)轉(zhuǎn)筒測(cè)試可用于評(píng)價(jià)治療的效果。Whishaw等[54]使用轉(zhuǎn)筒測(cè)試連同高速攝像技術(shù)定性地分析了PD大鼠的姿勢(shì)異常及前、后肢步態(tài)異常。Ogura等[54]利用轉(zhuǎn)筒測(cè)試研究發(fā)現(xiàn),相比于運(yùn)動(dòng)功能的調(diào)控,技巧性行為的獲取與感覺運(yùn)動(dòng)的習(xí)得更易受DA損傷的影響。目前,轉(zhuǎn)筒測(cè)試已廣泛應(yīng)用于評(píng)價(jià)嚙齒類PD模型感覺運(yùn)動(dòng)協(xié)調(diào)障礙、運(yùn)動(dòng)學(xué)習(xí)損傷及各種治療方法的效果[56,57]。
3.5PD大鼠模型自主運(yùn)動(dòng)功能的測(cè)試
3.5.1曠場測(cè)試
自主運(yùn)動(dòng)減少與動(dòng)作遲緩是PD的主要臨床特征[1],為了測(cè)評(píng)PD大鼠自發(fā)性自主運(yùn)動(dòng)損傷的情況,研究者采用了曠場測(cè)試(open field test)[58]。曠場由黑色木制箱(60 cm × 60 cm ×40 cm)構(gòu)成,其中央頂部懸置一臺(tái)攝像機(jī)并連接電腦,于暗光下記錄大鼠在曠場中的活動(dòng),包括:旋轉(zhuǎn)行為;探索行為;自主運(yùn)動(dòng);站立;修飾行為等,測(cè)試結(jié)果由配套軟件處理分析。Fornaguera等[58]通過評(píng)價(jià)PD大鼠在曠場測(cè)試中的行為學(xué)變化推測(cè)STR內(nèi)DA的損耗水平。孫建棟等[59]結(jié)合曠場測(cè)試證明魚藤酮在建立PD大鼠模型方面的可行性。Ferro等[60]研究比較了大鼠黑質(zhì)部雙側(cè)注射6-OHDA與MPTP在建立PD早期模型中的行為學(xué)差異。另有諸多研究借助曠場測(cè)試來評(píng)估各種治療方法對(duì)PD大鼠運(yùn)動(dòng)功能的治療效果[61-63]。
4小結(jié)
綜上所述,諸多研究者在實(shí)踐中依據(jù)其研究的需求與特點(diǎn),選用了不同類型的行為學(xué)方法對(duì)PD大鼠的運(yùn)動(dòng)功能進(jìn)行測(cè)評(píng)。文中所提到的每一種行為學(xué)測(cè)試方法在其實(shí)際應(yīng)用中均存有優(yōu)劣,依據(jù)本實(shí)驗(yàn)室采用上述方法對(duì)偏側(cè)6-OHDA大鼠模型運(yùn)動(dòng)功能進(jìn)行行為學(xué)評(píng)價(jià)方面的經(jīng)驗(yàn),建議研究者們?cè)谶x擇運(yùn)動(dòng)行為測(cè)試方法時(shí),應(yīng)根據(jù)研究目的、對(duì)象和研究內(nèi)容甄別篩選;選擇方法時(shí)以簡便易行,檢測(cè)指標(biāo)有效、穩(wěn)定,且測(cè)試結(jié)果不宜受主觀因素干擾的測(cè)試方法為優(yōu)。同時(shí),應(yīng)明辨各類行為學(xué)測(cè)試方法自身的局限性以及因?qū)嶒?yàn)對(duì)象(如:動(dòng)物品系),測(cè)試環(huán)境(如:晝夜習(xí)性),實(shí)驗(yàn)人員的不同而可能產(chǎn)生的結(jié)果差異。此外,還要注意反復(fù)測(cè)試時(shí)可能存在的習(xí)得或忽略行為(如:學(xué)習(xí)記憶能力的影響),多重測(cè)試疊加時(shí)可能存在的交互影響等隱含影響因素,這樣方可提高實(shí)驗(yàn)結(jié)果的準(zhǔn)確性與可靠性。
參考文獻(xiàn)
[1]Pienaar IS, Lu BW, Schallert T. Closing the gap between clinic and cage: sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson’s disease [J]. Neurosci Biobeh Rev, 2012, 36: 2305-2324.
[2]Meredith GE, Kang UJ. Behavioral models of Parkinson’s disease in rodents: a new look at an old problem [J].Mov Disord, 2006, 21(10): 1595-1606.
[3]Petzinger GM, Fisher BE, McEwen S, et al. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease [J]. Lancet Neurol, 2013, 12: 716-726.
[4]屈新輝, 謝旭芳, 周超, 等. 自體骨髓干細(xì)胞移植治療帕金森病32 例 [J]. 中國醫(yī)藥導(dǎo)報(bào), 2013, 30: 48-50.
[5]Meissner WG, Frasier M, Gasser T, et al. Priorities in Parkinson’s disease research [J]. Nature Rev Drug Disc, 2011, 5(10): 377-393.
[6]Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease [J]. Br J Pharmacol, 2011, 164: 1357-1391.
[7]Hirsch MA, Farley BG. Exercise and neuroplasticity in persons living with Parkinson’s disease [J]. Eur J Phys Rehabil Med, 2009, 45: 215-229.
[8]陳生弟, 樂衛(wèi)東, 陳先文, 等. 帕金森病 [M]. 北京:人民衛(wèi)生出版社, 2006, 116-124.
[9]Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system [J]. Brain Res, 1970, 24: 485-493.
[10]Bove J, Perier C. Neurotoxin-based models of Parkinson’s disease [J]. Neuroscience, 2012, 211: 51-76.
[11]Ungerstedt U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system [J]. Acta Physiol Scand [Suppl], 1971, 376: 95-122.
[12]Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rat: an evaluation of 6-OHDA lesions of the nigrostriatal pathway [J]. Exp Neurol, 2002, 175: 303-317.
[13]Meijide AD, Cheda BV, Gil PG, et al. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA [J]. Neuropharmacology, 2014, 76: 156-168.
[14]Gerlach M, Riederer P. Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man [J]. Neural Transm,1996, 103: 987-1041.
[15]Lang AE, Obeso JA. Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough [J]. Lancet Neurol, 2004, 3: 309-316.
[16]Klug JM, Norman AB. Long-term sensitization of apomorphine-induced rotation behavior in rats with dopamine deafferentation or excitotoxin lesions of the striatum [J]. Pharmacol Biochem Behav, 1993, 46: 397-403.
[17]Bevan P. Repeated apomorphine treatment causes behavioral supersensitivity and dopamine D2 receptor hyposensitivity [J]. Neurosci Lett, 1983, 35: 185-189.
[18]Norman AB, Wyatt LM, Hildebrand JP, et al. Sensitization of rotation behavior in rats with unilateral 6-hydroxydopamine or kainic acid-induced striatal lesions [J]. Pharmacol Biochem Behav, 1990: 755-759.
[19]Ariano MA, Grissell AE, Littlejohn FC, et al. Partial dopamine loss enhances activated caspase-3 activity: differential outcomes in striatal projection systems [J]. J Neurosci Res, 2005, 82: 387-396.
[20]Schallert T, Fleming SM, Leasure JL, et al. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of storke, cortical ablation, parkinsonism and spinal cord injury [J]. Neuropharmacology, 2000, 39: 777-787.
[21]O’Dell SJ, Gross NB, Fricks AN, et al. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection [J]. Neuroscience, 2007, 144: 1141-1151.
[22]Tajiri N, Yasuhara T, Shingo T, et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats [J]. Brain Res, 2010, 1310: 200-207.
[23]Silvestrin RB, Oliveira LF, Batassini C, et al. The footfault test as a screening tool in the 6-hydroxydopamine rat model of Parkinson’s disease [J]. J Neurosci Methods, 2009, 177: 317-321.
[24]Chao OY, Pum ME, Li JS, et al. The grid-walking test: assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle [J]. Neuroscience, 2012, 202: 318-325.
[25]Borlongan CV, Sanberg PR. Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine induced hemiparkinsonism [J]. J Neurosci, 1995, 15(7): 5372-5378.
[26]Roghani M, Behzadi G, Baluchnejadmojarad T. Efficacy of elevated body swing test in the early model of Parkinson’s disease in rat [J]. Physiol Behav, 2002, 76: 507-510.
[27]Baluchnejadmojarad T, Roghani M. Evaluation of functional asymmetry in rats with dose-dependent lesions of dopaminergic nigrostriatal system using elevated body swing test [J]. Physiol Behav, 2004, 82:369-373.
[28]Yuan H, Sarre S, Ebinger G, et al. Histological behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson’s disease [J]. J Neurosci Methods, 2005, 144: 35-45.
[29]Sacrey LA, Whishaw IQ. Development of collection precedes targeted reaching: resting shapes of the hands and digits in 1-6-month-old human infants [J]. Behav Brain Res, 2010, 214:125-129.
[30]Whishaw IQ, Suchowersky O, Davis L, et al. Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson’s disease (PD) reveals homology to deficits in animal models [J]. Behav Brain Res, 2002, 133: 165-176.
[31]Klein A, Sacrey LA, Whishaw IQ, et al. The use of rodent skilled reaching as a translational model for investigating brain damage and disease [J]. Neurosci Biobeh Rev, 2012, 36: 1030-1042.
[32]Montoya CP, Campbell-Hope LJ, Pemberton KD, et al. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats [J]. J Neurosci Methods, 1991, 36: 219-228.
[33]Whishaw IQ, Woodward NC, Miklyaeva E, et al. Analysis of limb use by control rats and unilateral DA-depleted rats in the Montoya staircase test: movements, impairments and compensatory strategies [J]. Behav Brain Res, 1997, 89: 167-177.
[34]Kloth V, Klein A, Loettrich D, et al. Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats [J]. Brain Res Bull, 2006, 70: 68-80.
[35]Whishaw IQ, O’Connor WT, Dunnett SB. The contributions of motor cortex nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat [J]. Brain, 1986, 109: 805-843.
[36]Metz GAS, Whishaw IQ. Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as function of changing food pellet size [J]. Behav Brain Res, 2000, 116: 111-122.
[37]Miklyaeva EI, Castaneda E, Whishaw IQ. Skilled reaching deficits in unilateral dopamine-depleted rats: impairments in movement and posture and compensatory adjustments [J]. J Neurosci,1994, 14(11): 7148-7158.
[38]Vergara-Aragon P, Gonzalez C, Whishaw IQ. A novel skilled-reaching impairment in paw supination on the “good” side of hemi-Parkinson rat improved with rehabilitation [J].J Neurosci, 2003, 23(2): 579-586.
[39]Whishaw IQ, Zeeb F, Erickson C, et al. Neurotoxic lesions of the caudate-putamen on a reaching for food task in the rat: acute sensorimotor neglect and chronic qualitative motor impairment follow lateral lesions and improved success follows medial lesions [J]. Neuroscience, 2007, 146: 86-97.
[40]Miklyaeva EI, Woodward NC, Nikiforov EG, et al. The ground reaction forces of postural adjustments during skilled reaching in unilateral dopamine-depleted hemiparkinson rats [J]. Behav Brain Res ,1997, 88: 143-152.
[41]Klein A, Metz GA, Papazoglou A, et al. Differential effects on forelimb grasping behavior induced by fetal dopaminergic grafts in hemiparkinsonian rats [J]. Neurobiol Dis, 2007, 27: 24-35.
[42]Sacrey LA, Alaverdashvili M, Whishaw IQ. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements [J]. Behav Brain Res, 2009, 204: 153-161.
[43]Schallert T, De Ryck M, Whishaw IQ, et al. Excessive bracing reactions and their control by atropine and L-DOPA in an animal analog of parkinsonism [J]. J Exp Neurol, 1979, 64: 33-43.
[44]Tillerson JL, Cohen AD, Philhower J, et al. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine [J]. J Neurosci, 2001, 21(12): 4427-4435.
[45]Olsson M, Nikkhah G, Bentlage C, et al. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test [J]. J Neurosci,1995, 15(5): 3863-3875.
[46]Kirik D, Rosenblad C, Bjorklund A. Charaterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat [J]. Exp Neurol,1998, 152: 259-277.
[47]Chang JW, Wachtel SR, Young D, et al. Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions [J]. Neuroscience, 1999, 88(2): 617-628.
[48]Woodlee MT, Asseo-Garcia AM, Zhao X, et al. Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats [J]. Exp Neurol, 2005, 191: 310-317.
[49]Tillerson JL, Caudle WM, Reveron ME, et al. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease [J]. Neuroscience, 2003, 119: 899-911.
[50]Ciucci MR, Ma ST, Kane JR, et al. Limb use and complex ultrasonic vocalization in a rat model of Parkinson’s disease: deficit-targeted training [J]. Parkinsonism Related Disord, 2008, 14: 172-175.
[51]Anstrom KK, Schallert T, Woodlee MT, et al. Repetitive vibrissae-elicited forelimb placing before and immediately after unilateral 6-hydroxydopamine improves outcome in a model of Parkinson’s disease [J]. Behav Brain Res, 2007, 179: 183-191.
[52]Rozas G, Garcia JL. Drug-free evaluation of rat models of parkinsonism and nigral grafts using a new automated rotarod test [J]. Brain Res, 1997, 749: 188-199.
[53]Rozas G, Guerra MJ, Garcia JL. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism [J]. Brain Res Protoc, 1997, 2: 75-84.
[54]Whishaw IQ, Li K, Whishaw PA, et al. Distinct forelimb and hind limb stepping impairments in unilateral dopamine-depleted rat: use of the rotarod as a method for the qualitative analysis of skilled walking [J]. J Neurosc Methods, 2003, 126: 13-23.
[55]Ogura T, Ogata M, Akita H, et al. Impaired acquisition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson’s disease [J]. Neurosci Res, 2005, 51: 299-308.
[56]Monville C, Torres EM, Dunnett SB. Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model [J]. J Neurosci Methods, 2006, 158: 219-223.
[57]Fang X, Sugiyama K, Akamine S, et al. Improvements in motor behavioral tests during deep brain stimulation of the subthalamic nucleus in rats with different degrees of unilateral parkinsonism [J]. Brain Res, 2006, 1120: 202-210.
[58]Fornaguera J, Schwarting RW. Early behavioral changes after nigro-striatal system damage can serve as predictors of striatal dopamine depletion [J]. Neuro-Psychopharmacol Biol Psychiat, 1999, 23: 1353-1368.
[59]孫建棟, 苑玉和, 劉巖, 等. 帕金森病模型大鼠中腦α-突觸核蛋白增加 [J]. 中國藥理學(xué)通報(bào), 2010, 26(1):73-77.
[60]Ferro MM, Bellissimo MI, Anselmo-Franci JA, et al. Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations [J]. J Neurosci Methods, 2005, 148: 78-87.
[61]Aguiar Jr.AS, Araujo Al, Cunha TR, et al. Physical exercise improves motor and short-term social memory deficits in reserpinized rats [J]. Brain Res Bull, 2009, 79: 425-457.
[62]Mabandla MV, Kellaway LA, Daniels WM, et al. Effect of exercise on dopamine neuron survival in prenatally stressed rats [J]. Metab Brain Dis, 2009, 24: 525-539.
[63]Antipova V, Hawlitschka A, Mix E, et al. Behavioral and structural effects of unilateral intrastriatal injections of botulinum neurotoxin A in the rat model of Parkinson’s disease [J]. J Neurosci Res, 2013, 91: 838-847.
綜述·進(jìn)展
Progress of behavioral tests in rat models of Parkinson’s disease
WEI Xiang,LIU Xiao-li
(College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China)
【Abstract】Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by resting tremor, muscular rigidity, akinesia and postural reflex impairment. Behavioral tests of PD in animal models are essential for understanding the pathogenesis of PD as well as for the development and testing of potential therapeutics. Here we mainly use the 6-hydroxydopamine (6-OHDA)-induced rat model, to introduce a review on the research progress in non-drug-induced behavioral tests of motor function in PD rats.
【Key words】Parkinson’s disease; Rat; Motor function; Behavioral tests
[收稿日期]2014-11-06
Doi:10.3969/j.issn.1005-4847.2015.02.020
【中圖分類號(hào)】Q95-33
【文獻(xiàn)標(biāo)識(shí)碼】A
【文章編號(hào)】1005-4847(2015) 02-0209-07
[通訊作者]劉曉莉,女,教授,研究方向:體育保健與康復(fù)。Email: xiaolil@bnu.edu.cn。
[作者簡介]魏翔(1988-)男,碩士研究生,專業(yè):運(yùn)動(dòng)人體科學(xué)。Email: wxdhpedu10@126.com。
[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(項(xiàng)目編號(hào):31340025)。
中國實(shí)驗(yàn)動(dòng)物學(xué)報(bào)2015年2期