林澤斯,王洪琦
(廣州中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院,廣州 510405)
腸易激綜合征(Irritable bowel syndrome,IBS)是以腹痛或腹部不適,大便習(xí)慣改變(腹瀉,或便秘或交替發(fā)生),伴隨一系列胃腸道癥狀(如矢氣,里急后重感)及精神癥狀(如緊張,抑郁,焦慮)等為特征的功能紊亂性疾病。常見的病理原因有胃腸道功能紊亂、精神因素、內(nèi)臟痛覺高敏、腸道感染及菌群失調(diào)等。IBS的診斷以癥狀學(xué)為依據(jù),根據(jù)糞便性狀或排便習(xí)慣的不同主要分為腹瀉型(IBS-D)、便秘型(IBS-C)、混合型或不確定型(IBS-M/IBS-A),其診斷建立在排除器質(zhì)性疾病的基礎(chǔ)上(羅馬III診斷標(biāo)準(zhǔn)),神經(jīng)性因素的復(fù)雜性使得其病理機(jī)制仍未闡明,也因此對(duì)IBS的治療一直缺乏有效的手段。
母嬰分離(maternal separation,MS)或稱母愛剝奪(maternal deprivation,MD)是一種早期生活應(yīng)激源,大部分研究通過嚙齒類動(dòng)物(大鼠或小鼠)斷奶前(出生后1~21 d)將仔鼠和母親長(zhǎng)時(shí)間地(1~24 h)分開進(jìn)行造模。新生幼仔與母親及同窩仔鼠的相互作用被稱作新生嚙齒類的社會(huì)環(huán)境,這個(gè)社會(huì)環(huán)境中母鼠與同窩仔鼠的交流對(duì)仔鼠個(gè)體的成長(zhǎng)有著重要影響。由于剝奪時(shí)間較長(zhǎng),造成嚴(yán)重的環(huán)境剝奪以致影響動(dòng)物行為及神經(jīng)發(fā)育,神經(jīng)遞質(zhì)系統(tǒng)如多巴胺、五羥色胺的釋放紊亂,腦源性神經(jīng)營(yíng)養(yǎng)因子的增減及神經(jīng)內(nèi)分泌系統(tǒng)的改變,多用于神經(jīng)系統(tǒng)或精神疾病,如抑郁癥,精神分裂癥的研究[1]。在最早期一系列的母嬰分離模型與胃腸功能疾病的研究中,研究人員在動(dòng)物模型中發(fā)現(xiàn),母嬰分離會(huì)導(dǎo)致胃潰瘍的風(fēng)險(xiǎn)增加,且早期離乳會(huì)加重應(yīng)激性潰瘍的形成[2-4]。而后越來越多的實(shí)驗(yàn)證明,該模型動(dòng)物具有腸道敏感性增高,腸道運(yùn)動(dòng)加快等腹瀉傾向,且行為學(xué)上伴有抑郁的表現(xiàn)[5,6],能夠較好地模擬與、臨床上IBS-D患者的癥狀,因此被運(yùn)用于IBS的研究。但該模型存在動(dòng)物個(gè)體差異性較大,影響造模的影響因素較多的特點(diǎn),在很多研究中常必須疊加其他形式的應(yīng)激才能更全面地模擬IBS的腹痛腹瀉癥狀。
IBS病人在發(fā)病時(shí)常伴隨精神癥狀,如緊張、焦慮或抑郁等,反映了腸易激綜合征病人對(duì)應(yīng)激應(yīng)付的能力受損,機(jī)制涉及中樞神經(jīng)系統(tǒng)及腦腸軸的功能改變[5,7,8]。早期生活環(huán)境對(duì)成年后應(yīng)激反應(yīng)有著深刻影響[9-12],研究發(fā)現(xiàn)早期發(fā)育階段的負(fù)性生活事件會(huì)增加疾病的易感性[13,14],這其中包括了腸易激綜合征[15]。研究表明在未成年時(shí)早期發(fā)育階段施加應(yīng)激能夠?qū)Υ笫蟪赡旰蟮膽?yīng)激處理產(chǎn)生影響,新生期機(jī)械刺激如新生期重復(fù)結(jié)腸擴(kuò)張[16,17],暴露于化學(xué)或炎性刺激,如內(nèi)毒素[18-20]等,以及心理行為刺激如母嬰分離,會(huì)造成長(zhǎng)期或持久以及成年后對(duì)應(yīng)激的“過度反應(yīng)”。雖然施加各種應(yīng)激的時(shí)間點(diǎn)或強(qiáng)度有所不同,但都出現(xiàn)了一定的類似IBS的病理特征,如對(duì)新生后1到3周的大鼠實(shí)施結(jié)腸擴(kuò)張導(dǎo)致慢性的腸道異常疼痛(allodynia)或痛覺高敏(hyperalgesia)[17];出生后第3和第5天施加LPS感染造成了大鼠的行為改變[18];在大鼠出生后的第1周進(jìn)行低濃度的沙門氏菌內(nèi)毒素的感染導(dǎo)致長(zhǎng)期的HPA軸反應(yīng)改變[18]。而母嬰分離應(yīng)激是能夠最完全地模擬IBS包括內(nèi)臟痛覺敏感增高,腸道動(dòng)力紊亂,腸道通透性及菌群變化,成年后抑郁或焦慮傾向的高易感性以及HPA軸失調(diào)等特征的模型。但值得注意的是,目的是模擬腸易激綜合征癥狀的母嬰分離造模時(shí)應(yīng)注意在嚙齒類動(dòng)物的新生期(即出生后2~14 d左右)施加應(yīng)激造模更為可行,因?yàn)橛袌?bào)道指出,在大鼠的青少期(出生后28~41d)連續(xù)兩周的社會(huì)隔離飼養(yǎng)對(duì)大鼠成年后各項(xiàng)所檢測(cè)的抑郁樣和焦慮樣行為均缺乏明顯的長(zhǎng)期作用[21],不能夠很好地模擬IBS中抑郁和焦慮樣行為,出生后2周內(nèi)的新生期是中樞及外周神經(jīng)系統(tǒng)發(fā)育腸道免疫系統(tǒng)等生理系統(tǒng)發(fā)育以及腸道菌群定植形成的一個(gè)重要時(shí)期,對(duì)其軀體及內(nèi)臟感覺神經(jīng)可塑性會(huì)產(chǎn)生持久影響[5]。
腦腸軸(gut-brain axis,GBA)是將胃腸道與中樞神經(jīng)系統(tǒng)聯(lián)系起來的神經(jīng)-內(nèi)分泌網(wǎng)絡(luò)。胃腸道受中樞神經(jīng)系統(tǒng)(CNS)、腸神經(jīng)系統(tǒng)(ENS)及自主神經(jīng)共同支配,受3個(gè)層次的神經(jīng)調(diào)控,第一層為ENS的局部調(diào)控,分為腸肌間神經(jīng)叢支配的腸道平滑肌運(yùn)動(dòng)及腸黏膜下神經(jīng)叢調(diào)控的腸黏膜感覺、分泌及吸收。ENS屬于相對(duì)獨(dú)立的體系,被譽(yù)為人體的“第二大腦”。第二層為椎前神經(jīng)節(jié),其接受和調(diào)控來自ENS和CNS兩方面的信息。第三層是CNS,由腦的各級(jí)中樞和脊髓接受內(nèi)外環(huán)境變化時(shí)傳入的各種信息,整合后由植物神經(jīng)系統(tǒng)和神經(jīng)-內(nèi)分泌系統(tǒng)將其調(diào)控信息傳遞至ENS或直接作用于胃腸效應(yīng)細(xì)胞,對(duì)平滑肌、腺體、血管起調(diào)節(jié)作用。這三個(gè)層次的神經(jīng)調(diào)控是實(shí)現(xiàn)腦-腸軸功能的結(jié)構(gòu)基礎(chǔ)[22-24]。
母嬰分離模型對(duì)腦腸軸的改變體現(xiàn)在對(duì)中樞神經(jīng)系統(tǒng)發(fā)育、神經(jīng)遞質(zhì)及神經(jīng)內(nèi)分泌功能改變的影響上[1]。在中樞神經(jīng)系統(tǒng)方面,母嬰分離大鼠在遇到應(yīng)激時(shí)腦內(nèi)會(huì)分泌更多的多巴胺,腦內(nèi)5-羥色胺的代謝率提高活動(dòng)增強(qiáng)。母嬰分離會(huì)導(dǎo)致大鼠腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)發(fā)生變化,且變化的趨勢(shì)與分離的時(shí)間密切相關(guān),BDNF作為神經(jīng)營(yíng)養(yǎng)因子參與了神經(jīng)元的增殖、分化及營(yíng)養(yǎng),對(duì)突觸的可塑性以及形態(tài)維持有著重要作用。BDNF介導(dǎo)的中樞神經(jīng)的可塑性改變可能是生命早期精神因素對(duì)成年后產(chǎn)生或加重IBS的重要原因。母嬰分離導(dǎo)致BDNF的變化可能參與調(diào)節(jié)了其所誘發(fā)的神經(jīng)遞質(zhì)系統(tǒng)發(fā)育異常的中樞機(jī)制。
神經(jīng)可塑性是指神經(jīng)系統(tǒng)連接重構(gòu)的能力和對(duì)微環(huán)境改變的適應(yīng)能力。母嬰分離模型造成的神經(jīng)可塑性改變不僅發(fā)生在CNS,也同樣發(fā)生在ENS,例如趙敏等[25]報(bào)道新生期母嬰分離可以引起大鼠內(nèi)臟高敏感過程中結(jié)腸神經(jīng)可塑性的長(zhǎng)期改變。體現(xiàn)在腸神經(jīng)結(jié)構(gòu)改變,神經(jīng)元肥大和增生、膠質(zhì)細(xì)胞與神經(jīng)元的比例增高。新生期母嬰分離組黏膜下神經(jīng)叢、肌間神經(jīng)叢神經(jīng)遞質(zhì)P75和TrkA表達(dá)較正常組均明顯增加。ChAT在肌間神經(jīng)叢表達(dá)明顯增加,VIP在黏膜下神經(jīng)叢表達(dá)降低,nNOS在肌間神經(jīng)叢表達(dá)增高。
神經(jīng)內(nèi)分泌功能的改變是應(yīng)激反應(yīng)的主要表現(xiàn),研究觀察到下丘腦-垂體-腎上腺皮質(zhì)軸(hypothalamic-pituitary-adrenal axis,HPA 軸)的易化現(xiàn)象在未成年期招受創(chuàng)傷的IBS病人中發(fā)生[26-31],其中涉及糖皮質(zhì)激素受體(glucocorticoid receptor,GR)通路以及大腦邊緣系統(tǒng)杏仁核的異常。母嬰分離也被證實(shí)對(duì)HPA軸有影響。嚙齒類動(dòng)物從出生到第14天的新生期為應(yīng)激低反應(yīng)期(stress hyporesponsive period,SHRP),其特征是促腎上腺皮質(zhì)激素(ACTH)和皮質(zhì)酮(CORT)對(duì)大部分應(yīng)激源呈現(xiàn)低反應(yīng)[32,33]。母鼠與仔鼠的交流是這種生理性抑制產(chǎn)生的重要原因,而母嬰分離能夠消除這種生理性抑制,引起HPA軸對(duì)應(yīng)激的高反應(yīng)性并可能維持至成年[34-36]。促腎上腺皮質(zhì)激素釋放激素(CRH)的合成分泌增多及糖皮質(zhì)激素水平增高,可能給神經(jīng)系統(tǒng)尚處在發(fā)育期的新生大鼠中樞神經(jīng)系統(tǒng)的正常發(fā)育造成廣泛且長(zhǎng)期的傷害。在這一時(shí)期經(jīng)受短暫的有害性刺激可以引起神經(jīng)痛覺傳導(dǎo)通路長(zhǎng)時(shí)期的過敏,成年后腸道仍處于感覺過敏狀態(tài)[11,37,38]。這一病理生理改變與IBS病人相類似,很好地模擬了IBS過程中HPA的改變及內(nèi)臟高敏感狀態(tài)。
母嬰分離模型對(duì)腦腸軸的另一個(gè)影響體現(xiàn)在腸道動(dòng)力紊亂方面。研究表明母嬰分離能夠通過上調(diào)結(jié)腸平滑肌細(xì)胞L-型鈣離子通道的表達(dá)促進(jìn)結(jié)腸運(yùn)動(dòng)導(dǎo)致結(jié)腸動(dòng)力紊亂[39]。
有研究表明,母嬰分離會(huì)對(duì)幼崽的微生物定植及發(fā)展產(chǎn)生影響,這一現(xiàn)象與宿主腸道屏障功能的改變有關(guān)[40]。動(dòng)物進(jìn)行母嬰分離后對(duì)消化道對(duì)炎癥刺激的敏感性升高的同時(shí)伴隨著腸道通透性的增高,生命早期的微生物定植群落也發(fā)生變化,這其中的原因可能是因?yàn)槟笅敕蛛x引起短暫的腸黏膜屏障通透性增高進(jìn)而使大量的細(xì)菌粘附并進(jìn)入到腸上皮中[41],造成菌群異位。母嬰分離所引起的神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF),促腎上腺皮質(zhì)激素釋放因子(corticotropin-releasing factor,CRF),和肥大細(xì)胞(mast cell)的增多[41-43],以及一些神經(jīng)調(diào)節(jié)物質(zhì)如細(xì)胞因子和蛋白酶類等的釋放[44-46],被認(rèn)為是腸黏膜屏障通透性增高并造成腸道功能紊亂的可能原因。母嬰分離動(dòng)物模型造模時(shí)間在菌群定植的過程中,處于神經(jīng)系統(tǒng)發(fā)育時(shí)期,消化道微生物群落尚未穩(wěn)定,免疫系統(tǒng)也未成熟,復(fù)雜的生理改變使應(yīng)激與腸道菌群改變的關(guān)系特別是其菌群改變與癥狀的出現(xiàn)的機(jī)制孰因孰果未能闡明。母嬰分離應(yīng)激不僅造成腸道上皮細(xì)胞功能和粘液分泌的變化及消化道運(yùn)動(dòng)能力的變化,有研究表明應(yīng)激激素如去甲腎上腺素在消化道內(nèi)的釋放選擇性地刺激某種特定的細(xì)菌生長(zhǎng),并影響其對(duì)腸道黏膜的粘附能力,直接導(dǎo)致菌群的改變[47]。
盡管母嬰分離模型腸道菌群的改變已有報(bào)道[48,49],但并未有一致的結(jié)果證明其菌群變化的規(guī)律,也并未找出與母嬰分離應(yīng)激絕對(duì)相關(guān)的某類菌群,且物種之間菌群差異性的存在使得研究菌群與腸易激癥狀的關(guān)系變得尤為困難,雖然如此,可以肯定的是IBS的發(fā)生與菌群的改變息息相關(guān),且菌群的改變并不是單一作用的因素,而是與腸道屏障功能(包括機(jī)械屏障、免疫屏障、化學(xué)屏障)相互作用的結(jié)果。
正由于母嬰分離模型在神經(jīng)發(fā)育至關(guān)重要的幼年期施加生理性的應(yīng)激以能夠?qū)?duì)中樞神經(jīng)系統(tǒng),腸神經(jīng)系統(tǒng)及腦腸軸產(chǎn)生長(zhǎng)期影響,能夠更全面持久地模擬IBS過程中內(nèi)臟運(yùn)動(dòng)與感覺、腸道菌群、軀體行為、精神癥狀的病理變化,該造模方法近年來越來越多地應(yīng)用于腸易激綜合征的生理病理及藥理研究[5]。
在腹瀉型腸易激綜合征(IBS-D)病理機(jī)制的研究中,通過單一母嬰分離模型或合并其他應(yīng)激模型[50-52]來模擬腹瀉型腸易激綜合征的癥狀或者中醫(yī)學(xué)中肝郁脾虛的癥狀,取得穩(wěn)定的造模結(jié)果,且多因素大鼠模型總體模擬效果優(yōu)于單因素大鼠模型[53]。研究發(fā)現(xiàn),母嬰分離模型導(dǎo)致內(nèi)臟痛覺高敏的機(jī)制眾多,包括腸道黏膜低度炎癥[54]、腸道屏障功能受損[42]、腸道肥大細(xì)胞增多[55]、腦腸軸功能失調(diào)如結(jié)腸黏膜神經(jīng)遞質(zhì)如5-HT增多或5-HT陽(yáng)性細(xì)胞增多[56-58]、NO 增多,腦組織海馬區(qū) BDNF 增高[59],中縫背核和脊髓背角 c-fos免疫反應(yīng)陽(yáng)性細(xì)胞增加[60],中樞神經(jīng)系統(tǒng)CRF受體mRNA表達(dá)升高[61],腸神經(jīng)系統(tǒng)可塑性改變[62]及中樞神經(jīng)可塑性改變[63]等,這些發(fā)在現(xiàn)臨床樣本中得到不同程度的證實(shí),與IBS病人的臨床研究結(jié)果基本吻合[64]。
在治療IBS-D的藥理機(jī)制研究中,雖有單獨(dú)采用母嬰分離模型研究中藥復(fù)方或單體治療腸道痛覺高敏及腸動(dòng)力紊亂的實(shí)驗(yàn)[65,66],但大部分的實(shí)驗(yàn)多采用母嬰分離與其他形式的應(yīng)激,包括幼年期(出生后2周前)或成年期(出生后56d)應(yīng)激[67]等疊加的方法,更全面地模擬IBS-D的癥狀,從改善上述病理改變的角度來研究藥物對(duì)IBS的治療機(jī)制。
影響母嬰分離造模的因素有一下幾點(diǎn):一是不同的母嬰分離造模時(shí)的頻率與持續(xù)時(shí)間對(duì)成年后應(yīng)激反應(yīng)有區(qū)別。出生后2~14 d,每天15 min的簡(jiǎn)短分離,會(huì)降低仔鼠成年后HPA軸對(duì)應(yīng)激的反應(yīng)能力[68,69],而每天3 h以上的分離,則出現(xiàn)相反的結(jié)果,并且出現(xiàn)內(nèi)臟高敏感反應(yīng),成年期阿片類受體介導(dǎo)的痛覺抑制作用減弱的現(xiàn)象[70];二是實(shí)驗(yàn)動(dòng)物性別影響,盡管大多數(shù)實(shí)驗(yàn)為避免性激素影響大多采用雄性鼠仔進(jìn)行實(shí)驗(yàn),但有報(bào)道指出,母嬰分離雄鼠的腸道敏感性增高不及母鼠明顯,且母鼠與整窩老鼠的分離造成腸道癥狀的效果優(yōu)于只與一半數(shù)量鼠仔分離,表明分離的方式對(duì)造模也有影響[71],這與臨床上流行病學(xué)顯示IBS女性較為易感比較吻合。
綜上所述,嚙齒類動(dòng)物母嬰分離模型能夠持久穩(wěn)定地模擬腸易激綜合征從外周到神經(jīng)系統(tǒng)及腦腸軸失調(diào)的癥狀,是腸易激綜合征機(jī)制及治療藥物的藥理研究的良好動(dòng)物模型。
[1]薛曉芳,李曼,王瑋文,等.母嬰分離的動(dòng)物模型及其神經(jīng)生物學(xué)機(jī)制[J].心理科學(xué)進(jìn)展2013,21(06):990-998.
[2]Ackerman SH,Hofer MA,Weiner H.Early maternal separation increases gastric ulcer risk in rats by producing a latent thermoregulatory disturbance[J].Science 1978,201(4353):373 -376.
[3]Ackerman SH,Hofer MA,Weiner H.Predisposition to gastric erosions in the rat:behavioral and nutritional effects of early maternal separation[J].Gastroenterology 1978,75(4):649-654.
[4]Glavin GB,Pare WP.Early weaning predisposes rats to exacerbated activity-stress ulcer formation [J].Physiol Behav,1985,34(6):907-909.
[5]Barreau F,F(xiàn)errier L,F(xiàn)ioramonti J,et al.New insights in the etiology and pathophysiology of irritable bowel syndrome:contribution of neonatal stress models[J].Pediatr Res,2007,62(3):240-245.
[6]Larauche M,Mulak A,Tache Y.Stress-related alterations of visceral sensation:animal models for irritable bowel syndrome study[J].J Neurogastroenterol Motil,2011,17(3):213 -234.
[7]Mayer EA.The neurobiology of stress and gastrointestinal disease[J].Gut 2000,47(6):861-869.
[8]Whitehead WE,Crowell MD,Robinson JC,et al.Effects of stressful life events on bowel symptoms:subjects with irritable bowel syndrome compared with subjects without bowel dysfunction[J].Gut 1992,33(6):825-830.
[9]Seckl JR.Glucocorticoids,developmental‘programming’and the risk of affective dysfunction[J].Prog Brain Res 2008,167:17-34.
[10]Heim C,Newport DJ,Wagner D,et al.The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women:a multiple regression analysis[J].Depress Anxiety 2002,15(3):117-125.
[11]Caldji C,F(xiàn)rancis D,Sharma S,et al.The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat[J].Neuropsychopharmacology 2000,22(3):219-229.
[12]Anisman H,Zaharia MD,Meaney MJ,et al.Do early-life events permanently alter behavioral and hormonal responses to stressors?[J].Int J Dev Neurosci,1998,16(3 -4):149 -164.
[13]Michaels CC,Holtzman SG.Enhanced sensitivity to naltrexoneinduced drinking suppression of fluid intake and sucrose consumption in maternally separated rats[J].Pharmacol Biochem Behav,2007,86(4):784-796.
[14]Tyler K,Moriceau S,Sullivan RM,et al.Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock[J].Neurogastroenterol Motil,2007,19(9):761-768.
[15]Bradford K,Shih W,Videlock EJ,et al.Association between early adverse life events and irritable bowel syndrome[J].Clin Gastroenterol Hepatol 2012,10(4):385-390 e381-383.
[16]Al-Chaer ED,Kawasaki M,Pasricha PJ.A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development[J].Gastroenterology,2000,119(5):1276-1285.
[17]Lin C,Al-Chaer ED.Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain [J].Brain Res,2003,971(1):73-82.
[18]Shanks N,Windle RJ,Perks PA,et al.Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation [J].Proc Natl Acad Sci U S A,2000,97(10):5645-5650.
[19]Breivik T,Stephan M,Brabant GE,et al.Postnatal lipopolysaccharide-induced illness predisposes to periodontal disease in adulthood[J].Brain Behav Immun,2002,16(4):421 -438.
[20]Boisse L,Spencer SJ,Mouihate A,et al.Neonatal immune challenge alters nociception in the adult rat[J].Pain 2005,119(1-3):133-141.
[21]管西婷,謝希,羅曉敏,等.青少期社會(huì)隔離和不確定性應(yīng)激對(duì)大鼠成年后情緒行為的影響.中國(guó)神經(jīng)精神疾病雜志2011,37(07):406-409.
[22]Okumura T. [Brain-gut interaction in the pathophysiology of IBS][J].Nihon Shokakibyo Gakkai Zasshi,2014,111(7):1334-1344.
[23]De Palma G,Collins SM,Bercik P.The microbiota-gut-brain axis in functional gastrointestinal disorders [J].Gut Microbes,2014,5(3):419-429.
[24]Harris ML,Aziz Q.Brain-gut interaction in irritable bowel syndrome[J].Hosp Med,2003,64(5):264 -269.
[25]趙敏,郭友逢,張萌,等.腸易激綜合征早期生活事件模型下的大鼠結(jié)腸腸神經(jīng)可塑性研究[J].解剖學(xué)研究2013,35(02):120-125.
[26]Bonaz B,Baciu M,Papillon E,et al.Central processing of rectal pain in patients with irritable bowel syndrome:an fMRI study[J].Am J Gastroenterol,2002,97(3):654 - 661.
[27]Naliboff BD,Berman S,Chang L,et al.Sex-related differences in IBS patients:central processing of visceral stimuli[J].Gastroenterology,2003,124(7):1738-1747.
[28]Wilder-Smith CH,Schindler D,Lovblad K,et al.Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls[J].Gut,2004,53(11):1595-1601.
[29]Tottenham N,Hare TA,Quinn BT,et al.Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation [J].Dev Sci,2010,13(1):46-61.
[30]Sung IK.[Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome:plasma cytokines as a potential biomarker?][J].Korean J Gastroenterol,2006,48(2):140 - 142.
[31]Wilkinson PO,Goodyer IM.Childhood adversity and allostatic overload of the hypothalamic-pituitary-adrenal axis:a vulnerability model for depressive disorders[J].Dev Psychopathol,2011,23(4):1017-1037.
[32]Rosenfeld P,Suchecki D,Levine S.Multifactorial regulation of the hypothalamic-pituitary-adrenal axis during development[J].Neurosci Biobehav Rev,1992,16(4):553-568.
[33]Sapolsky RM,Meaney MJ.Maturation of the adrenocortical stress response:neuroendocrine control mechanisms and the stress hyporesponsive period[J].Brain Res,1986,396(1):64 -76.
[34]Cirulli F,F(xiàn)rancia N,Berry A,et al.Early life stress as a risk factor for mental health:role of neurotrophins from rodents to nonhuman primates[J].Neurosci Biobehav Rev,2009,33(4):573-585.
[35]Stanton ME,Gutierrez YR,Levine S.Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats[J].Behav Neurosci,1988,102(5):692-700.
[36]Rots NY,de Jong J,Workel JO,et al.Neonatal maternally deprived rats have as adults elevated basal pituitary-adrenal activity and enhanced susceptibility to apomorphine[J].J Neuroendocrinol,1996,8(7):501 -506.
[37]Levine S.Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat[J].Physiol Behav,2001,73(3):255-260.
[38]Ladd CO,Huot RL,Thrivikraman KV,et al.Long-term behavioral and neuroendocrine adaptations to adverse early experience[J].Prog Brain Res,2000,122:81 -103.
[39]Zhang M,Leung FP,Huang Y,et al.Increased colonic motility in a rat model of irritable bowel syndrome is associated with upregulation of L-type calcium channels in colonic smooth muscle cells[J].Neurogastroenterol Motil,2010,22(5):e162 -170.
[40]Collins SM,Bercik P.The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease [J].Gastroenterology,2009,136(6):2003-2014.
[41]Gareau MG,Jury J,Yang PC,et al.Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance[J].Pediatr Res,2006,59(1):83 -88.
[42]Soderholm JD,Yates DA,Gareau MG,et al.Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress[J].Am J Physiol Gastrointest Liver Physiol,2002,283(6):G1257 -1263.
[43]Barreau F,Cartier C,F(xiàn)errier L,et al.Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats[J].Gastroenterology,2004,127(2):524-534.
[44]Coelho AM,Vergnolle N,Guiard B,et al.Proteinases and proteinase-activated receptor 2:a possible role to promote visceral hyperalgesia in rats[J].Gastroenterology,2002,122(4):1035-1047.
[45]Berin MC,Yang PC,Ciok L,et al.Role for IL-4 in macromolecular transport across human intestinal epithelium [J].Am J Physiol,1999,276(5 Pt 1):C1046 -1052.
[46]Ferrier L,Mazelin L,Cenac N,et al.Stress-induced disruption of colonic epithelial barrier:role of interferon-gamma and myosin light chain kinase in mice [J].Gastroenterology,2003,125(3):795-804.
[47]Mayer EA,Savidge T,Shulman RJ.Brain-gut microbiome interactions and functional bowel disorders [J].Gastroenterology,2014,146(6):1500-1512.
[48]O’Mahony SM,Marchesi JR,Scully P,et al.Early life stress alters behavior,immunity,and microbiota in rats:implications for irritable bowel syndrome and psychiatric illnesses[J].Biol Psychiatry,2009,65(3):263-267.
[49]Bailey MT,Coe CL.Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys[J].Dev Psychobiol,1999,35(2):146 -155.
[50]唐洪梅,何嘉侖,閆雪,等.醋酸刺激加母嬰分離致大鼠腸易激綜合征模型的建立及評(píng)價(jià)[J].中醫(yī)研究,2010,23(10):19-21.
[51]Bian ZX,Qin HY,Tian SL,et al.Combined effect of early life stress and acute stress on colonic sensory and motor responses through serotonin pathways:differences between proximal and distal colon in rats[J].Stress,2011,14(4):448 -458.
[52]涂星,柴玉娜,唐洪梅,等.肝郁脾虛型腸易激綜合征便秘大鼠模型的建立和評(píng)價(jià)[J].中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào) 2015,23(01):30-34.
[53]張慶業(yè),范麗霞,閆雪,等.六組腸易激綜合征大鼠模型的建立及其癥狀學(xué)評(píng)價(jià)[J].海峽藥學(xué),2012,24(09):20-23.
[54]林劍,王承黨.早期母嬰分離對(duì)成年大鼠內(nèi)臟感覺和腸道炎癥的影響[J].胃腸病學(xué)2013,18(03):154-158.
[55]van den Wijngaard RM,Stanisor OI,van Diest SA,et al.Peripheral alpha-h(huán)elical CRF(9 - 41)does not reverse stress-induced mast cell dependent visceral hypersensitivity in maternally separated rats[J].Neurogastroenterol Motil,2012,24(3):274-282,e111.
[56]石卿,趙云,梅竹松,等.5-羥色胺與褪黑素在母嬰分離致腹瀉型腸易激綜合征模型大鼠中的表達(dá)[J].軍事醫(yī)學(xué),2013,37(08):604-608.
[57]任天華,胡品津,胡志遠(yuǎn),等.新生期母嬰分離對(duì)大鼠成年后結(jié)直腸擴(kuò)張后5-羥色胺表達(dá)的影響[J].中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版),2004,25(03):234-236.
[58]沈忠飛,郭燕君.5-羥色胺系統(tǒng)在腸易激綜合征內(nèi)臟感覺過敏機(jī)制中的作用研究[J].吉林醫(yī)學(xué),2012,33(10):2021-2022.
[59]趙宏宇,陳飛雪,曹靜,等.腦組織海馬區(qū)腦源性神經(jīng)營(yíng)養(yǎng)因子在焦慮調(diào)節(jié)內(nèi)臟高敏感中的作用[J].山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2014,52(03):33-36.
[60]沈忠飛,郭連軍.c-fos基因在內(nèi)臟高敏感大鼠中的表達(dá)[J].現(xiàn)代農(nóng)業(yè)科技,2012,(02):314-320.
[61]Tjong YW,Ip SP,Lao L,et al.Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat[J].Neuro Endocrinol Lett,2010,31(2):215 -220.
[62]趙敏,李智.神經(jīng)生長(zhǎng)因子通路調(diào)節(jié)大鼠結(jié)腸的腸神經(jīng)系統(tǒng)可塑性[J].熱帶醫(yī)學(xué)雜志2013,13(11):1334-1337.
[63]Tsang SW,Zhao M,Wu J,et al.Nerve growth factor-mediated neuronal plasticity in spinal cord contributes to neonatal maternal separation-induced visceral hypersensitivity in rats [J].Eur J Pain,2012,16(4):463-472.
[64]杜麗東,吳國(guó)泰,劉峰林,等.腸易激綜合征大鼠模型的復(fù)制與評(píng)價(jià)[J].中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào),2014,22(06):43-48.
[65]Bian ZX,Zhang M,Han QB,et al.Analgesic effects of JCM-16021 on neonatal maternal separation-induced visceral pain in rats[J].World J Gastroenterol,2010,16(7):837 -845.
[66]Zhang XJ,Chen HL,Li Z,et al.Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1)receptor by inhibiting the extracellular signal-regulated protein kinase(ERK)pathway[J].Pharmacol Biochem Behav,2009,94(1):88 -97.
[67]Yang C,Zhang SS,Li XL,et al.Inhibitory effect of TongXie-YaoFang formula on colonic contraction in rats[J].World J Gastroenterol,2015,21(10):2912 -2917.
[68]Levine S.Maternal and environmental influences on the adrenocortical response to stress in weanling rats[J].Science,1967,156(3772):258-260.
[69]Plotsky PM,Meaney MJ.Early,postnatal experience alters hypothalamic corticotropin-releasing factor(CRF)mRNA,median eminence CRF content and stress-induced release in adult rats[J].Brain Res Mol Brain Res,1993,18(3):195 -200.
[70]Coutinho SV,Plotsky PM,Sablad M,et al.Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat[J].Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-316.
[71]Rosztoczy A,F(xiàn)ioramonti J,Jarmay K,et al.Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat[J].Neurogastroenterol Motil,2003,15(6):679 -686.