宋瑞麗, 郭紅霞
(1.中原工學(xué)院 信息商務(wù)學(xué)院 河南 鄭州 450007; 2.鄭州大學(xué) 數(shù)學(xué)系 河南 鄭州 450001)
?
一類(lèi)具阻尼項(xiàng)的六階非線性波動(dòng)方程的Cauchy問(wèn)題
宋瑞麗1, 郭紅霞2
(1.中原工學(xué)院 信息商務(wù)學(xué)院 河南 鄭州 450007; 2.鄭州大學(xué) 數(shù)學(xué)系 河南 鄭州 450001)
研究了一類(lèi)具阻尼項(xiàng)的六階非線性波動(dòng)方程的Cauchy問(wèn)題,利用壓縮映像原理和積分估計(jì),在小初值的條件下,得到解的整體存在性、唯一性和衰減性.
非線性波動(dòng)方程; Cauchy問(wèn)題; 整體解; 壓縮映射原理
研究具阻尼項(xiàng)的六階非線性波動(dòng)方程的Cauchy問(wèn)題
utt-uxx+uxxxxtt+uxxxx+ut-uxxt=f(u)xx,x∈Rn,t>0,
(1)
u(x,0)=u0(x);ut(x,0)=u1(x),x∈Rn
(2)
ScottRussell對(duì)孤立水波的探討推進(jìn)了人們對(duì)描述流體中波動(dòng)現(xiàn)象的非線性偏微分方程的研究[1].Wang等[2]研究了多維IMBq方程
utt-Δu-Δutt=Δf(u)
(3)
Cauchy問(wèn)題解的存在性.Cho等[3-4]利用Besov空間改進(jìn)了文獻(xiàn)[2]中的一些結(jié)果.Ploat[5]研究了具阻尼項(xiàng)的IMBq方程
utt-Δu-Δutt-Δut=Δf(u)
(4)
本節(jié)討論線性Cauchy問(wèn)題
utt-uxx+uxxxxtt+uxxxx+ut-uxxt=gxx,x∈Rn,t>0,
(5)
u(0)=u0(x);ut(0)=u1(x)
(6)
解的衰減性質(zhì).利用Fourier變換和Duhamel原理,式(5),(6)的解可表示為
其中,
(7)
(8)
(9)
(10)
(11)
(12)
(13)
利用Duhamel原理和引理1、引理2可得到定理1.
(14)
其中,γ≥0.
本節(jié)將利用壓縮映像原理和積分估計(jì)式在上節(jié)的基礎(chǔ)上,討論Cauchy問(wèn)題(1),(2)解的存在性及衰減性.
(15)
(16)
其中,ρ是只依賴于f和δ的小的正常數(shù).
(17)
下面證明N是從X到X的嚴(yán)格壓縮映射.在定理1中取k=0,p=∞,r=2,注意到α≥2,利用文[6]中的引理3.1,3.2和式(15),得
(18)
(19)
(20)
類(lèi)似式(18)~(20)的證明方法,有
因此,對(duì)于充分小的ρ,N是(X,d)上的壓縮映射.利用壓縮映像原理,N(u)在X上存在唯一的不動(dòng)點(diǎn)u(x,t),它是Cauchy問(wèn)題(1),(2)的解,且滿足式(16).
[1] Russell J S. Report on waves [C]//Report of 14th Meeting of the Association for the Advancement of Science.New York,1844:311-390.
[2] Wang Shubin, Chen Guowang. Small amplitude solutions of the generahzed IMBq equation[J]. Math Anal Appl, 2002, 274(2):846-866.
[3] Cho Y, Ozawa T. Remarks on modified improved Boussinesq equations in one space dimension[J].Proc R Soc A,2006,462(5):1949-1963.
[4] Cho Y, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations[J]. Discrete and Continuous Dynamical Systems, 2007,17(4):691-711.
[5] Necat P.Existence and blow up of solutions of the Cauchy problem of the generalized damped multidimensional improved modified Boussinesq equation[J]. Z Naturforsch,2008(63a):543-552.
[6] Wang Shubin, Xu Huiyang. On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped tern[J]. J Differ Equations, 2012,252(7):4243-4258.
[7] 李向正,郝祥暉.簡(jiǎn)化齊次平衡原則與Gerdjikov-Ivanov方程的精確解[J].河南科技大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(1):82-85.
Cauchy Problem for a Class of Damped Six Order Nonlinear Wave Equation
SONG Rui-li1, GUO Hong-xia2
(1.CollegeofInformation&Business,ZhongyuanUniversityofTechnology,Zhengzhou450000,China;2.ZhengzhouUniversity,Zhengzhou450001,China)
The Cauchy problem of a class of damped six order nonlinear wave equation was studied. For sufficiently small initial data, the existence, the uniqueness and the asymptotic behavior of solution were proved by the contraction mapping principle and integral estimates.
nonlinear wave equation; Cauchy problem; global solution; contraction principle
2014-11-04
國(guó)家自然科學(xué)基金資助項(xiàng)目,編號(hào)11171311;河南省自然科學(xué)基金資助項(xiàng)目,編號(hào)132300410351,河南省科技廳重點(diǎn)攻關(guān)項(xiàng)目,編號(hào)132102210185.
宋瑞麗(1978-),女,河南新野人,講師,碩士,主要從事偏微分方程研究,E-mail:srli070911@sina.com.
O175.29; O29
A
1671-6841(2015)01-0010-04
10.3969/j.issn.1671-6841.2015.01.003